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1 References

This document depends on several others.  Primarily, it depends on the OpenCPI 
Component Development Guide (CDG), which describes concepts and definitions 
common to all OpenCPI authoring models.

Table 1:  References to Related Documents

Title
Published

By
Link

OpenCPI Overview OpenCPI
Public URL:

https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI
_Overview.pdf

OpenCPI 
Component 
Development Guide

OpenCPI
Public URL:

https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI
_Component_Development.pdf

OpenCPI RCC 
Development Guide

OpenCPI
Public URL:

https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI
_RCC_Development.pdf
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2 Overview

This document describes how to develop component implementations, known as HDL 
workers, for FPGAs, using the Hardware Description Language (HDL) Authoring 
Model.  Workers are typically created in a component library, so that they are available 
for OpenCPI application developers and users.

Some knowledge of FPGA terminology is assumed here, but this document is also 
useful for non-FPGA developers in understanding the OpenCPI FPGA development 
process.

This document builds on the information provided in the OpenCPI Component 
Development Guide (CDG), which introduces concepts and processes used for 
OpenCPI component development in general.

In addition to describing how to develop HDL workers, this document also describes:

 how to create HDL primitive libraries, which are libraries of smaller/simpler 
reusable code modules sometimes used in the design of HDL workers

 how to create HDL primitive cores, which are prebuilt and possibly pre-
synthesized modules sometimes incorporated into HDL workers

 how to assemble a group of connected HDL workers to form an HDL assembly, 
which is realized in a complete FPGA bitstream.

HDL assemblies enable an FPGA to execute a subset of, or all of, the components 
specified in an OpenCPI application.  Usually when an OpenCPI application uses an 
FPGA, it is using it to execute some of the components specified in the application, with 
the others executing on other processors typically using other authoring models.  
However, in some cases an HDL assembly provides workers for all the components 
required by an application.

For HDL development, the OpenCPI Component Development Kit (CDK) utilizes 
technology-specific FPGA synthesis and simulation tools (e.g. Xilinx ISE and Isim, 
Altera Quartus, Modelsim etc.).

The following sections describe the development of HDL workers, primitives (libraries 
and cores), assemblies and bitstreams to support the execution of parts of component-
based applications on FPGAs.  All these terms are prefixed with HDL here to avoid 
confusion when they are used elsewhere.

HDL Authoring Model:  the OpenCPI authoring model targeting Hardware Description 
Languages that are appropriate for FPGA development, currently using VHDL, with 
some legacy support for Verilog.  New HDL workers should be written in VHDL.  Full 
support for Verilog and System-Verilog is not currently supported.

HDL Target:  a particular type of FPGA device, usually what is considered a part family, 
that is the target of compilation or synthesis, where the result can be used for any 
architecturally similar device.  Examples are “virtex6”, or “stratix4”, or “zynq”.  
Simulators are also HDL targets, including Mentor's Modelsim and Xilinx Isim.
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HDL Worker:  an HDL (e.g. VHDL)  implementation of a component specification, with 
the source code written according to HDL authoring model.  While most HDL workers 
are application workers (usable in portable applications), a special type is device 
workers which are for controlling hardware physically attached to the FPGA.  For 
application workers, it is common and recommended to have an RCC worker that also 
implements the same spec.  Such workers are sometimes called “work-alikes”.

HDL Primitive:  an HDL asset that is lower level than workers, that is used as a building
block for workers.  HDL primitives can either be libraries or cores.

HDL Primitive Library:  a collection of low level modules compiled from source code 
that can be referenced in HDL worker code.  An HDL worker declares which HDL 
primitive libraries it draws modules from.

HDL Primitive Core:  a low level module that may be built and/or synthesized from 
source code, or imported as presynthesized and possibly encrypted from 3rd parties, or 
generated by tools like Xilinx CoreGen or Altera MegaWizard.  An HDL worker declares 
which primitive cores it requires (and instantiates).

The following diagram shows the hierarchy of modules when an FPGA design is 
realized using OpenCPI:

Figure 1:  HDL Hierarchy
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HDL Assembly:  a composition of connected HDL workers that are built into a complete
FPGA configuration bitstream, acting as an OpenCPI artifact.  The resulting bitstream 
is executed on an FPGA to implement some part or all of (the components of) the 
overall OpenCPI application.  The HDL code is automatically generated from a brief 
description in XML.

HDL Platform:  an OpenCPI platform based on an FPGA that is enabled to host 
OpenCPI HDL workers.  Simulators are also considered HDL platforms.

HDL Platform Worker:  a specific type of HDL worker providing infrastructure for 
implementing control/data interfaces to devices and interconnects external to the FPGA 
or simulator (e.g. PCI Express, Clocks).  See the HDL Platform and Device 
Development section.

HDL Device Worker:  a specific type of HDL worker that supports external devices 
attached to FPGAs.  See the HDL Platform and Device Development section.

HDL Platform Configuration:  a prebuilt (presynthesized) assembly of device-level 
HDL workers that represent a particular configuration of device support modules for a 
given HDL platform.  The HDL code is automatically generated from a brief description 
in XML.  See the HDL Platform and Device Development section.

HDL Container:  a complete design for an entire FPGA, which includes an HDL 
assembly and an HDL platform configuration combined in a specified fashion.  The HDL 
code is automatically generated from a brief description in XML.

HDL development in OpenCPI includes both application workers in a component library,
which perform functions independent of any specific hardware attached to the FPGA, as
well as device workers that are designed to support specific external hardware such as 
ADCs, flash memories, I/O devices, etc.

HDL device workers are developed as part of enabling an HDL platform (an FPGA on a 
particular board) for OpenCPI.  See the HDL Platform and Device Development 
section.

The sections below for HDL/FPGA development are:

 Developing application workers in a component library

 The HDL Build Process: building HDL assets for different target devices and 
platforms

 The HDL Build Hierarchy: how whole device “bitstreams” are created from other 
assets

 Developing assemblies of workers on FPGAs.

OpenCPI HDL Development Guide Page 9 of 98



3 HDL Workers

This section describes how to write an HDL worker, and defines what distinguishes HDL
worker development from developing workers using other authoring models.  It builds 
on the worker development section in the Component Development Guide (CDG) that 
describes what is common to building workers for all authoring models.

HDL workers can consist of a single standalone source code module or reference and 
instantiate lower level models:  HDL primitive libraries and HDL primitive cores.  In 
either case a worker is compiled and (when appropriate) synthesized for a given HDL 
Target, as described in detail in the HDL Build Targets section.  HDL worker source 
code cannot reference other workers.

3.1 Execution Model for HDL Workers

An HDL worker executes when enabled from its control interface.  When not in the 
operating control state a worker should only execute in response to control operations.  
When in the operating state, it is expected to operate continuously until a control 
operation changes its state (via stop or release control operation).  As a convenience, 
the code generated shell has its own implementation of the start control operation and 
sets the is_operating signal accordingly.  It is strongly recommended that every 

worker use that signal to enable its operation.  Execution of workers normally processes
data arriving at input ports and produces data at output ports, possibly changing the 
values of volatile properties.

All workers are provided a reset signal, which is guaranteed to be asserted for at least 
16 control clock cycles.  If a worker needs more time or clock cycles to perform its 
initialization, then it must implement the initialize control operation as described in 
Lifecycle/Control Operation Signals.

All HDL workers are provided the control clock which is used to control the operating 
state of the work, access property registers, and may be used for data processing.  
However, this may restrict performance in some cases since the control clock may not 
be the fastest clock rate that the logic can support.

Workers may be written with different clocks used at different ports, allowing some ports
to operate at clock rates different from the control clock.  When a worker is written this 
way it is up the author to perform appropriate clock domain synchronization inside the 
worker between control signals using the control clock and signals operating using 
different clocks. In many cases the only signals that need to “cross the clock domain 
boundary” inside such a worker are the control reset and is_operating signals.  

[ This multiple-clock support is preliminary in the current framework ].

OpenCPI HDL Development Guide Page 10 of 98



3.2 Creating an HDL Worker

The process of writing a new HDL worker (after the OCS exists), starts with using the 
ocpidev create worker command, as described in the CDG, to create the worker's

directory and its initial content, usually as a subdirectory of a component library.  This 
command can be executed in a project's directory, a component library's directory or 
even a completely separate directory not part of any pre-existing library or project.  The 
name of an HDL worker always has the .hdl suffix, and the language must be 

specified as VHDL or Verilog.  Languages are case insensitive.  The default is vhdl.  

Here are some examples of using ocpidev to create HDL workers:

ocpidev create worker xyz.hdl -L vhdl
ocpidev -v -l dsplib create worker
ocpidev -S fft2d-spec create worker fft.hdl

As described in the CDG, this will create an initial worker description XML file (OWD), 
<worker>.xml, in the worker directory, which is subsequently edited for worker-

specific attributes.  Similarly, a Makefile is also created in the worker's directory, 

which may also be edited to enter worker-specific non-default build options.  Creating 
an HDL worker also generates various files in the worker's gen subdirectory, including 

the code skeleton file which is initially copied to the <worker>.<language-suffix> 

in the worker's directory.  The first ocpidev command above would result in the 

following directory tree for the worker:

xyz.hdl/
        Makefile            # Makefile for this worker
        xyz.xml             # OWD for this worker
        xyz.vhd             # editable source code for this worker
        gen/xyz-skel.vhd    # initial skeleton for this worker
            xyz-defs.vhd    # definitions enabling instantiation
            xyz-impl.vhd    # the generated shell of the worker
            xyz.build       # the generated build configuration file

None of the files in the gen subdirectory should be edited.  Since this directory and its 

contents are all generated by tools, all are deleted when the make clean command is 

issued here or at the project or library level.  For HDL workers using VHDL, the initial 
worker code file (xyz.vhd), that you must subsequently edit, contains only the 

architecture of the worker.  The entity declaration of the worker was 

automatically generated for you, and is found in the generated file 
gen/xyz-impl.vhd.
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3.3 Building the Worker

The above command establishes the worker’s directory (xyz.hdl), its Makefile, its 

OWD file (xyz.xml), and its initial source code file (xyz.vhd).  The worker is built by 

issuing the

make <targets>

command in the worker's directory, or

make <targets> xyz.hdl

in the library directory containing the worker's directory, assuming the worker was 
created in a library.  In both the above cases  <targets> would specify which HDL 

platforms or part families to build for.  If a default for <targets> was already specified 

in the project's Project.mk file, nothing would be necessary here.

These commands will compile (or synthesize) the worker for the active set of HDL 
Targets, such as zynq, virtex6, stratix4, isim or modelsim.  HDL targets are 

described in detail in the Building HDL Assets section.

The worker may be built as it was originally created by ocpidev, for any targets, before

adding any code to implement the actual function of the worker.

As with any type of worker, compilation output is placed in the target-TTT 

subdirectory of the worker, for each target in the currently active set.  An example 
explicitly specifying the targets is:

make HdlTargets=”modelsim virtex6”

This would compile (and for non-simulation targets, synthesize) the worker for two 
targets.  At this point, after building the initial generated worker code file, the directory 
representing the new worker looks like this:

xyz.hdl/
       Makefile             # Makefile for this worker
       xyz.xml              # OWD for this worker
       xyz.vhd              # editable source code for this worker
       gen/xyz-skel.vhd     # initial skeleton for this worker
           xyz-defs.vhd     # definitions enabling instantiation
           xyz-impl.vhd     # the generated shell of the worker
           xyz.build        # the generated build config file
       target-virtex6/      # directory for results of virtex6 build
           xyz.ngc          # virtex6 synthesized core file
           xyz-xst.out      # log of tool output
       target-modelsim/     # dir for results of modelsim build
           xyz/*            # modelsim compilation result files
           xyz-modelsim.out # log of tool output

The gen directory and all the target-* subdirectories are generated, and should not 

be edited.  More details about these files are described below.  As they are generated 
files, they are removed when the make clean command is issued.
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3.4 HDL Worker Description File: the OWD XML File

This file specifies characteristics for an HDL worker which expand on those found in the 
spec file (OCS).  In many cases it can be empty or left as it is.  A default file is 
generated when the worker is created.  Aspects of the OWD that are common to all 
authoring models are described in the CDG.  Aspects specific to the HDL authoring 
model are described here.

Some reasons to customize the OWD XML file for an HDL worker are:

 Add implementation-specific properties
You can add additional worker properties for the implementation, beyond what is in
the spec file.  The property element accomplishes this, with the same XML 

syntax as in the OCS file.

 Add more accessibility to OCS properties
You can add more access capabilities for existing properties, via the 
specproperty element.  E.g. make a property that is write-only in the OCS to be

also volatile in the implementation for debug purposes.  The allowed attributes are 
descriibed in the CDG.

 Specify that an OCS property is in fact a parameter (compile-time) property
You can indicate that in this worker, the OCS property is actually a compile-time 
value.  This only applies to initial properties in the OCS.

 Specify which control operations this worker will implement
You can specify which control operations are in the implementation:  none are 
required.  This uses the top-level ControlOperations attribute of the OWD.

 Specify interface style and implementation attributes for data ports
You can specify whether the port uses a stream or message interface, and provide
additional details for those interfaces (e.g. data path width, or whether the port 
supports aborting messages).  See Attributes of HDL Worker Data Ports.

 Specify that the control interface should support raw properties
This is an alternative method of accessing properties described in Raw Properties 
Access.  The XML attributes used are described there.

 Specify build instructions, based on the needs of worker source code
These are described in the CDG, with a few HDL-specific ones here.

Only the last 3 items above may be in fact specific to HDL workers.  All the rest apply to 
workers of all authoring models and are fully described in the CDG.

3.4.1 HDL Worker OWD Top Level Attributes

The top level of the HDL OWD is the XML HdlWorker element, which can have the 

XML attributes in the table below (beyond those defined for all OWDs in the CDG).  All 
are optional, and are only specified when the default behavior must be overridden.
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Table 2:  HdlWorker Attributes

HdlWorker
Attribute Name

Data 
Type

Description

DataWidth unsigned The default physical width of data ports for this worker.  
Any individual port can override this.  The default value 
when this attribute is not specified is based on the 
protocol (messages) defined for the port in the OCS.

Cores list A list of HDL primitive cores required by this worker.

RawProperties boolean A boolean value indicating whether the worker will use 
the raw property interface for all properties.  The default 
is false.  The raw interface is described below under 

Raw Access to Properties and is typically only used for 
device workers.

FirstRawProperty string A string value indicating the name of the first property that
requires the raw property interface.  Properties before 
this use the normal property interface.

The attributes below are for HDL infrastructure workers coded to the “outer” or 
OCP interfaces and not supported for general users.

Outer boolean Whether the worker implements the outer interface, used 
in internal OpenCPI modules or for legacy code.

Pattern string An external signal naming pattern (described below this 
table) for all signals of the worker.  The default is “%s_”, 
which indicates a prefix of the port name followed by 
underscore.  External signals are those defined using the
OCP interface standard, not the inner worker signals.

PortPattern string A port naming pattern used when port names and signal 
(not data) direction are used in the generated code.  I.e. 
for each worker port, a naming pattern is defined both for 
input signals and output signals of the port.  The default is
“%s_%n”, which indicates a prefix of the port name 
followed by underscore, and then in or out for signals 

that are input to the worker or output from the worker.

SizeOfConfig-
Space

unsigned
64-bit

Overrides the size of the configuration space in bytes.  
The default is based on the actual properties.

Sub32BitConfig-
Properties

boolean Whether this worker needs to address items smaller than 
32 bits (and thus requires byte enables in its interface).  
The default is based on the actual properties.

When using the Cores attribute, if a name in the list has no slashes, it is found by 

searching the path for HDL primitives as described in the HDL Search Paths section.  If
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the name does contain slashes, it is the specific path name of the library or core, usually
a relative path name within the same project.  The IncludeDirs attribute, described in

the CDG, can apply to XML includes or Verilog includes.  For HDL workers, the 
Libraries attributes described in the CDG refers to HDL primitive libraries, described 

in the HDL Primitive Libraries section.

The Pattern and PortPattern attributes are like sprintf format strings in C, with 

%s being the port name (%S capitalized), %n being in or out for signal, not data, 

direction (in to or out of the worker), %m being m or s for master/slave (and %M for M/S), 

%0 or %1 for port ordinal within OCP profile (0 origin or 1 origin), %i/I for using i/I for 

input, o/O for output, %N for In or Out, and %w/W for profile name (lower case or 

capitalized).  These patterns are only used when exporting or importing OCP-based 
workers.

3.4.2 Attributes of Worker Interfaces

Other aspects of the OWD for HDL workers are described in the sections describing 
each interface:  the control interfaces, data interfaces (stream and message*), and 
service interfaces (time and memory*).  They are summarized here, and described in 
detail later.

Table 3:  HDL Worker Interface Attributes

Attribute Name Which
Interfaces?

Description

Timeout Only control Control clock cycles allowed for control ops

DataValueSize Any data The minimum unit of data, in bytes.

DataValueGranularity Any data The minimum multiple of data values

NumberOfOpCodes Any data Maximum number of opcodes to support

MaxMessageValues Any data Maximum message length in “data values”

ZeroLengthMessages Any data Declare support for zero length messages

Abortable Stream data Declare that messages can be aborted.

PreciseBurst Stream data Declare that messages will have known length 
at the start of the message.

SecondsWidth Time Bits in the seconds field of time-of-day

FractionWidth Time Bits in the fraction field of time-of-day.

AllowUnavailable Time Declare tolerance for time to be unavailable

* Support for memory interfaces is preliminary/partial in the current framework.
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3.5 Worker Makefile

The worker Makefile is usually not hand-edited, but there are a few cases where 

editing is necessary.  Several variables are available for all authoring models, as 
described in the CDG.  If your HDL worker will consist of multiple source files, you can 
add VHDL or Verilog source files (beyond the main file whose name is the worker name)
by specifying the SourceFiles variable in the Makefile.  Even if the primary 

language of the worker is VHDL, other Verilog files can be used, and vice versa.

In addition to the make variables mentioned in the CDG for all authoring models (e.g. 
SourceFiles, Libraries, XmlIncludeDirs, OnlyTargets, 

ExcludeTargets),  the HDL worker Makefile may also include additional ones in 

the following table. Use of these Makefile variables is deprecated except for 
HdlExactPart.  Use OWD attributes instead.

Table 4:  HDL Worker Makefile Variables

Variable Name
in HDL Worker 
Makefile

Usable as 
default in
library 
Makefile?

Description

Cores N A list of HDL primitive cores built elsewhere
(Deprecated, make it an OWD attribute)

VerilogIncludeDirs Y Searchable directories for Verilog include 
files, in addition to the worker directory
(Deprecated, use the includeDirs OWD 

attribute)

HdlExactPart N A variable to override the default part within a
family specified by HdlTarget(s).  See 

HDL Build Targets.
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3.6 The Authored Worker: the VHDL Architecture or Verilog Module Body

This section describes how and where to write the actual VHDL or Verilog source code 
for a worker.

The functional code or “business logic” of the worker is in the architecture section 

(VHDL), in the xyz.vhd file (and possibly subsidiary source files).  In Verilog, it is in the

body of the module, and the file is xyz.v.  This architecture/module is initially 

generated as a skeleton of the inner worker.  It is surrounded by an automatically 
generated logic shell which provides robust and composable interfaces compliant with 
the Open Core Protocol (OCP) interfaces defined for the entire outer worker.

This shell and the entity declaration for the inner worker are found in the generated 

file: gen/xyz-impl.vhd  for VHDL and gen/xyz-impl.vh for Verilog.  The skeleton 

file, consisting of an empty inner worker, becomes the authored worker when the 
functional logic is written/inserted into that file.

Figure 2: Worker Code and Files

All OpenCPI HDL workers are characterized by their properties, their data and service 
ports and their clocks, and usually the clocks are simply associated with ports, or even 
more simply, a single clock is commonly used with all ports.  The job of implementing 
the inner worker is the job of:

 processing the various data ports’ inputs to the worker to

 produce the various data ports’ outputs of the worker,
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 using the services provided at the service ports.

For each port of the worker (including the control port) there are input signals (into the 
worker) and output signals (out of the worker).

In VHDL, these groups of inputs and outputs are in a record type.  Thus for each port 
(whether control, data producing, data consuming or other service) there is an input 
signal record and an output signal record named <port>_in and <port>_out, 

respectively.  In Verilog there are no record types, so individual signals simply have the 
<port>_in_ and <port>_out_ prefixes.

E.g., with a “filter” worker that has a “sensor” input port, and a “result” output port, the 
VHDL entity declaration (in the gen/filter-impl.vhd file) would be:

entity filter_worker is
  port(
    ctl_in             : in  worker_ctl_in_t;
    ctl_out            : out worker_ctl_out_t;
    sensor_in          : in  worker_sensor_in_t;
    sensor_out         : out worker_sensor_out_t;
    result_in          : in  worker_result_in_t;
    result_out         : out worker_result_out_t);
end entity filter_worker;

The actual individual signals in each record depend on the contents of the OCS and 
OWD files.  These signals will be described below.  Note that the name of the “control 
port” defaults to ctl.  An example skeleton file for this worker, in the file 

filter.vhd,would be:

library ieee; use ieee.std_logic_1164.all, ieee.numeric_std.all;
library ocpi; use ocpi.types.all;
architecture rtl of filter_worker is
begin
  -- put the logic for this worker here
end rtl;

Note that while the overall worker has the name “filter”, the entity being implemented in 
the architecture here is filter_worker, the inner worker.

The clause use ocpi.types.all introduces all the data types in that package to the 

namespace for the architecture code of the worker.  This is most convenient for using 
the built-in types provided by OpenCPI.  However, if the author wants to avoid any 
collisions with their own types or functions, they can remove this use clause and fully 

qualify references to types provided by OpenCPI.

3.6.1 Signal Naming Conventions and Data Types

Other than the property access signals described below, the signals in these worker 
interfaces are mostly a combination of IEEE std_logic_vector and a boolean type, 

bool_t, that is used for various boolean indicator signals.  All these VHDL types and 

related constants are defined in the ocpi.types package from the ocpi HDL primitive

library.
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The VHDL type bool_t acts as much like the VHDL type BOOLEAN as possible (with 

various operator overloading functions), while still being based on std_logic.  The 

to_boolean and to_bool functions explicitly convert to and from the VHDL 

BOOLEAN type, respectively.  The its function is a convenient synonym for the 

to_boolean function, enabling code like:

if its(ready) then
...

end if;

There are also two constants for this type, btrue and bfalse. These types and 

constants may also be used in user-written primitives, and are used in code 
automatically generated by OpenCPI.

In VHDL, all signals into and out of the authored worker are in the in and out records 

of each port.

All data types created by OpenCPI use the _t suffix.  All enumeration values defined by

OpenCPI use the _e suffix.

OpenCPI uses the term port to mean a high level data flow interface in and out of all 
types of workers.  This conflicts with the use of the term in VHDL and Verilog, which 
means the individual signals (of any type) that are the inputs and outputs of an entity 
(VHDL) or module (Verilog).

In this section on HDL workers, this document uses the term interface to be the HDL 
worker's set of input and output port signals that correspond to the high level OpenCPI 
ports as defined in the OCS and OWD for the HDL worker.  We also use the term 
interface for the implicit control port of all workers.  An HDL worker has a control 
interface (for the implicit control port), data interfaces (for the explicit data ports defined 
in the OCS), and service interfaces (for service ports as defined in the HDL worker's 
OWD).
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3.7 The Control Interface to the HDL Worker.

Every HDL worker has a control interface that at a minimum provides a control clock 
and associated reset into the worker.  Normally, the control interface also is used to:

 Convey life cycle control operations like initialize, start and stop

 Access the worker’s configuration properties as specified in the OCS and OWD

In VHDL, when the default name of the control interface is used (ctl), the input signals 

are prefixed with ctl_in. and the output signals are prefixed with ctl_out.  I.e. the 

input signals are in the ctl_in record port, and the output signals are in the ctl_out 

record port.

When the spec for the HDL worker (in its OCS) has the (rarely used) NoControl 

attribute set to true, only the clock and reset  signals are present.  In this case no 
signals associated with control operations or properties are present and there are no 
ctl_in or ctl_out signals.  Only wci_clk for the clock signal and wci_reset for 

the reset signal are present.

3.7.1 XML attributes for the HDL Worker's Control Interface

Most aspects of the control interface are generically specified either in the OCS (e.g. the
NoControl attribute), or at the top level of the OWD XML (e.g. the 

ControlOperations attribute).  Several additional control interface attributes for HDL 

workers may be specified in a ControlInterface child element of the OWD.  One 

example is the Timeout attribute described below.  An example of an HDL OWD with 

this attribute would be:

<HdlWorker>
  <ControlInterface Timeout='100'/>
  ...
</HdlWorker>

The following table contains attributes that may be specified for the 
ControlInterface element:

Table 5:  HDL Worker ControlInterface Element Attributes

Attribute Name Value
Type

Description

Timeout ULong The minimum number of control clock cycles that should be 
allowed for the worker to complete control operations or property
access operations.  When this number is exceeded the worker is
considered inoperative and a timeout error is reported.  The 
worker completes these operations using the ctl_out.done or 

ctl_out.error signals described below.

The default value is 16.
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3.7.2 Reset Behavior and Initializations in HDL Workers and Infrastructure

Per (at least) Xilinx recommended practice, OpenCPI uses and generates resets 
synchronously,.  Thus resets are implemented active high and are asserted and 
deasserted synchronously.  There are several reasons for this policy, but one is that less
logic is typically needed to implement the resetting of register state.

At power up or reconfiguration, resets are asserted, so they will be asserted on the first 
clock edge.  Per the OCP specification, resets will always be asserted for at least 16 
clock cycles.

If registers (state) truly need an initial value (e.g. for simulation cleanliness or glitch-free 
initialization or sim-vs-synth consistency), it is preferred to set an initial default 
expression value in VHDL or Verilog, rather than using asynchronous reset.  This is 
done by providing an initial value expression in the signal declaration.  Note that current 
Xilinx (ISE, and ISIM), Altera (Quartus), and Mentor (Modelsim) support such 
initialization without using any resources.

In the OpenCPI HDL infrastructure, applying resets to register state is only used to 
serve a functional purpose, and not the default practice.

3.7.3 Clock and Reset Input Signals in the Control Interface

The signal ctl_in.clk is the clock for all other control port signals as well as the 

default clock for all other data or service ports of the worker.  The ctl_in.reset 

signal (asserted high) is asserted and deasserted synchronously with this clock.  This 
reset is guaranteed to be asserted for 16 clock cycles.  When 16 clocks are not 

enough to perform initialization, the worker should implement the initialize control 

operation (see below).  The control reset, like all other resets generated by the 
OpenCPI infrastructure, is initially asserted.

If the worker (in its OWD) declares that other data or service ports have clocks that are 
different than this control clock (i.e. those interfaces operate in different clock domains), 
the worker implementation code has responsibility for the appropriate synchronizations 
between this control clock (and its associated signals) and any other signals related to 
the data or service interfaces. In particular, it is the worker’s responsibility to propagate 
this control reset to the reset outputs associated with other interfaces, in their clock 
domain.

3.7.4 Life cycle/Control Operation Signals in the Control Interface

Other than the control reset signal, the life cycle of all workers is managed by life cycle

control operations, according to the diagram below.  When a worker's control reset is 
deasserted, it enters the exists state.  Control operations cause state changes as 
shown.  When control operations fail, the unusable state is entered.  The worker 
autonomously enters the finished state, without any control operation.
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Figure 3: Control Operations and States

In simple and common cases, when the worker has no need to implement any of these 
operations, there is a single input signal indicating when the worker should operate, 
called is_operating.  I.e., after reset is deasserted, the worker should operate only 

when this is_operating signal is asserted.  Many HDL workers use this signal (as 

well as clk and reset) and no others in the control interface.

The is_operating signal indicates that the worker has been started and should now 

perform its function.  A worker must not perform any data transactions at its data ports 
unless is_operating is true.  This is necessary for robust system-level application 

control to suspend and resume all or parts of an application.

An example of a simple HDL worker would be:

architecture rtl of filter_worker is
  signal mystate_r : std_logic_vector(7 downto 0); -- some state
begin
  process (ctl_in.clk) is
  begin
    if rising_edge(ctl_in.clk) then
      if its(ctl_in.reset) then
        mystate <= "01010101";
      elsif its(ctl_in.is_operating) then
        -- do the clocked functions of this worker
      end if;
    end if;
  end process;
end rtl;
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This allows the worker to be suspended and resumed since nothing happens during 
suspension, when is_operating is false.

If the initialize control operation is not implemented, then when the reset signal is

deasserted, the worker is considered to be initialized.  If initialize is implemented, 

the worker is considered in the exists state after reset is deasserted.  The worker's 

OWD specifies whether initialize is implemented by this worker.

When a worker needs to explicitly support other control operations, there are two input 
and two output signals it may use.  The control_op signal is a VHDL enumeration 

value that conveys which control operation is in progress.  When there is no operation in
progress, it has a value of NO_OP_e.  Otherwise the choices are:  INITIALIZE_e, 

START_e, STOP_e, RELEASE_e, BEFORE_QUERY_e,  and AFTER_CONFIG_e.  The 

operation is terminated by the worker asserting the done or error output signals, after 

which the control operation is considered accomplished successfully (if done) or not (if 

error).  Note that the done signal is driven to a default value of btrue in the entity 

declaration and the error signal defaults to bfalse.  The worker does not need to 

drive these at all if it will always perform the control operations in a single cycle and will 
never need to assert error.  The operation will be forced to complete with a timeout 

error if neither done nor error is asserted within the number of control clock cycles 

indicated in the Timeout attribute of the ControlInterface element.

All VHDL types specifically associated with the control interface are in the wci package 

of the ocpi library, including the enumeration values just mentioned.  E.g.:

library ocpi;
...
if ctl_in.control_op = ocpi.wci.START_e ...

A common example of a control operation might be when the worker needs multiple 
clock cycles to accomplish something like initialize or start.  In that case it 

notices when the control_op signal changes from no_op_e, and then performs the 

operation, asserting done (or error) when the operation has completed.  An example 

where initialization takes 10 clock cycles, would be:
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architecture rtl of example_worker is
  signal init_count_r : unsigned(4 downto 0);
begin
  process (ctl_in.clk) is
  begin
    if rising_edge(ctl_in.clk) then
      if its(ctl_in.reset) then
        init_count <= (others => '0');
      elsif ctl_in.control_op = INITIALIZE_e then
        init_count <= init_count + 1;
      elsif its(ctl_in.is_operating) then
        -- do normal functions
      end if;
    end if;
  end process;
  -- initialize takes 10 clocks, all others take 1
  ctl_out.done <= 
   '0' when ctl_in.control_op = INITIALIZE_e and init_count < 20
    else '1';
end rtl;

Another convenience input signal, state, indicates which life cycle state the worker is 

in.  It changes when control operations succeed.  It is a VHDL enumeration value: 
EXISTS_e, INITIALIZED_e, OPERATING_e, SUSPENDED_e, FINISHED_e, and 

UNUSABLE_e.  These types are also in the ocpi.wci package.

Finally, there are two control output signals that the worker can use to indicate two other
conditions.  The first control output signal is finished.  The worker uses this to 

indicate it has entered the finished state, and will perform no further work.  This 
enables the worker to tell control software that its work is finished and perhaps that the 
application the worker is part of can be considered finished.  This signal should be 
deasserted upon reset.  Asserting finished will cause is_operating to become 

false, and state to become FINISHED_e.

The second, attention, allows the worker to indicate an interrupt or other condition to

control software.  This signal is for legacy compatibility and should not be used in new 
workers.  It should be deasserted on reset.
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Here is a summary of the control interface signals in the ctl_in record.  The bool_t 

type is in the ocpi.types package, and the control_op_t and state_t are in 

ocpi.wci

Table 6:  Control Input Signals

Signal Type Description

clk std_logic The clock for the control interface and the default 
clock for all other interfaces and ports.

reset bool_t Asserted high and synchronously, for the control 
interface, for at least 16 clocks.  Initially asserted.

control_op control_op_t An enumeration type specifying the currently active 
control operation, with the value no_op_e when there

is no active control operation.  Control operations 
persist until done or error signal in the ctl_out 

record is true.

state state_t An enumeration type indicating the worker's current 
control state.  Changes when control operation ends 
(via done or error) or finished is asserted.

is_operating bool_t Indicates the worker is started and is in an operating 
state.  Persists until stop or release operation 
completes or finished or reset is asserted.

abort_control_op bool_t A command indicating that a long-duration control 
operation is being forcibly aborted.  A pulse.

is_big_endian bool_t For dynamic endian workers, set at reset.

Here is a summary of the control interface signals in the ctl_out record:

Table 7:  Control Output Signals

Signal Type Description

done bool_t Indicates the successful end of a control operation.  
The default value is true indicating that all control 
operations complete in the same cycle they start.

error bool_t The signal indicating the unsuccessful end of a control
operation.  Default value is false.

finished bool_t A persistent indication, not deasserted after being 
asserted, until reset, that the worker has entered the 
finished state.  Default is false. 

These signals are assigned the default value in the entity port declaration.
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3.7.5 Property Access

A worker’s configuration properties are accessed via two additional record port signals 
called props_in and props_out (separate from the ctl_in and ctl_out records 

for the control interface).  The individual signals within these records depend on what 
types of properties have been declared in the OCS and OWD.

When the worker shell is generated based on the OCS and OWD, the accessibility of 
properties determines which registers and signals are generated and made available to 
the worker code for each property.  If any property is specified as being a raw property 
in the OWD, then the raw interface is also generated, and used for all such properties, 
as described below in raw access to properties.  Otherwise the following rules apply:

Table 8:  HDL Worker Property Logic Rules

Property is
writable or initial

Property is
Readable

Property
is Volatile

Logic Description

Yes No No Value is registered in the shell and register 
outputs are available in props_in

Yes Yes No Value is registered in the shell and register 
outputs are available in props_in.  The 

readback value is from the register outputs.

Yes No Yes Value is registered in the shell and register 
outputs are available in props_in.  The 

readback value is from the worker in 
props_out.

No Yes No The readback value is from the worker in 
props_out, but is cached by control 

software since the worker is not expected to 
change it after it is operating.

No No Yes The readback value is from the worker in 
props_out.

In the tables below, for a property called foo, the signals will be present as described.  

The types of the signals are all in the ocpi.types package.

The signals possibly present in the props_in record are in the following table.
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Table 9:  HDL Worker Property Input Signals

Signal
in props_in

Included when: Type Signal Description

foo Writable or Initial * The registered value last written by 
control software.  The type is dependent 
on the property type.

foo_length Writable or Initial 
and type is 
sequence

ulong_t The registered 32 bit unsigned number of
elements in the sequence when property 
is a sequence.

foo_written Writable bool_t Indicates the entire value is being written.
Persists until ctl_out.done, 

ctl_out.error or ctl_in.reset.

foo_any_written Writable and (array
or sequence or 
string)

bool_t Indication that any part of the value is 
being written.  Persists until 
ctl_out.done, ctl_out.error or 

ctl_in.reset.

foo_read Volatile or 
(readable and not 
writable)

bool_t Indication that the property is being read.
Persists until ctl_out.done, 

ctl_out.error or reset.

The indication signals are valid during the access operation (until ctl_out.done or 

ctl_out.error is asserted).  The operation will be forced to complete with a timeout 

error if neither done nor error is asserted within the number of control clock cycles 

indicated in the Timeout attribute of the ControlInterface element.  Unless the 

OWD declares that the readError or writeError attributes are true, control 

software will not expect and not check that errors have occurred.  The readSync and 

writeSync OWD property attributes currently have no function for HDL workers.

Any writable property is registered in the worker's shell when written, even when the 

property is volatile and the worker is supplying a volatile value for reading in the 

props_out record.  The signals possibly present in the props_out record are:

Table 10:  HDL Worker Property Output Signals

Signals in 
props_out

Included when: Type Description

foo Volatile or (readable 
and not writable)

* The worker-supplied value of the 
property, with the type dependent on 
the property declaration.

foo_length Volatile or (readable 
and not writable) and 
sequence type

ulong_t The worker-supplied 32 bit unsigned 
length (number of elements in the 
sequence) when a sequence type.
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3.7.6 Property Data Types

The props_in and props_out port signal records contain fields for property values 

with types that correspond to the property types defined in the OCS or OWD.  All these 
types and associated conversion functions are defined in the ocpi.types package (in 

the ocpi HDL primitive library).  This package is available in all workers.  The worker 

author can decide to use the fully specified types (e.g. ocpi.types.ulong_t), or 

introduce the types into the worker architecture's namespace using:

library ocpi; use ocpi.types.all;
architecture rtl of xyz_worker is

For all property data types there is a:

 VHDL type name specified in the OCS with a _t suffix

 from_<type> conversion function from the type to std_logic_vector

 to_<type> conversion function from std_logic_vector to the type

 to_<type> conversion function from the related VHDL type (below) to the type

 <type>_min (for signed types) and a <type>_max constant for minimum and 

maximum values of the type

 <type>_array_t type for array or sequence property values, with a range of
(0 to length - 1)

 to_slv conversion function from each <type>_array_t to 

std_logic_vector.

 to_<type>_array conversion function from std_logic_vector to 

<type>_array_t.

For example, for the ushort type, the ocpi.types package contains:

subtype ulong_t is unsigned (31 downto 0);
type ulong_array_t is array (natural range <>) of ulong_t;
constant ulong_max : ulong_t := x"ffff_ffff";
function to_ulong(c: natural) return ulong_t;
function to_ulong(c: std_logic_vector(31 downto 0)) return ulong_t;
function from_ulong(c: ulong_t) return std_logic_vector;
function to_slv(a: ulong_array_t) return std_logic_vector;
function to_ulong_array(a: std_logic_vector) return ulong_array_t;

The string_t type is a null-terminated array of char_t types.  The to_string 

conversion function can convert from a VHDL STRING type to a string_t.

The types are summarized in the following table, with extra conversion functions 
specific to each type.
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Table 11:  VHDL Types for Properties

VHDL type Based on Width Extra Conversion Functions

uchar_t IEEE unsigned 8 to_uchar(n : natural)

char_t IEEE signed 8 to_char(i : integer)
to_char(c : character)
to_character(c : char_t)

ushort_t IEEE unsigned 16 to_ushort(n : natural)

short_t IEEE signed 16 to_short(i : integer)

ulong_t IEEE unsigned 32 to_ulong(n : natural)

long_t IEEE signed 32 to_long(i : integer)

ulonglong_t IEEE unsigned 64 to_ulonglong(n : natural)

longlong_t IEEE signed 64 to_longlong(i : integer)

float_t std_logic_vector 32 to_float(r : real) (not synthesizable)

double_t std_logic_vector 64 to_double(r : real) (not synthesizable)

string_t char_t 8 to_string(s : string, length : natural)
from_string(s : string_t) return string;

bool_t std_logic 1 to_bool(b : boolean)
to_bool(b : std_logic)
its(b : bool_t) return boolean

3.7.7 Raw Access to Properties

There is an alternative property access method when a worker must manage the 
storage and addressing of individual property values itself.  This is called the raw 
property interface.  There are two primary use cases for this method:

 Device workers using properties to access hardware registers outside the FPGA, 
e.g. via I2C, SPI.

 Application workers that need to arrange the storage of property values for more 
efficient storage of large values, e.g. in a block memory managed by the worker.

In both cases this avoids register duplication for property values, either off or on chip.  
The raw property interface does not apply to parameter properties.

The use of the raw property access interface is indicated in one of three ways:

1. Set the boolean raw attribute of the property (in Property or 

SpecProperty elements) to true to indicate those properties that should 

be accessed using the raw interface.
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2. Set the boolean rawProperties top-level worker attribute to true to 

indicate that all properties defined for the worker (in OCS or OWD, except 
parameters), will use the raw interface.

3. Set the firstRawProperty string attribute to the name of the first property 

that should use the raw interface, as well as all subsequent properties.

All properties designated as raw will be accessed in an address space with each 
property aligned based on its type, with the first raw property having raw address 0.  
The padding property attribute can be specified in OWDs to explicitly align the 

addresses of raw properties.

The input signals (in the props_in record) for the raw interface are:

Table 12:  Raw Property Input Signals

Signal
in props_in

Signal included 
when:

Signal Description

raw.address
 (31 downto 0)

Always The byte offset from the first raw property, of 
the property being accessed.

raw.byte_enable
 (3 downto 0)

Some raw property 
is less than 32 bits.

The (4) byte enables for reading/writing bytes 
in the 32-bit data path of the control interface.

raw.is_read Some raw property 
is readable/volatile

Access operation is reading a raw property, 
valid until raw.done or raw.error.

raw.is_write Some raw property 
is writable/initial

Access operation is writing a raw property, 
valid until raw.done or raw.error.

raw.data
 (31 downto 0)

Some raw property 
is writable/initial

The data being written to the raw property, on 
the appropriate byte lanes for the offset.

The output signals (in the props_out record) for the raw property access interface are:

Table 13:  Raw Property Output Signals

Signal
in props_out

Signal 
included 
when:

Signal Description

raw.data
 (31 downto 0)

Some raw 
property is 
readable/
volatile

The data value for the raw property being read, with 
values smaller than 32 bits (e.g. 8 or 16 bit values) 
aligned in the appropriate byte lanes.  Valid and 
accepted when raw.done is asserted.

raw.done Any raw 
properties

Indicates when the access cycle has completed 
successfully.  Asserted for one cycle per access.

raw.error Any raw 
properties

Indicates when the access cycle has completed 
unsuccessfully.  Asserted for one cycle per access.
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When raw properties are being accessed, the props_out.raw.done and 

props_out.raw.error signals indicate when the access is complete (and for reading,

when the props_out.raw.data signal is valid).  These are analogous to the done 

and error signals in ctl_out, although they do not have default values and must be 

explicitly driven by the worker.

If the raw interface is accessing registers or block memories in the worker, the 
raw.done signal may be tied asserted since all access happens in a single cycle.  

When the raw interface is used to access external registers (e.g. accessing an I2C or 
SPI bus), it would be asserted by the worker for one cycle when the access is complete.
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3.7.8 Summary of HDL Worker Control Interface

 Interface inputs are in the ctl_in signal port record.

 Interface outputs are in the ctl_out signal port record.

 Clock is ctl_in.clk.

 Reset is ctl_in.reset, asserted high, synchronously, for at least 16 cycles.

 Do no work unless ctl_in.is_operating is asserted, or a control operation is 

in progress.

 Optionally use ctl_out.done and ctl_out.error when control operations or 

property accesses take more than one cycle.

 Optionally set ctl_out.finished, if the worker has some semantic of being 

finished.

 Property inputs (written values, and access indicators) are in props_in.

 Property outputs (volatile values) are in props_out.

 If raw properties are used, the interface is in the raw member of props_in and 

props_out.

 If using ctl_out.done or ctl_out.error (or their raw equivalents), and more 

than 16 control clock cycles are required to complete the operation, set the 
Timeout attribute in the ControlInterface element.
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3.8 HDL Worker Data Interfaces for OCS Data Ports

The OpenCPI data-plane is the collection of hardware and software infrastructure that 
conveys variable-length messages between workers of all types, and each message 
has an associated opcode, which is an ordinal indicating the message type, among 
those defined in the protocol indicated for the port defined in the worker's OCS.  The 
data-plane also convey the EOF condition (see the EOF Indications on Data Ports 
section in the CDG).  In summary, the data-plane conveys 4 things:  data, message 
boundaries, opcodes, and EOF.

HDL worker data interfaces correspond to the ports defined in the worker's OCS and 
convey these four things in to and out of HDL workers.  The signals in these interfaces 
carry data, opcodes, message boundaries and EOF.  These interfaces have a physical 
data width, specified by the HDL-specific dataWidth attribute.  It indicates the number 

of wires over which the message data will be conveyed. The data is conveyed as a 
sequence of fixed width words, of dataWidth bits.  How data is packed into these 

words is described in the Message Payloads section.

When there is only one message type in the protocol, no opcode is conveyed and no 
interface signals are present for opcodes.  Data interfaces may have zero width when 
all messages in their protocol have no arguments and thus are all zero length:  
message opcodes are all that is conveyed.  If there is only one message in the protocol,
and it has no arguments, then there is no data, no opcode, but still an indication of a 
message being conveyed.  This is essentially an “event pipe” or “pulse” interface.

Data interfaces implement flow control:  an output cannot be produced unless 
permission is granted.  HDL workers explicitly accept data at input interfaces when 
offered, and only produce data at output interfaces when permitted.

Data interfaces convey the EOF condition.  Most workers ignore the EOF condtion and 
it is automatically propagated from its input(s) to its output(s).  Prior to version 2, EOF 
was not supported but was overloaded with zero-length messages with opcode zero.

Worker data ports can be implemented in two different styles:  stream or message.  
Stream interfaces are FIFO-like with extra qualifying bits along with the data indicating 
message boundaries, byte enables and EOF.  Message interfaces are based on 
addressable message buffers.  Each style has its own section below.  The style of a port
used in the HDL worker is indicated by the XML element that describes it in the OWD.  
The stream interface is the default style.  If all attributes of the interface have default 
values, no indication of this port or style is required in the OWD.

The stream interface style is indicated by the <StreamInterface> element in the 

OWD.  This element specifies interface characteristics and may also override any of the
protocol summary attributes explained in the CDG (protocol and OCS port section).

An example of the per-data-port XML element is:

<StreamInterface name="sensor" dataWidth="64"/>

The example shows the sensor data interface port declared in the OCS is being further

configured for a non-default dataWidth.
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3.8.1 Message Payloads vs. Physical Data Width on Data Interfaces 

Component ports defined in the OCS usually specify an OpenCPI protocol spec (OPS). 
This defines one or more messages that will be consumed or produced at the port.  
More details about protocols can be found in the CDG.

Each message payload has a serialized format as a sequence of bytes that, when used 
in software, are laid out in byte-addressed memory.  For example, if the operation 
element in a protocol contains:

<argument name='a1' type='uchar'/>
<argument name='a2' type='ushort' arraylength='2'/>
<argument name='a3' type='ulonglong'/>

And the values of this payload are:

a1: 1, a2: {0x2345,0x6789}, a3: 0xfedcba9876543210

Then the byte sequence (with proper alignment, and encoded little-endian), would be:

Sequence #  ► 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Contents (hex) 01 x 45 23 89 67 x x 10 32 54 76 98 ba dc fe

Argument a1 a2[0] a2[1] a3

Contents 1 0x2345 0x6789 0xfedcba9876543210

This layout and these values is the same for all types of workers in all (little endian) 
environments and over all data paths.  The x values are padding for alignment.

HDL worker data interfaces have a physical width, specified by the HDL-specific 
dataWidth attribute.  The width must be a multiple of the smallest data value in the 

protocol.  In the example above this would be 8 bits.  If DataWidth was 8, the 

sequence of content bytes shown above would be how the payload appears on that 
byte-wide data interface.  If the dataWidth was 16, the message would appear as:

Sequence #  ► 0 1 2 3 4 5 6 7

15 downto 8 x 23 67 x 32 76 ba fe

7 downto 0 01 45 89 x 10 54 98 dc

If the dataWidth was 32, the message would appear as:

Sequence #  ► 0 1 2 3

31 downto 24 23 x 76 fe

23 downto 16 45 x 54 dc

15 downto 8 x 67 32 ba

7 downto 0 01 89 10 98
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And if the dataWidth was 64, the message would appear as:

Sequence #  ► 0 1

63 downto 56 x fe

55 downto 48 x dc

47 downto 40 67 ba

39 downto 32 89 98

31 downto 24 23 76

23 downto 16 45 54

15 downto 8 x 32

7 downto 0 01 10

The byte sequence remains the same regardless of dataWidth.

3.8.2 Byte Enables on Data Interfaces

Byte enables on data interfaces are only present when needed, and their presence is 
determined by a combination of the protocol summary attributes and the dataWidth of 

the interface.

Two relevant values are inferred from the protocol:

 DataValueWidth:  the smallest data value in the protocol.

 DataValueGranularity:  the least common multiple of data values among all 
messages in the protocol; all message lengths are a multiple of this number of 
data values.

The physical data width of the interface, dataWidth, must be a multiple of 

DataValueWidth.  When dataWidth is greater than DataValueWidth * 

DataValueGranularity, byte enables are in the interface, since data words (of 
DataWidth) at the end of a message may be partially valid.  E.g. if the DataWidth is 

32, and DataValueWidth is 8 and DataValueGranularity is 1, the messages may have 
any number of bytes and thus the last 32 bit word of a message may have 1, 2, 3 or 4 
valid bytes.  In this context, a byte is a data value, and bytes may not be 8 bits.  Here 
are some examples:

 Message is a sequence of short (16 bit) values, dataWidth is 16:

DataValueWidth = 16
DataValueGranularity = 1
No byte enables required.

 Message is a sequence of short (16 bit) values, dataWidth is 32:

DataValueWidth = 16
DataValueGranularity = 1
Byte enables (2) are required since sequences might be an odd number of shorts.
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 Message is a sequence of pairs of short (16 bit) values, dataWidth is 32:

DataValueWidth = 16
DataValueGranularity = 2
Byte enables not required since sequences are always a multiple of 2 shorts.

The exact naming and use of byte enable signals in data interfaces is described below.

3.8.3 Streaming Data Interfaces to/from the HDL Worker

The stream data interface is layered, with a simple default model usable by many 
workers, and a more advanced model that covers all possibilities.

The simple model:

 focuses exclusively on processing words of data and supporting flow control

 is designed to be similar to the AXI4-Stream interfaces found in other systems

 ignores signals used by the advanced model

 allows the worker to ignore message boundaries

 uses a small number of control signals to consume or produce data.

The advanced model gives the worker total control over message boundaries, byte 
enables and opcodes.

This data streaming interface is versioned according to the OWD version attribute 

described in the CDG.  This attribute indicates the specific interface semantics.  This 
distinction between simple and advanced interfaces was established with version 2 of 
this interface (introduced in release 1.5 of OpenCPI).  Prior to that there was a single 
more complex interface model.  The interface description here is the version 2 interace, 
with notes where a signal had a different semantic prior to version 2.

3.8.3.1 Attributes of Streaming Data Interfaces

Recall that the dataWidth attribute at the top level of the HDL OWD specifies the 

default physical width of all data interfaces.  If most interfaces have the same width, it 
may be most convenient to specify this width at the top level HdlWorker element.  

Specifying dataWidth in the StreamInterface element applies only to that port.

The XML attributes of the StreamInterface element are in the following table:
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Table 14:  XML Attributes of StreamInterface Elements

Attribute in
StreamInterface

Attribute
data type

Attribute Description

name string The name of the port in the OCS.  Required.

dataWidth unsigned The width of the data path for this interface.  The default is the 
width of the smallest element in the message protocol indicated
in the OCS, unless overridden by a default datawidth 

attribute at the top level of this OWD (HdlWorker)

workerEOF boolean The worker will take responsibility for asserting EOF at this 
output port.  If not set, this will be done automatically based on 
the first input port (see CDG).  Only valid for output ports.  Not 
valid for versions < 2.

insertEOM boolean End of message will be automatically asserted appropriately.  
The worker need not deal with or assert EOM.  The worker may
still assert EOM if it needs to.  Only valid for output ports.  Not 
valid for versions < 2.
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3.8.3.2 Signal Summary for Streaming Interface

The signals are described in the following tables and explained in sections after the 
table.  The term “qualified by xxx” means “is only usable when xxx is asserted”.

Table 15:  Stream Interface Input Signals for Input Ports

Signal When
Included

Signal Description

data If datawidth > 0 The input data, qualified by valid.  Width is dataWidth.

valid If datawidth > 0 The data signals hold message data, implies ready.

Prior to v2, qualified by ready.

byte_enable If datawidth > 0
**

Which data bytes are valid; qualified by valid.  **Included  

when the DataValueWidth * DataValueGranularity 

< dataWidth.  Width is dataWidth/dataValueWidth.

ready Always Can consume, and metadata bits are valid/usable.  Implies 
ctl_in.is_operating.

som Always The start-of-message indication.  Qualified by ready.

eom Always The end-of-message indication.  Qualified by ready.

abort If Abortable The message is being aborted.  Qualified by ready.

opcode numberOf
OpCodes > 1

Opcode for the current message.  Valid from start of message
to end of message on input.  Initially qualified by ready.

Width is ceil(log2(numberOfOpCodes)).

eof Always Indicates EOF condition (not present prior to v2).  Not 
qualified.  Persists until reset when asserted. Only asserted 
after an eom.

All the above input signals are in the <port>_in VHDL record entity port.

There is one output signal for input ports:  take.  It indicates that the worker will 

consume the word (metadata and maybe data) if ready or valid is also asserted.  

The take signal is in the <port>_out VHDL record entity port.  It can be asserted 

before ready or valid is asserted.

When using the port in the simple mode that ignores message boundaries, only the 
data and valid and take signals are used (and byte_enable when present).

When the dataWidth is zero, only the ready and take signals are used.

For interface versions prior to 2, eof signal did not exist and the valid signal was 

qualified by ready and could not be used unless ready was asserted.
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Table 16:  Stream Interface Output Signals for Output Ports

Signal When
Included

Signal Description

data If datawidth > 0 The output data, qualified by valid.  Width is dataWidth.

valid If datawidth > 0 The data signals hold message data.  Implies give .

Prior to v2, qualified by give.

byte_enable If datawidth > 0
**

Which data bytes are valid; qualified by valid.  **Included 

only when the DataValueWidth * DataValueGranularity < 

dataWidth.  Width is dataWidth/dataValueWidth.

give Always Indicates metadata and maybe data is valid/usable.  When 
asserted, one of som/eom/valid/abort must be asserted.

som Always The start-of-message indication.  If previous give had eom, 

then som is assumed on the next give. Qualified by give.

eom Always The end-of-message indication.  Qualified by give.

abort If Abortable The message is being aborted.  Qualified by give.

opcode numberOf
OpCodes > 1

Opcode for the this message.  Must be valid with som on 
output.

eof Always Indicates EOF condition (not present prior to v2)
Not qualified.  Persistent (until reset)

All the above output signals are in the <port>_out VHDL record entity port.

There is one input signal for output ports:  ready.  It indicates that the shell will 

consume the word (metadata and maybe data) if give or valid is also asserted.  It 

implies ctl_in.is_operating.  The ready signal is in the <port>_in VHDL record 

entity port.  It may be asserted before give or valid is asserted.

When using the port in the simple mode that ignores message boundaries, only the 
data and valid and ready signals are used (and byte_enable when present).

When the dataWidth is zero, only the ready and give signals are used.

For interface versions prior to 2, eof signal did not exist and the valid signal was qualified by

give and could not be used unless give was asserted.

The data and byte_enable signals are std_logic_vector.  The opcode signal is 

also std_logic_vector when there is no protocol in the OCS, otherwise it is an 

enumeration of type <protocol>_OpCode_t, with each operation having an 

enumeration constant <protocol>_<op>_op_e.  These opcode types are in the 

work.<worker>_worker_defs package.  The other signals are all bool_t, from the 

ocpi.types package.
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3.8.3.3 Metadata and Message Boundaries Used for Stream Interfaces

The information flowing out of or in to stream interfaces are variable length messages 
conveyed using fixed width words of data, along with metadata.  The metadata 
associated with every word presented at the interface includes:

 Valid:  indicates whether the data is present and valid

 SOM: start of message:  indicates that this word is the first in a message

version >= 2:  on input will always be coincident with first valid data word
version <2:  may be present whether or not there is valid data present.

 EOM: end of message:  indicates that this word is the last in a message

version >= 2:  will always be coincident with the last valid data word
version <2:  may be present whether or not there is data present.

 Abort:  (optional) whether this word is indicating the end of an aborted message

 Byte_enable:  (optional) indicates, when valid is true, which bytes in the data 

word are valid.  This signal is all ones on all but the last valid word of a message.

These metadata signals, as well as data, are all registered (at least x1) on input ports, 

outside the worker's code, enabling simple workers to be written in a combinatorial 
style.  Only the valid signal (and data) is used in the simple usage model.

On input, the optional abort indicator, when present and asserted, forces the EOM 

indicator on, and the valid indicator off.  When abort is asserted on output, EOM and 

valid are ignored and assumed true and false, respectively.  When there is no abort, 

the three metadata bits, SOM, EOM, and valid, can be in various combinations, with the

following valid combinations:

Table 17:  Metadata in Stream Interfaces

SOM Valid EOM Signal Description

1 0 0 The start of a message, with no data (yet).  Only on output.

1 1 0 The start of a message, coincident with the first word of data.

1 0 1 A zero length message, with no data, in a single word.

1 1 1 A single word message.

0 1 0 A data value in the middle of a message

0 1 1 A data value, coincident with the end of the message

0 0 1 An end of message with no data.  Only on output

On input, the worker can assume that the sequence of metadata values will be correct, 
meaning all messages will have a SOM and an EOM.  The valid sequences are:

 The first word of a message must have 110, 101, or 111 (i.e. the SOM bit set).

OpenCPI HDL Development Guide Page 41 of 98



 After a message is started but not simultaneously ended by 101 or 111, any of 

010, or 011 may occur (i.e. be data-without-EOM, data-with-EOM).

 After a word with EOM set, the next word must have SOM set.

On output, the worker may also produce a SOM with no data and an s with no data, but 

a worker will never see these combinations on input.

3.8.3.4 Validity/Qualification of Interface Signals

On both input and output ports the ready signal is an input that allows data to move 

and is prequalified by the ctl_in.is_operating signal from the control interface.  

On input, the som, eom, data, and byte_enable signals are only usable if ready is 

asserted.  However, the input valid signal, when asserted, implies ready, and can 

thus be used as the sole control signal of the input interface when message boundaries 
are being ignored and all messages contain data.

The take signal on the input interface is the handshake to accept a word of data and 

metadata.  It is not qualified.  Similar to AXI interfaces, the take signal may be asserted

before input ready if the worker is prepared to accept data/metadata.

On output, none of the output signals are used unless the ready input signal (of the 

output interface) is asserted.  Simular to input, the valid signal by itself indicates that 

valid metadata and data is being offered for output (and thus implies give)..

In summary, when message boundaries are ignored (and insertEOM is set for the 

output port), the entire interface is controlled by valid and take at an input port, and 

valid and ready at an output port.  The semantics are the same as AXI-Stream 

signaling (with the OpenCPI take signal acting like the AXI ready signal).

When a more advanced worker needs to manage message boundaries in a more 
complex way, the som and eom signals can be used on either or both sides, along with 

the input ready and output give signals.

Prior to version 2, the valid input signal was also qualified by the ready signal and 

the ready signal was not qualified by ctl_in.is_operating.  On output the valid 

was qualified by give.  The changes introduced by version 2 can be summarized as:

 valid can be used on input and output without using ready (on input) or give 

(on output)

 ready can be used on input and output without using ctl_in.is_operating

 take can be asserted before ready on input, and give can be asserted before 

ready on output.

3.8.3.5 Output Message Sizes

The maximum permitted size of a message produced at an output port, in bytes, is 
always asserted by the system in the built-in initial property named 
ocpi_buffer_size_<port>. of type ushort_t.  For bounded protocols, this value 
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will always accomodate any mesasge defined by the protocol.  The worker can take one
of the following approaches to managing the output message size:

 Let the system do it automatically by setting the insertEOM attribute and never 

driving the EOM signal at all.

 Let the system do it automatically (using insertEOM), but in some cases forcible 

terminate a message early by asserting EOM.

 Drive the EOM signal on output based on an EOM signal from an input port, when 
message sizes on input and output can and should be the same number of words.

 Intelligently drive the EOM per protocol, ensuring this maximum is respected.

Sometimes a worker must specifically determine and implement output message sizes 
based on some other criteria.  An example would be a worker that produced a fixed size
message regardless of the size of input messages, essentially accumulating data from 
input messages into fixed size output messages that should not necessarily be as large 
as allowed by the ocpi_buffer_size_<port> attribute..
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3.8.3.6 Flow Control (a.k.a. Back Pressure) On Streaming Interfaces.

Both input and output stream interfaces have a ready signal, that is always input to the

worker, indicating that data can be consumed or produced.

The rules for input interfaces are:

 ready indicates that the metadata and perhaps the data signals are valid

 valid indicates that metadata and data signals are valid

Prior to version 2, this signal is qualified by ready.

 if ready is not asserted, none of the metadata signals are valid or meaningful

 the worker takes input data when ready or valid is asserted by asserting the 

take signal

 the take  signal may be asserted early without ready (or valid) asserted

The rules for output interfaces are:

 ready indicates that metadata and perhaps data can be produced

 if the ready signal is not asserted, none of the metadata or data output signals 

are used.

 the worker gives data when ready is asserted by asserting the give signal

the give (or valid) signal may be asserted prior to ready being asserted.

 the worker may also use valid to imply give

Data flows according to FIFO semantics.  Input data is presented as ready as if there is 
an input FIFO outside the worker that is not empty.  The worker consumes this data by 
taking it, which is as if it is dequeueing data from this not-empty FIFO.  Similarly, 
output data can be produced when output is indicated to be ready as if there is an 
output FIFO outside the worker that is not full.  The worker produces this data by 
giving it, which is as if it is enqueueing data to this not-full FIFO.

These signals (ready/valid, take, give/valid) control the flow of data and 

metadata words through the interface.  Here is a table of how this signal terminology 
compares to some other common interfaces with FIFO semantics:  the classic FIFO 
interface, the AXI streaming interface, and the “native” Xilinx FIFO interface.

Meaning OpenCPI Classic FIFO AXI Xilinx FIFO

Data is available to consume ready not_empty valid !empty

Consume data take dequeue ready rd_en

Data can be produced ready not_full ready !full

Produce data give enqueue valid wr_en
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In AXI interfaces, either signal (valid or ready) may be asserted early.  The 

handshake (ready) can in fact be asserted early even when valid is not yet asserted.

With OpenCPI prior to version 2, it was invalid to assert take or give without ready.  

Version 2 brought alignment with AXI signaling.  In Xilinx FIFO, rd_en and wr_en are 

ignored if the fifo is empty (input) or full (output).

In all cases (all these interfaces) data moves from producer to consumer when both 
sides assert their signals in the same cycle (at the same clock rising edge).

Since worker ports all have FIFO semantics, workers must be written to accommodate 
“back pressure”.  I.e. the ready signal on output interfaces may not always be 

asserted, so the output data is not accepted until then.

Example timing diagrams for this interface follow the signal descriptions below.
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3.8.3.7 Timing Diagrams

The following diagram shows an input port where both the infrastructure (worker shell) 
and the worker respond one cycle after they see new input, resulting in a throughput of 
3 clock cycles per data word.  Both SOM and EOM are coincident with data.

Figure 4:  3 word input message with delays on both sides

The following diagram shows an input port where only the worker responds one cycle 
after it sees new input, resulting in a throughput of 2 clock cycles per data word.

Figure 5:  3 word input message width worker adding delay

The following diagram shows an input port where both sides respond in the same cycle,
with no delays, resulting in a throughput of 1 clock cycles per data word.
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Figure 6:  2 3 word messages, with no delays on either side.

3.8.3.8 Source Code Examples

Here is a set of examples, showing the use of these signals.  The first is a complete 
worker that is purely combinatorial, and simply adds a constant (3) to every data value 
from input to output.  It is simply processing data and ignoring message boundaries.  It 
sets insertEOM in its OWD since it is not iinterested in message boundaries.

No VHDL process or clocking or even reset is used since the computation takes place in
a single clock cycle.  No opcode or byte_enable is used since the protocol has a single 
operation and the data in that message is all the same size.

architecture rtl of worker is
begin
  out_out.data  <= std_logic_vector(unsigned(in_in.data) + 3);
  in_out.take   <= out_in.ready;
  out_out.valid <= in_in.valid;
end rtl;

If the same worker wanted to be sure that the output messages were the same size as 
the input messages, it would not set insertEOM in its OWD.

architecture rtl of worker is
begin
  out_out.data  <= std_logic_vector(unsigned(in_in.data) + 3);
  in_out.take   <= out_in.ready;
  out_out.give  <= in_in.ready;
  out_out.som   <= in_in.som;
  out_out.eom   <= in_in.eom;
  out_out.valid <= in_in.valid;
end rtl;

The next example shows a worker that inserts a special single-word all-ones message, 
with operation xy, every 8 messages it passes.  The OCS protocol is myprot.
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architecture rtl of worker is
  signal count     : unsigned(3 downto 0);
  signal inserting : bool_t := count = 8;
begin
  process (ctl_in.clk) is begin
    if rising_edge(ctl_in.clk) then
      if its(ctl_in.reset) then
        count <= (others => '0');
      elsif its(out_in.ready) then
        if its(inserting) then
          count <= (others => '0');
        elsif in_in.ready and in_in.eom then
          count <= count + 1;
        end if;
      end if;
    end if;
  end process;
  in_out.take    <= out_in.ready and in_in.ready and not inserting;
  out_out.give   <= out_in.ready and (count = 7 or in_in.ready);
  out_out.data   <= (others => '1') when inserting else in_in.data;
  out_out.som    <= inserting or in_in.som;
  out_out.eom    <= inserting or in_in.eom;
  out_out.valid  <= inserting or in_in.valid;
end rtl;

3.8.4 Message Data Interfaces [Unsupported]

This interface is used when an OWD specifies a MessageInterface element 

associated with a data port in the OCS.  It provides an alternative mechanism to 
consume or produce data that uses an addressable message buffer interface.  This 
enables the worker to produce or consume message data out of order, or to only access
parts of a message.  The signals provided with this interface allow the worker to 
address specific locations in the current buffer, and then signal that it is done with the 
current buffer.

3.8.5 HDL Worker Data Interface Summary

 Only move data when the port is ready.
The valid input signal implies the input port is ready (v2+).

 Input data is valid only when explicitly indicated at the input interface.

 Output data can only be moved when flow control allows it at the output interface.

 Output message boundaries must be supplied and respect maximum message 
sizes, unless insertEOM is set in OWD.

 Output message boundaries are usually derived from input message boundaries.

 Remember to (in most cases) convey zero length messages from input to output
(In V1 workers only.  Otherwise simply respect the protocol).
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3.9 Time Service Interface

This interface provides “time of day” information to the worker, to the precision 
requested in the OWD via attributes to the TimeInterface element.  Time of day 

values are supplied to the worker in the clock domain of this interface, which defaults, 
like all interfaces, to the control clock.

The signals for the time service interface are in the time_in signal port record and are 

described below.  If the default port name is overridden, the signal port record could be 
<port-name>_in.

Table 18:  Time Service Signals

Signal
in time_in

Width Signal Description

seconds SecondsWidth
attribute of
TimeService 

element

The entire seconds part of the time-of-day, in GPS 
time (no leap seconds).  If the width is 32 it is 
absolute time.  If width less than 32, it is just a 
relative time truncated preserving the LSB, to that 
value, and wraps. The LSB is always 1 second;
VHDL type is IEEE numeric unsigned.  Width may 
be zero, in which case this signal is not present.

fraction FractionWidth
attribute of
TimeService 

element

The binary fraction of a second, with the radix point 
to the left of the MSB.  If width is 32 bits, the LSB 
represents 2^-32 seconds, or ~233 ps.  If width is 
less than 32, the MSB are preserved, such that the 
MSB is always ½ second.  Width may be zero, in 
which case this signal is not present.

valid 1 (bool_t) Indicates when the time of day is valid.  Present 
only when the AllowUnavailable attribute is 

true.
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3.10 Memory Service Interfaces

This interface provides access to memory. [Not supported in 2017Q1]
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4 Building HDL Assets

Building workers is similar across different authoring models and languages:  typing the 
make command in a worker, library, or project directory builds workers for a specified list

of targets.  If the worker depends on lower level “primitive” libraries, those libraries are 
referenced in the worker's Makefile, using the Libraries or HdlLibraries 

variable.  To make a declaration of such primitive libraries common to all workers in a 
library, or in a project, the HdlLibraries variable can be set in the library's 

Library.mk file or in the project's Project.mk file.  This variable applies only to HDL 

workers.  Lower level libraries must be built before building a worker which references 
them.

Similar to other authoring models (e.g. the RCC model), the build targets are specified 
by setting variables specifying targets for that model.  For HDL, these target variables 
are: HdlTarget, HdlTargets, HdlPlatform, and HdlPlatforms.  The singular 

form specifies one target, and the plural forms specify multiple targets separates by 
spaces.  HDL build targets discussed in detail in the next section.

The default target for RCC workers is the development system itself (e.g. linux-c7-

x86_64).  Unlike RCC workers, HDL assets have no inherent default target.  However, 

a default value for the various HDL target variables can be set in the worker Makefile,

the library's Library.mk file, or in the project's Project.mk file.

For software workers, this is usually the end of the build process:  deployable artifacts 
for these workers are created and ready for export and/or use in applications.

For HDL workers, it is different.  FPGAs are generally not subject to dynamic, partial 
loading:  the whole FPGA must be reloaded with a full “configuration bitstream”.  
[OpenCPI does not support partial reconfiguration of FPGAs as of this document 
version].  As with any authoring model, primitives are built first.  Then HDL workers are 
built and, for targets that are real FPGAs rather than simulators, synthesized.  Finally, 
there are two additional steps in the build process in order to create the final, 
dynamically loadable configuration bitstream:

 Composing workers into an HDL assembly.

 Finalizing the bitstream as an HDL container.

This final step creates the deployable artifact usable for export and/or use in 
applications.  These steps are defined in the sections below.

4.1 HDL Build Targets

Build targets specify the target device, family of devices, or platform for which the 
asset should be built (compiled, synthesized, place-and-routed, etc.)  When building any
level of modules for FPGAs, the build targets are specified via the HdlTarget(s) or 
HdlPlatform(s) variables.  The targets are chips or chip families, whereas the platforms
are actual FPGAs on specific boards.  HDL primitives, workers, and assemblies, are 
built for HdlTargets, and HDL containers (final bitstreams) are built for 

HdlPlatforms.  These build targets are defined in a hierarchy with these levels:
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Top level, vendor level:  this level specifies vendors (Xilinx, Altera), as well as 
vendor-independent simulators (Modelsim).  This enables HDL assets to be 
built for all Xilinx and Altera targets or built for Modelsim.  This implies building 
for all lower level targets under these top-level labels.  The value all specifies 

all top level supported targets.

Family level: this level specifies the family of parts under the vendor level.  Different
part families typically have different on-chip architectures, and may drive tools 
differently.  Building for a family target means generating libraries or cores that 
are suitable to any member (part) in the family.  Examples would be “virtex6” or 
“zynq” or “stratix4”.  Simulation targets at the top level don’t have families (yet) 
so these top two levels are the same for simulation.

Part level:  specifies the exact part the design is targeted at, e.g. xcv5lx50t.  This 
does not include package information but may include speed grades.

The following two make variables can further filter the targets that are built anywhere 

that HDL building takes place.

ExcludeTargets/ExcludePlatforms: this variable specifies targets to be excluded, 
usually because they are known not to be buildable for one reason or the other 
(a tool error, or other incompatibility).

OnlyTargets/OnlyPlatforms: this variable specifies targets to be exclusively 
included, because it is known that only a limited set of targets should be built 
(e.g. a Xilinx coregen core specific to a particular family or part).

The HdlPlatforms variable specifies HDL platforms (like Xilinx ml605 and zed), which 

imply the appropriate family and part.  I.e., if you specify to build for a platform, it will 
build primitives and workers for the appropriate part family.  Except for the final 
bitstream build, the HdlTarget(s) are implied by the HdlPlatform(s).

If no HDL target variables are set, the OCPI_HDL_PLATFORM environment variable 
can be set to an HDL platform, and that will be used for all HDL builds.

In some synthesis cases, tools that target a part family in fact target the smallest part in 
the family and try to limit use of some on-chip resources (e.g. DSP blocks) to the 
amount that exists on the smallest part.  While this usually correctly generates a 
resulting file that can be used on any part in the family, it is not always desirable when 
the target platform in fact has a larger part.  To force the use of a specific part for an 
HdlTarget, in the HDL worker Makefile, insert a line setting the HdlExactPart 

variable, e.g.:

HdlExactPart=\
   $(and $(filter virtex6,$(HdlTarget)))

If a worker is being built for only one target in any case, then this would work:

HdlExactPart=xc6vlx240t

On the command line this could be:

% make HdlTarget=virtex6 HdlExactPart=xc6vlx195t
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4.2 The HDL Build Hierarchy

OpenCPI FPGA bitstreams (the files that configure entire FPGAs) are built in several 
layers.  The same layers apply to building executables for simulation.  The following 
diagram shows the build flow (bottom to top) and hierarchy.

Figure 7: OpenCPI HDL Build Flow Layers

At the bottom layer (built first, used by all other layers), are primitives.  These are low 
level, “leaf” libraries and cores used by higher levels.  Primitive libraries are libraries of
modules built from HDL source code that are available to be used higher up the 
hierarchy; using a primitive library in a higher level module does not imply all the 
modules in the library are brought into the design, but only pulled in as needed by 
references in the higher levels of the design.

Primitive cores on the other hand are single modules built from source or generated 
from tools such as Xilinx Coregen, which are also used in higher levels of design.  They 
are explicitly included in workers.  Primitives may in fact depend on each other: a core 
may depend on primitive libraries, and primitive libraries may depend on other primitive 
libraries.  Circular dependencies are not supported.

There are primitive libraries specific to vendors and families that can be used for 
implementing primitives using vendor-specific elements.  More detail on creating such 
primitive libraries are in the OpenCPI HDL Platform Development document.
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Above the primitives layer is the HDL worker layer, with workers of several types.  All 
types of workers can use primitive libraries or cores as required.  Application workers 
are generally portable and hardware independent.  Device workers are workers that 
connect to the I/O pins of external hardware, and in some cases can attach to vendor-
specific on-chip structures (e.g. ICAP on Xilinx).  Adapter workers are used when two 
connected workers are not connectable in some way due to different interface choices 
in the OWD (e.g. width, stream-vs-message, clock domains).  Adapter workers are 
normally inserted automatically as needed. 

A platform worker is the special type of device worker that performs necessary platform-
wide functions for the platform.

At the next layer, the HDL assembly is automatically generated HDL source code that 
uses application workers and adapter workers.  The HDL assembly itself is described in 
metadata (XML) as an assembly of connected application workers.  It typically 
represents a subset of an overall heterogeneous OpenCPI application:  a subset that 
will be executed on a single FPGA.

The platform configuration is automatically generated HDL source code that uses 
platform workers along with some device workers.  It represents a platform configured 
with built-in support for some attached devices, and may include various constraints and
physical design.  For those familiar with Linux kernels, a platform configuration is 
analogous to a built/configured kernel with some device drivers built-in.

At the top layer, the container adapts the application assembly to a platform 
configuration and provisions any additional required device workers.  It connects and 
adapts the “external I/O ports” of the HDL assembly to the available I/O paths and 
devices in the platform.  When the deployment of the HDL assembly requires device 
workers that are not in the platform configuration, they are instanced in the container 
itself.  The Linux kernel analogy is that these extra device workers are analogous to the 
dynamically loaded device drivers used to run the application.

Device workers can either be built into the platform configuration or instanced in the 
container.
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The final design for the entire FPGA is the container logic.  This hierarchy (except 
primitives) is shown in the following diagram.

Figure 8: HDL Full FPGA Hierarchy

When tools support it, each layer in the build is actually synthesized or precompiled or 
elaborated as the tools allow (i.e. “prebuilt”).

 Each worker in a component library is prebuilt (possibly using primitive libraries and 
cores)

 Assemblies are prebuilt from generated VHDL or Verilog code using the required 
worker cores

 Platform configurations are prebuilt from platform workers and device worker cores

 Container top levels are built from platform configurations and HDL assemblies, with 
any additional device workers, service modules and adapters as required

 Full bitstreams (or simulation executables) are built from the container modules

This layered prebuilding allows the results to be reused at the next level without 
recompiling or resynthesizing, all in a vendor independent fashion.  E.g. an HDL 
assembly prebuilt for a Xilinx virtex6 part can be reused to target different virtex6-based 
platforms.  The exact definition of prebuilding varies with different tool chains, and the 
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level of synthesis optimization that happens at each step also varies by tool, and some 
of this level of hardening at each level is controllable for some tools.

At one extreme, prebuilding simply means remembering which source files must be 
provided to the next level (for tools that have no precompilation of any kind).  At the 
other extreme are tools that can incrementally synthesize to relocatable physically 
mapped blocks on a family of FPGA parts.

Simulators are considered HDL platforms that act as test benches for assemblies.  This 
is described in more detail below in the simulation section.
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4.3 HDL Directory Structure

In OpenCPI projects, HDL workers are in component libraries with other non-HDL 
workers.  Component libraries are thus heterogeneous, where different workers, 
possibly using different authoring models, may implement a common spec.  A project 
may have a single component library called 'components', where worker directories are 
located.  Alternatively, a project may have multiple uniquely named libraries under the 
components directory, each of which contains workers with some common theme.  

When projects have a single component library, it is in the components directory of the 

project.  There can also be multiple separately named component libraries under the 
components directory.  Additionally, the top-level hdl directory contains the following 

directories:

primitives:  This directory contains subdirectories for each primitive library or core.

assemblies:  This directory contains subdirectories for each HDL assembly of 
application workers, and is where containers deploying these assemblies on 
platforms are built into bitstreams and simulation executables

devices:  This directory is a component library containing HDL device worker for 
devices that are potentially usable on different platforms.  HDL device 
emulators and software proxies for some of the devices may also be in this 
component library.

platforms:  This directory contains subdirectories for each platform implemented in 
the project.  Platforms are either a specific FPGA chip/part on a circuit board 
with attached devices, or simulators.  This is where platform-specific worker 
code exists, and where platform configurations are specified and built.  There 
may also be a subdirectory under the platform's directory, called devices,  

containing a library of HDL device workers, proxies and emulators specific to 
that platform.

cards:  This directory contains HDL device workers (and their proxies and 
emulators) that are specific to cards, rather than those generally useful on 
different platforms and cards.  It also contains specification files for cards.

Development for HDL devices, platforms, and cards is described in the OpenCPI 
Platform Development Guide.

Application workers for all authoring models are found in component libraries, which are
either standalone outside of projects, in projects, or part of the OpenCPI CDK.

This directory hierarchy is shown in the following diagram.  All directories are optional 
and are created as needed by the ocpidev tool described in the CDG.
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Figure 9:  OpenCPI HDL Directory Structure
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4.4 HDL Search Paths when Building

When building at any level of the HDL build hierarchy, the asset being built can depend 
on other assets, usually at lower levels of the hierarchy.  HDL primitive libraries and 
cores can depend on other HDL primitive libraries.  Workers can depend on primitives, 
specs, and protocols.  HDL assemblies always depend on application workers in 
libraries.  The assets being depended on may be in the same library or project, or in a 
different project, or in the CDK itself.

In each case of a dependency, the underlying asset is found using search rules.  The 
built-in search rules automatically find assets that are in the component library, when 
building workers in that library.  They also automatically find assets that are in the 
current project, when building HDL primitives, workers, and assemblies in projects.  
Special action by the developer is only required when there are dependencies on assets
outside the current library or project.

If assets in one project (A) depends on assets in another (B), that should be stated in 
the ProjectDependencies variable in the project A's Project.mk file.  If a special 

version of that second project (B) was needed temporarily, an environment setting 
would cause the special version to be searched first, shadowing the assets in the 
project (B) explicitly stated in ProjectDependencies of A.  By “shadowing” we mean 

that the environment setting causes the search to look elsewhere before looking at the 
projects specified in the ProjectDependencies variable.

Environment variables are normally used only to temporarily replace/shadow assets in 
the default search path.  Dependencies are normally stated at the point of dependency 
and stored in the appropriate file that is part of that asset (e.g. Project.mk for project-

level dependencies).  Environment variables essentially override these stated 
dependencies.

For each of the search rules defined below, the following principles are applied:

 Search “closer” first, then “farther away” (e.g. in library, then in project, then other 
projects, then CDK).

 Search within the project before searching outside the project.

 Search using an asset-specific path specified in the environment, before searching
other projects.

 Search using the project path in the environment (OCPI_PROJECT_PATH) before 

using the explicit dependencies in the project's Project.mk file.

 Search the CDK last.

 Search the directories specified in any path environment variables in the order 
they appear in the colon separated list.

4.4.1 Searching for HDL Primitives

When a worker depends on primitive libraries, it specifies this by declaring the library 
name in a list in the Libraries variable in its Makefile.  Similarly, when an HDL 
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worker depends on primitive cores, it specifies this by putting the core name in a list in 
the Cores variable.  When the worker is being built, these lists are used in the following

way.

If the library or core name has slashes in it, it is treated as a pathname (absolute or 
relative) to the specific directory of the primitive library or core.  Examples are:

Libraries=../../myprims  /home/colleague/hisprims/funprims
Cores=../../../ourcores/fft

Or for tools that require Cores to be explicitly mapped to HDL instances:

Cores=../../../ourcores/fft:fft_i

If a name in the primitive library or core list does not have a slash, it is found by 
searching in the following places, in the following order:

 The HDL primitive libraries or cores in the current project (if the worker is in a 
project).

 The HDL primitive libraries or cores in the directories listed in the environment 
variable OCPI_HDL_PRIMITIVE_PATH, which are colon separated and searched 

in order.

 The HDL primitive libraries/cores in the projects listed in the environment variable 

OCPI_PROJECT_PATH, which are colon separated and searched in order.

 The HDL primitive libraries or cores in the projects listed in the 

ProjectDependencies variable in the project's Project.mk file.

 The HDL primitive libraries or cores in the OpenCPI CDK, identified in the 
environment variable OCPI_CDK_DIR.

When it is convenient to put a list of primitive libraries in the library Makefile (making 

them available to all workers in the library), the name of the variable is specific to the 
authoring model.  Thus to make a list of libraries available to all the HDL workers in a 
component library, you would put the following line in the library's Makefile:

HdlLibraries=/home/george/primlibs/gprims

Rarely, HDL Compilation tools may require that cores be explicitly mapped to HDL 
instances in a design. For such tools (e.g. Quartus Prime Pro Edition), the format 
"Cores=<core-name-or-path>:<hdl-instance>" can be used.

4.4.2 Searching for XML files (OCS, OPS) when Building Workers

As described in the CDG, all workers have an OWD, and all OWDs depend on a 
component spec, normally found in a separate OCS XML file.  Furthermore, OCS files 
frequently depend on a separate OPS (protocol spec) file.  It is also possible that an 
OWD could include an XML file to incorporate a list of properties defined elsewhere.

When looking for these XML files, when their name has no slashes, it is found by 
looking in the following places, in order:

 The worker's directory
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 The gen subdirectory of the worker's directory

 Directories specified in the space-separated list in the make variable 
XmlIncludeDirs

 The component library's export directory (lib/hdl) for referencing other HDL 

workers (e.g. for slave and emulate attributes)

 The component library's specs subdirectory

 The export directories (lib/hdl) of all component libraries in the 

ComponentLibraries list (see below) for referenced HDL workers (e.g. for 

slave and emulate attributes)

 The directories listed in the environment variable OCPI_XML_INCLUDE_PATH, 

which are colon separated and searched in order

 The specs subdirectories of all projects in the environment variable 

OCPI_PROJECT_PATH, which are colon-separated and searched in order

 The specs subdirectories of the projects listed in the ProjectDependencies 

variable in the project's Project.mk

 The specs directory of the OpenCPI CDK, located using the environment variable
OCPI_CDK_DIR

4.4.3 Searching for Workers in Component Libraries

The Makefile variable ComponentLibraries specifies a list of places to look when 

searching for workers.  The most common use case for ComponentLibraries is for 

creating HDL assemblies, where the workers specified in the assembly must be found 
by searching for them in component libraries.  Other uses include device workers, 
platform workers and platform configurations, as described in HDL Platform 
Development.

While it might seem counter-intuitive for a worker inside a component library to depend 
on other component libraries, there are three cases where this occurs:

 A worker's OWD depends on specs (OCS and/or OPS) in another library.

 A worker is a proxy for a worker defined in another library (HDL workers cannot act
as proxies).

 A worker is a device emulator for a device worker defined in another library.

 A worker is a subdevice which supports a device worker defined in another library.

In all these cases, a worker or a component library might define the 
ComponentLibraries variable to specify this dependence.

To find workers, the search first looks in the library that the worker is already a part of.  
After this, the ComponentLibraries variable is used, which holds a list of component 

libraries to search.
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If the component library name in ComponentLibraries has slashes in it, it is treated 

as a path name (absolute or relative), to the specific directory of the component library.  
If a name in the  list does not have a slash, the component library is found by looking in 
the following places, in order:

 The component libraries in the directories listed in the environment variable 

OCPI_COMPONENT_LIBRARY_PATH, which are colon separated and searched in 

order.

 The other component libraries in the same project.

 The component libraries exported by the projects listed in the environment variable
OCPI_PROJECT_PATH, which are colon separated and searched in order.

 The component libraries of the projects listed in the ProjectDependencies 

variable in the project's Project.mk file.

 The component library in the ocpi.core project.

In all cases, for a worker to be found, it must have been built.
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5 HDL Primitives

HDL Primitives are HDL assets that are lower level than workers and may be used as 
building blocks for workers.  HDL primitives can either be libraries or cores.

HDL primitives are useful for HDL workers when there is lower level code that is reused 
or shared in different workers.  Using HDL primitives is also useful when there are non-
OpenCPI code modules that are imported and should be left untouched in order to 
remain useful outside of OpenCPI.  The use of HDL primitives is not required for HDL 
workers.  HDL primitives cannot have the same name as a worker.

When lower level code modules and files are used in only a single worker, there is no 
need for a primitive library:  such files can be simply put in the worker's directory and 
added to the SourceFiles variable in the worker's Makefile.  Such files are built 

before the worker source files so that they can easily be referenced without forward 
declarations (e.g. component declarations in VHDL).

An HDL Primitive Library is a collection of low level modules compiled from source 
code that can be referenced in HDL worker code.  An HDL worker declares which HDL 
primitive libraries it uses.

An HDL Primitive Core is a single low level module that may be:

 Built and/or synthesized from source code

 Imported as presynthesized and possibly encrypted, from a third party.

 Generated by tools such as Xilinx CoreGen or Altera MegaWizard.

An HDL worker declares which primitive cores it requires (and instantiates).

In both cases the exported/installed library or core that results from building a primitive 
is something that can be referenced by workers simply by including the following lines in
the HDL worker Makefile:

Libraries=myutils

or

Cores=mycore

If the library or core name is a simple name (no slashes), then it is found by searching 
as described earlier; otherwise it is a path name to the primitive's directory.

When the worker source code instantiates a primitive core or a module from a primitive 
library, no further action needs to be taken other than including the line above in the 
HDL worker’s Makefile (or once for all workers in a component library in the 

component library’s Makefile).  In particular, no other “black box” module or VHDL 

component declaration needs to be created by the worker.

The HdlLibraries variable can be set in the library's Library.mk file or the project's 

Project.mk file to make HDL primitive libraries available to all HDL workers in the 

library or project.  The OpenCPI CDK itself includes several HDL primitive libraries, and 
some are always available for use by all workers, even when the Libraries variable is

not set.
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5.1 HDL Primitive Libraries

Primitive libraries are normally created using the ocpidev tool in a project, e.g.:

ocpidev create hdl primitive library myprims

This creates a directory for the primitive library in the project, in the directory 
hdl/primitives, with a Makefile in that directory containing:

include $(OCPI_CDK_DIR)/include/hdl/hdl-library.mk

This command can also be issued in the hdl/primitives directory itself.

Primitive libraries may be written in VHDL or Verilog, but there are specific rules to 
follow (mentioned above) in order for the library to be usable with all supported tools, 
and from VHDL or Verilog.  Primitive libraries can depend on other primitive libraries, 
and this must be indicated by setting the Libraries variable in the Makefile, in the 

same way as it may be set in a worker's Makefile.  Circular dependencies among 

primitive libraries are not supported.  Some internal OpenCPI primitive libraries are 
always available to other primitive libraries libraries.  This is suppressed if the 
HdlNoLibraries variable is set non-empty in the primitive library's Makefile.

Source Files in Primitive Libraries

If there are no ordering dependencies between source files, just creating or copying 
source files into the directory will cause them to be built there, together as the library.  
Thus without mentioning source file names, all source files in the top level directory of 
the primitive library will be built and included in the library.

The default build order for the source files in a primitive library directory is to first build 
any *_pkg.vhd and *_body.vhd files (see below) and then build all other source files

(*.vhd and *.v).  There are several conditions where all source files must be explicitly 

mentioned in the SourceFiles variable in the library's Makefile.  These are:

 There are ordering dependencies between source files (other than dependencies 
on the <pkg>_pkg.vhd files which are aways compiled first).

 Some source files are not in the top level directory of the library and are not in 
target-specific subdirectories for shadowing purposes (see Target-Specific 
Modules below).

 Some source source files that are in the library's directory should not be built into 
the library (i.e. extraneous unbuilt source files)

It is recommend that source files not be placed in subdirectories unless they are there 
as target-specific modules.  The reasons this is not recommended are:

 there is then a potential name collision between the names of the subdirectories 
and the names of the HDL targets, tools, and vendor names used for target-
specific modules

 all the files must be listed in the SourceFiles variable, which is otherwise usually 
unnecessary
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All modules in a library intended to be used from outside the library must be in separate 
source files with the name of the file matching the name of the module, including case 
(before the language suffix).  While not strictly required, this practice is also 
recommended for modules instantiated by other modules in the same library.

5.1.1 Package Declarations for Primitive Libraries

The library must include a VHDL file <libname>_pkg.vhd, containing component and 

data type declarations for all modules externally referenced (from outside the library).  
Even if the library has Verilog source code modules, the <libname>_pkg.vhd VHDL 

file with component declarations must be present for all of the Verilog modules in the 
library that are usable from outside the library.

The VHDL package name in the <libname>_pkg.vhd file should normally be the 

same as the library’s name, but this is not required.  There can be multiple <pkg>-

pkg.vhd files in a library if multiple packages are required.  Finally, if the packages 

have package bodies in separate files, those files should be named <pkg>-body.vhd.

When modules in the library are instantiated by other modules in the library, but not 
intended for external usage by code outside the library, their still-required component 
declarations can be placed in a different package to keep them separate from those in 
the <libname>_pkg.vhd file that are intended for external use.  Perhaps such a 

package would be called <libname>_internal_pkg.vhd.

For example, consider the source file implementing module outer, in the file 

outer.vhd, in the mylib primitive library.

entity outer is
  port (clk : in std_logic;...);
end entity outer;
architecture rtl of outer is begin
  fifo: component myownfifo port map(....);
end rtl;

For this module to be usable from outside the library, the component declaration must 
be in the library's package file, mylib_pkg.vhd:

package mylib is
  component outer is
    port (clk : in std_logic; ...);
  end component outer;
end package mylib;

In the example above, the outer module uses another module, myownfifo, also from 

this library.  Any module in the library referenced between files, must also have a 
component declaration in a package file, so the package file might in fact be:
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package mylib is
  component outer is
    port (clk : in std_logic; ...);
  end component outer;
  component myownfifo is
    port (...);
  end component myownfifo;
end package mylib;

Alternatively an internal package file could be defined, in mylib_internal_pkg.vhd, 

containing just the internally-used module:

package mylib_internal is
  component myownfifo is
    port (...);
  end component myownfifo;
end package mylib;

5.1.2 Instantiating Modules in Primitive Libraries

Modules referenced from VHDL must use the component instantiation syntax, so the 
instantiation does that in the outer entity example above.

When a VHDL worker or code in another primitive library is written to use a module in a 
primitive library, it must include a line to access the library.  For a primitive library 
mylib, the calling module file might  contain the line.

library mylib; use mylib.mylib.all;
...
inst1 : component outer ...

If there were multiple packages in the primitive library, the package names might be 
different than the library name, e.g.:

library mylib; use mylib.mypkg.all;

Alternatively, to avoid any name collisions but be more verbose, the code could be:

library mylib;
...
inst1 : component mylib.mylib.outer ...

Finally, when instantiating a module from within the same library, the work library can be
used and no library declaration is required, e.g.:

inst1 : component work.mylib.outer ...

5.1.3 Providing Target-specific or Vendor-specific Versions of Primitive Modules

The modules in a primitive library are normally each in their own files in the top level 
directory with the file name being the same as the module name.  Sometimes it is useful
to have special versions of source code for a module that is specific to a particular part 
family, vendor or tool.  This allows alternative source code files for a module that uses 
vendor-specific primitives or are written in a way to infer vendor-specific hardware 
features (e.g. BRAMs, DSPs, IO features).
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A primitive library is normally built using each source file indicated in the SourceFiles 

variable, or if that variable is not specified, each source file found in the primitive 
library's directory.  However, when building for a specific target, it first looks for a file of 
the same name in a subdirectory with the name of the target being built (e.g. zynq or 

isim).  If it finds that file, it uses it instead of the file in the top level directory.  If there is 

no such file in a target-specific directory, it next looks in a vendor-specific directory (e.g. 
xilinx or altera).  If the file does not exist in either target-specific or vendor-specific 

subdirectories, the (default, generic) file in the top level directory is used.

Note that simulator targets also have vendors.  Thus if the target is isim or xsim (both 

xilinx simulators), and there is a module file in the xilinx subdirectory, that file will 

be used for those simulators in preference to the default file at the top level.

The files in target-specific or vendor-specific directories should never be mentioned in 
the SourceFiles variable.  The file in the top level directory serves as the default 

implementation of the module, which will be ignored (shadowed) in preference to target-
specific or vendor-specific versions when they exist.

Two examples of this feature are below.

5.1.3.1 Shadowing Example for Correct Inference of Resources

A synchronous ROM module is defined to take CLK and ADDR as input, and provides 
output DATA synchronously after two clock edges, based on the address valid at that 
time, with no overlap of access cycles.  A simply default (Verilog) implementation, in 
ROM.v, assuming single-cycle access times, would simply ignore the clock and drive 

data continuously:

assign DATA = ROM[ADDR];

This is correct functionality, perhaps suitable for simulation, but neither Xilinx nor Altera 
tools will synthesize this into their respective block ram resources.  For Xilinx, the output
data must be registered for the synthesis tool to infer/use a block ram, thus the Xilinx 
code should be:

always @(posedge CLK) begin
  DO_R <= ROM[ADDR];
end
assign DO = DO_R;

For Altera, the input address must also be registered, thus the code should be:

always @(posedge CLK) begin
  ADDR_R <= ADDR;
  DO_R <= ROM[ADDR_R];
end
assign DO = DO_R;

The contract of the module allows for all three implementations:

 ROM.v for a simple default implementation suitable for simulation.

 xilinx/ROM.v to correctly infer BRAMs using ISE tools.

 altera/ROM.v to correctly infer BRAMs using Quartus tools.
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5.1.3.2 Example of Shadowing using Vendor-specific Primitives

A clock buffer is an important resource for clock distribution, and it is desirable to write 
higher level code that uses portable primitives to instance one.  This example takes 
CLK as input and produces CLK_BUFFERED as output.  The easiest way to use clock 
buffer resources is to directly instance the vendor-specific primitives.  A generic clock 
buffer default implementation, in clkbuffer.vhd, would be:

clk_buffered <= clk;

This is functionally correct, but does not take advantage of clock buffering or routing 
features unless recognized automatically due to fanout etc.  For Xilinx, the explicit 
implementation would use a BUFG primitive, e.g.:

buf : BUFG port map(I => clk, O => clk_buffered);

For Altera, an attribute declaration might be sufficient for this purpose:

attribute altera_attribute of clk_buffered : 
  signal is "-name GLOBAL_SIGNAL REGIONAL_CLOCK";

The module would have three implementations:

 CLK_BUFFERED.vhd for a default/simple/portable implementation for simulation

 xilinx/CLK_BUFFERED.vhd to instance BUFG primitive for Xilinx

 altera/CLK_BUFFERED.vhd to use an explicit Altera attributes

5.1.4 Exporting and Using the Results of Building HDL Primitive Libraries

When HDL primitive libraries are built, their immediate per-target results are in target-
specific subdirectories (target-<hdl-target>) whose format varies depending on 

the tools used for that target.  The log output of the tools is usually collected in a 
<libname>-<tool>.out file in the target directory, which can be examined when 

errors occur or to examine warnings, etc.

HDL Primitives are always built as a group under the hdl/primitives directory in a 

project, with its own Makefile, which is automatically created whenever primitives are 

created using ocpidev in a project.

Building a primitive library in its own directory is useful for rapidly getting to a clean build
across all relevant targets.  To make these results available to workers and other 
projects, the primitives in an hdl/primitives directory (in a project), must be built 

from a higher level, even if done individually.  When that is done, the exportable results 
are placed in primitives/lib, much like the lib subdirectory of component 

libraries.  The files in that directory are automatically used as the project's exported 
primitive libraries and cores when a project is built.  Building a project from the top level 
builds and exports all the primitives automatically.

When developing a primitive library it is highly recommended to at least occasionally 
build for all available tools, both for synthesis to hardware and for simulation.  This 
ensures that the code is nominally portable.
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5.2 HDL Primitive Cores

Making a prebuilt/presynthesized core available for use by workers is similar to creating 
a primitive library from source files.  The ocpidev command, for creating mycore,  is:

ocpidev create hdl primitive core mycore

This creates a directory for the primitive core in the project, in the directory 
hdl/primitives, with a Makefile in that directory containing:

include $(OCPI_CDK_DIR)/include/hdl/hdl-core.mk

This command can also be issued in the hdl/primitives directory itself.

Whereas an HDL primitive library is built as a collection of source modules that are not 
fully elaborated or synthesized, HDL primitive cores are built into a single module that 
may have no source files other than those that define the interface.

The files used to build the core can be a mix of source and prebuilt files.  There may be 
presynthesized core files (e.g. Xilinx .ngc or Altera .qxp), or source files.  There may 

be presynthesized files for some targets and source files for other targets.  Any targets 
that do not have prebuilt cores will use the source files.

When the core supports instantiation from Verilog, there must be a “black box” empty 
module definition file <corename>_bb.v.  When the core supports instantiation from 

VHDL, it must have a package file <corename>_pkg.vhd containing a component 

definition in a package named the same as the core name.

There are two special additional optional Makefile variables that apply to HDL 

primitive cores:  Top and PrebuiltCore.

Top is the variable that specifies the top module name of a primitive core when it is 

different from the core name used when it was created with ocpidev.  Normally the 

name of the primitive core is the same as the top level module name and this variable is
unnecessary.  In some cases the core name is more descriptive and useful, while the 
top module name is predetermined for some other reason.  An example is a core name 
of ddc_4ch_v5, which might be a core for a 4 channel DDC generated specifically for 

virtex5.  The actual generated core from Xilinx CoreGen has the file and module name 
duc_ddc_compiler_v1_0.  Thus the Makefile, in the ddc_4ch_v5 directory would 

contain:

Top=duc_ddc_compiler_v1_0

The PrebuiltCore variable is used to specify a file that is a core that is not in source 

code, but is generated by some other tool and copied into the directory for the HDL 
primitive core.  If this variable is not set, source files are expected.  Here is an example:

PreBuiltCore=mycore.ngc # suppress building from source files
OnlyTargets=xcv6lx240t  # this core is only good for this part
include $(OCPI_CDK_DIR)/include/hdl/hdl-core.mk

In cases where there are different prebuilt core files for different targets, the variable 
name PrebuiltCore_<target> is used.  Thus if a core named fft4k supported 
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both VHDL and Verilog, and had prebuilt cores for zynq and stratix4, as well as source 
code for other (typically simulation) targets, the Makefile could contain:

PrebuiltCore_zynq=myzynqfft4k.ngc
PrebuiltCore_stratix4=mys4fft4k.qxp
SourceFiles=fft4kforsim.v

The directory for the primitive core would contain these files:

Makefile
fft4k_bb.v
fft4k_pkg.vhd
myzynqfft4k.ngc
mys4fft4k.qxp
fft4kforsim.v

If the source files were specific to the Xilinx Isim simulator, then the core should be 
restricted to building only for the zynq, stratix4, and Isim targets using, in the 
Makefile:

OnlyTargets=isim stratix4 zynq

Primitive cores can depend on other primitive cores or libraries, and this must be 
indicated by setting the Libraries or Cores variable in the Makefile, in the same 

way as it may be set in a worker's Makefile.  Circular dependencies are not 

supported.
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6 HDL Assemblies for Creating Bitstreams/Executables

An HDL assembly is a fixed composition of HDL application workers that can act as a 
whole or part of a heterogeneous OpenCPI application.  It is built to create different 
FPGA bitstreams for different FPGA platforms.  It will execute as part of some OpenCPI 
application with its workers being a subset of the workers in the application.

This section describes how to define and build (synthesize) these assemblies and to 
ultimately turn them into bitstreams.  When the target HDL platform is a simulator, we 
use the term executable while when the target is an actual physical FPGA, we use the 
term bitstream.  In both cases there is a single resulting standalone artifact file that is 
ready for loading and execution.

This process implements the assembly for platforms as part of an application.  More 
specifically, it is combining the defined assembly of HDL workers with a platform 
configuration to create an HDL container that is then transformed into a bitstream/ 
executable.  This was shown in the build hierarchy in the section HDL Build Hierarchy.

The container is the outer module that contains the HDL assembly as well as the 
platform support modules in the platform configuration.  A platform configuration is for 
either a simulation platform or a real FPGA platform.

Given that the platform configurations already exist, the steps taken to go from the 
assembly (described in XML) to a bitstream are:

1. Describe the assembly in XML, specifying application workers and 
connections between them.

2. Select the platform configuration that the assembly will be implemented on.

3. Specify how the assembly’s external ports connect to the platform (i.e. to an 
interconnect like PCIe for off-platform connections, or to local devices).  This 
is “defining the container”.

4. Run make to generate the bitstream.

In most cases, steps #2 and #3 above are automatic and use defaults.  A quick 
example, typically used for unit testing would be an assembly file containing a single 
worker:

<HdlAssembly>
  <Instance Worker="bias_vhdl" externals='true'/>
</HdlAssembly>

HDL assemblies are created using the ocpidev tool, e.g. for creating the myassy 

assembly:

ocpidev create hdl assembly myassy

This creates a directory in the project's hdl/assemblies directory, with the name of 

the assembly (myassy), containing an initial HDL assembly XML file and an initial 

Makefile.  The name of the XML file is simply the name of the assembly, with the 

“.xml” file extension.  This command can also be issued in the project directory or the 
hdl/assemblies directory of a project.  It can also be run standalone, using the 
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ocpidev -s option, in any directory outside of a project.  When the command is 

issued for the first time in a project, the hdl/assemblies directory itself will be 

created, with its own Makefile.  Thus after creating the first HDL assembly (called 

first) in a project, and building it for the zed platform, the directory structure would 

be:

hdl/assemblies/                    # Directory for all assemblies
  Makefile                         # Makefile for all assemblies
  first/                           # Directory for first assembly
    Makefile                       # Makefile for the first assembly
    first.xml                      # XML file for the first assembly
    -- from here down is results from building for zed --
    gen/xyz—assy.v                 # generated assy structural hdl
        -- other generated files --
    target-zynq/                   # synthesized assembly build dir
    container-first_zed_base/      # container dir for first on zed
      gen/first_zed_base-assy.vhd  # generated top level vhdl
          -- other generated files --
      target-zynq/                 # final bitstream build directory
        first_zed_base.bitz        # final bitstream/executable file

The actual steps taken by the OpenCPI scripts and tools, to create a bitstream or 
executable from an assembly, are:

1. Generate the Verilog/VHDL code that structurally implements the assembly.

2. Build/synthesize the assembly module, that has some “external ports”.

3. Generate the Verilog/VHDL container code that structurally combines the 
assembly and the platform configuration, as well as any necessary device 
workers.

4. Build/synthesize the container code, incorporating the assembly and 
platform configuration.  This is the top level module.

5. Run the final tool steps to build the bitstream (map, place, route, etc.).

The assembly, platform configuration and container are all in the same namespace and 
thus must have distinct names.  This constraint will be removed in a future release.

HDL adapters will automatically inserted as needed in both steps 1 and 3.

This process is run for all platforms specified in the HdlPlatforms variable, as 

specified on the command line or in the project's Project.mk file.

This results in an artifact file, with the suffix .bitz, which can be used at runtime when 

executing OpenCPI applications.  This file is based on the vendor-tool-specific output 
files like .bit for Xilinx and .sof for Altera, which are also in the container/bitstream 

build directory.  Those files are not used by OpenCPI after the .bitz file is created.
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6.1 The HDL Assembly XML file

The assembly is described in an XML file containing an HdlAssembly top-level XML 

element, which contains worker instances, property/parameter settings, 
connections and external ports .  It is similar to the Application XML file that describes
the whole OpenCPI heterogeneous application (as documented in the OpenCPI 
Application Guide).

The XML file is generated initially when the ocpidev create hdl assembly 

command is issued.

The worker instances (instance subelements of the HdlAssembly) reference HDL 

workers in some component library, and optionally assign names to each instance.  The 
worker attribute is the worker’s OWD name (without directory or model suffix), and the 

optional name attribute is the instance name.  When not specified, instance names are 

either the same as the worker name (when there is only one instance of that worker in 
the assembly), or the worker name followed directly by a zero-based decimal ordinal 
(when there is more than one instance of the same worker).

Connections among workers in the assembly can use connection XML elements or a 

more compact shorthand described next.  The connection elements define 

connections among worker data interfaces.  A trivial example would be:

<HdlAssembly>
  <Instance Worker="generate"/>
  <Instance Worker="capture”/>
  <Connection>
    <port name=’out’ instance=’generate’/>
    <port name=’in’ instance=’capture’/>
  </Connection>
</HdlAssembly>

For convenience, internal connections between the output of one instance to the input 
of another can simply be expressed using the connect attribute of the instance, 

indicating that the instance’s only output should be connected to the only input of other 
instance whose name is the value of the connect attribute.  The example above can 

be written as:

<HdlAssembly>
  <Instance Worker="generate" connect=’capture’/>
  <Instance Worker="capture”/>
</HdlAssembly>

Furthermore, when this shortcut is used, you can specify the “from” port using the from 

attribute, and the “to” port using the to attribute.  If these instances had multiple other 

input and output ports, you can also specify it this way:

<HdlAssembly>
  <Instance Worker="generate" connect=’capture’ from=’out’ to=’in’/>
  <Instance Worker="capture”/>
</HdlAssembly>
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To specify external ports, where the data is flowing into or out of the assembly itself, the 
external element is used, which allows the name of the external port to be different 

from the worker port it is connected to:

<HdlAssembly>
  <Instance Worker="generate" connect=’process’ from=’out’ to=’in’/>
  <Instance Worker="process”/>
  <external name=’procout’ instance=’process’ port=’out’/>
</HdlAssembly>

But there is also a shortcut when the external port name is the same as the worker’s 
port name, by simply using the external attribute of the instance:

<HdlAssembly>
  <Instance Worker="generate" connect=’process’ from=’out’ to=’in’/>
  <Instance Worker="process” external=’out’/>
</HdlAssembly>

To specify that all unconnected ports of a worker should be made external ports of the 
assembly, you can use the externals boolean attribute.  E.g., if the assembly is in fact a 
single worker where both in and out ports should be external, you would only need:

<HdlAssembly>
  <Instance Worker="process” externals=’true’/>
</HdlAssembly>

This is a common use case for unit test assemblies used to test single HDL workers.

Below is a diagram of a simple assembly, and the corresponding HdlAssembly XML file.
The application has a switch worker that accepts data either from its in0 or in1 

interface, and sends the data to its out interface.  The delay worker sends data from 

in to out implementing a delay-line function that requires memory.  The split worker 

takes data from its in interface and replicates it to both its out0 interface as well as its 

out1 interface.  The HDL assembly has 4 external ports (ADC, SWIN, SWOUT, DAC).

Figure 4: Example HDL Assembly

Given that these three workers are already in a component library, the XML description 
of the example is below.  It uses the external elements rather than simply adding the 
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externals='true' to the switch and split workers because the external ports of the 

assembly have different names than the corresponding worker ports.

<HdlAssembly>
  <Instance Worker="switch" connect=”delay”/>
  <Instance Worker="delay" connect=”split”/>
  <Instance Worker="split"/>
  <External name=’adc’ instance="switch" port="in0"/>
  <External name=’swin’ instance="switch" port="in1"/>
  <External name=’dac’ instance="split" port="out0"/>
  <External name=’swout’ instance="split" port="out1"/>
</HdlAssembly>

Figure 5: Example HDL Assembly XML
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6.2 The Makefile for Building an Assembly

The HDL assembly Makefile is automatically created when the ocpidev create 

hdl assembly command is issued.  The Makefile indicates which component 

libraries should be used to find the workers mentioned in the HdlAssembly.  A 

Makefile for the above application might be:

ComponentLibraries=/home/fred/project/components
include $(OCPI_CDK_DIR)/include/hdl/hdl-assembly.mk

In this case the assembly's workers will be found in the indicated component library, or 
other libraries in the search path, described earlier in the HDL Search Paths when 
Building section.  This variable can also be set in the hdl/assemblies directory 

Makefile to apply to all the assemblies in that directory (see just below), or in the 

project's Project.mk file.

While HDL primitives and workers are built for FPGA part families, indicated using 
HdlTargets, HDL assemblies are built for specific HDL platforms, using the 

HdlPlatforms variable.  The platform includes specific devices attached to the FPGA 

as well as other specific FPGA attributes.  Anywhere that HdlTargets is required, 

HdlPlatforms can be used, since a platform implies a target.  The variables suitable 

for HDL assembly MakeFiles are:

Table 19:  HDL Assembly Makefile Variables

Variable Name
in HDL Worker 
Makefile

Usable as default in
hdl/assemblies 

Makefile?

Description

ComponentLibraries Y A list of component libraries to search for 
the workers in the HDL assembly (in order)

OnlyPlatforms Y An exclusive list of platforms for which this 
assembly (and default containers) should 
be built.

ExcludePlatforms Y A list of platforms for this the HDL 
assembly should not be built.

When you have a directory full of HDL assemblies like this, they are usually in the 
hdl/assemblies directory of a project, acting as a sort of library of assemblies.  This  

Makefile in the hdl/assemblies directory is automatically created when the first 

HDL assembly is created.  It can simply be:

include $(OCPI_CDK_DIR)/include/hdl/hdl-assemblies.mk

If the assemblies in this directory should not all be built, or should be built in a particular 
order, the Assemblies variable can be set to a list of assemblies to be built in the 

specified order.
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6.3 Specifying the Containers that Implement the Assembly on Platforms

The container is the top-level module and implements the assembly on the platform.  
Separating the assembly from the container in this way keeps the assembly portable 
and hardware-independent (assuming the workers are).  The assembly's external input 
and output connections are unspecified until it is implemented in a container on the 
platform.  By itself, the HDL assembly is usable in a simulation testbench, when it is built
for a simulation platform.

In an assembly’s Makefile, containers are specified in two ways.  The first is default 

containers.  Default containers are generated by looking at the assembly, and 
connecting all the external ports to the platform’s interconnect (e.g. PCI Express or SoC
buses).  Thus the implicit default container specification is to connect every external port
of the assembly such that it connects external to the platform, to connect to workers 
running on containers on other platforms.  Using the previous assembly example, the 
default container would implement the assembly with all 4 ports (ADC, SWIN, DAC, 
SWOUT) connected to the platform's interconnect.

The optional DefaultContainers variable is used to list platform configurations for 

which default containers (and thus bitstreams) should be automatically generated for 
this assembly.  The format of the items in this list is <platform> or 

<platform>/<configuration>.  If this variable is defined as empty:

DefaultContainers=

no default containers are built for this assembly.   If the DefaultContainers variable is not
set at all (not mentioned in the assembly’s Makefile, the default situation), then 

default containers (and bitstreams) will be generated for whatever platform the 
assembly is built for.  In this case the platform configuration is assumed to be the base 
platform configuration for the platform (the one with no device workers at all).

Based on these defaults, if nothing is said at all about containers in the Makefile, 

default container bitstreams will be built for whatever platforms are mentioned in 
HdlPlatforms.  In many cases this default case is all that is required (no container 

variables at all).

Default containers are used to connect the external ports of the assembly to the single 
system interconnect of the platform.  I.e. if there are multiple interconnects (say PCIe 
and Ethernet), or if connections to local devices are required, then a container must be 
specified in its own XML file.  The Containers variable specifies a list of containers 

(container XML files) that should be built in addition to those indicated by the 
DefaultContainers variable (or absence thereof).  The Containers variable does 

not suppress the building of the default containers.

This example Makefile relies only on the component libraries specified in search 

paths, or in the ComponentLibraries variable setting in the 

hdl/assemblies/Makefile, and builds default containers for whatever platform is 

specified.  It is essentially what is generated automatically by the ocpidev command.

include $(OCPI_CDK_DIR)/include/hdl/hdl-assembly.mk
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A Makefile that builds a default container on the ml605 base platform configuration 

and the lime_adc configuration of the alst4 platform, and further generates a specific

container called in_2_adc for connecting some external port to the ADC device on that

latter platform configuration might look like:

DefaultContainers=ml605 alst4/lime_adc
Containers=in_2_adc
include $(OCPI_CDK_DIR)/include/hdl/hdl-assembly.mk
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6.4 HDL Container XML files

A container XML file is required to connect to multiple interconnects (or not the first one)
or to make connections to local devices.

The top-level element of the container XML file is the HdlContainer element.  Its 

primary attribute is the platform attribute to specify the platform configuration that 

should be targeted by the container.  It is of the form <platform> (which implies the 

base configuration) or <platform>/<configuration>.  Beyond specifying the 

platform configuration in the platform attribute, the subelements of the 

HdlContainer top-level element are connection elements for containers, with these

attributes:

 external:  specify an external port of the assembly

 device:  specify a device on the platform or on a card

 interconnect:  specify an interconnect on the platform

 port:  specify the device's port (required when device has more than one data port)

 otherdevice:  specify a second device for device-to-device connections

 otherport:  specify the otherdevice's port for device-to-device connections

 card:  specify a type of card that a device is on (required if device is not part of the 

platform, i.e. not defined in the platform's XML)

 slot:  specify the slot that a card is plugged into for a device (required when the 

card is supported in more than one of the platform's slots)

Using these attributes you can specify connections between:

 external and interconnect

 external and device

 interconnect and device

 device and otherdevice

Device-to-device connections are currently only supported when neither is on a card, or 
both are on the same card.

In a case where the in of the assembly connects to a locally attached adc device, but 

the out of the assembly is attached to the interconnect for communicating to other 

FPGAs or software containers, you would have:

<HdlContainer platform=’alst4/alst4_conf1’>
   <connection external=’in’ device=’adc’/>
   <connection external=’out’ interconnect=’pcie’/>
</HdlContainer>

The connection to the adc device will be resolved in one of two ways:
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 if the adc device was already included in the alst4_conf1 configuration of the 

alst4 platform, then that adc device instance will be used

 If not, then the adc device logic would be instantiated in the container itself, and 

used there

6.4.1 Service Connections in a Container

OpenCPI HDL workers have three types of ports:  control, data, and service.  Service 
ports are connected locally in the container to provide the required services to workers.  
Service ports are implementation-specific for a given worker and thus not found in OCS 
files.  I.e., the worker declares what services it needs for its particular implementation.  
The services currently defined are memory and time (time of day).

If workers in the assembly have service ports, they automatically become external ports 
of the assembly, but not for data.  When generating a container, all services required by 
the assembly, as well as any services required by device workers instanced in the 
container, must be satisfied by instancing the appropriate service modules in the 
generated container code.

Time service requirements (based on timeinterface elements in the worker's OWD) 

are satisfied by:

 instancing a time client module for each worker that needs “time of day”, and

 connecting that time client to the timekeeping infrastructure on the platform

Each time client is instanced based on requirements of the associated worker’s time 
port, as specified by the timeinterface element in the worker's OWD.

Memory service requirements [which are currently not supported as of this writing] are 
satisfied by instancing either private BRAM modules (private to the worker) or 
instancing external memory access interfaces connected to device workers for external 
memory.  Memory access may also be multiplexed to support multiple workers sharing 
the same memory.  Note that such memory services are unrelated to data message 
buffering used to connect workers together or connect them to devices and 
interconnects.
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Figure 6: OpenCPI HDL Assembly on Container and Platform

6.4.2 Preparing the Bitstream/Executable Artifact File

This section describes how the container build process injects metadata into the 
resulting artifact file.  There is no user control over this process, but it is useful to 
understand for troubleshooting purposes.  Containers are built into bitstream/executable
files by the FPGA back-end place-and-route or simulation tools.  These tool-specific files
are then post-processed into a generic .bitz file that acts as an OpenCPI artifact for 

application execution.  This post-processing always compresses the tool-specific output 
files using gzip.

This post processing also uses an artifact XML file that is generated and describes 
what is in the bitstream/executable.  This information includes the contents of the 
platform configuration, the assembly, and the container.  The post-processing attaches 
artifact XML to the file in two ways.

The first is that the XML is compressed and embedded into the logic of the bitstream in 
a block memory.  This allows OpenCPI software to extract it when the bitstream is 
loaded in an FPGA.  It enables software to know what is in the bitstream without 
knowing or having access to the file it was originally loaded from.  E.g., if the FPGA was
booted from a flash memory attached directly to the FPGA and not accessible to 
software, software can still retrieve this information and know how to use the bitstream.  
The ocpihdl tool, described in the ocpihdl command-line utility section, is used to 

manually query this embedded information for troubleshooting purposes.

The second way the XML is attached to the file is outside the FPGA configuration logic, 
but attached to the bitstream (.bitz) file so that it can be retrieved from the file 
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generically, regardless of the FPGA or simulation tools used to create the file.  This 
allows software to know what is in the file, without it being loaded into a device, and 
without knowing any other files or locations that the artifact file came from.  It makes the
file self-describing.  This attached XML is the same for all artifact files for all authoring 
models.  The ocpixml command-line tool is used to extract this XML data into a 

separate file for examination.

In summary:

 target-specific FPGA or simulation tools create the raw container output file

 this file has embedded artifact XML in an initialized block memory

 this file is compressed

 the artifact XML is then attached to the compressed file like all other artifact files

Artifact files are installed in an OpenCPI runtime component library as referenced by the
OCPI_LIBRARY_PATH environment variable.  It is the format expected by the internal 
OpenCPI mechanisms to load bitstreams onto platforms at runtime.

To conveniently collect all the bitstream/executable artifact files in a project in one place,
they can be exported putting the following line in the Project.exports file:

+hdl/assemblies/*/container-*/target-*/*.bitz lib/hdl/assemblies/

Thus all the bitstream/executable artifact files in the project will be accessible in the 
exports/lib/hdl/assemblies directory of the project, and that directory can be 

placed in the OCPI_LIBRARY_PATH environment variable that is used to find artifacts 
when executing OpenCPI applications.
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7 HDL Simulation Platforms

The OpenCPI concept of an HDL platform encompasses both physical FPGA-based 
platforms as well as HDL simulators such as Mentor's modelsim, and Xilinx isim.

At build time, simulators are “just another target” when building primitives and workers, 
and “just another platform” when building assemblies and containers.  The names for 
simulators in both target-related and platform-related make variables are modelsim 

and isim.   E.g.:

make HdlPlatforms=”zed alst4 modelsim”

would build for the ZedBoard Zynq-based platform, the Altera Stratix4-based platform, 
and the modelsim platform.  If a worker was intended only for simulators, its Makefile 

would typically contain:

OnlyTargets=isim modelsim

Similarly, if an assembly was intended only for simulators, its Makefile would typically 

contain:

OnlyPlatforms=isim modelsim

Even though simulators do not perform synthesis, building for simulators does what is 
possible, and tries to elaborate the design at each build level to catch errors as early as 
possible.  To suppress this incremental elaboration for faster build times, the Makefile 

variable HdlNoSimElaboration can be set to 1.  Since simulation builds are normally

fast anyway, this is rarely worth it, especially for modelsim.

At runtime, an installed simulator is an available HDL platform just like any installed 
hardware HDL platform.  Simulators act as much like a hardware FPGA platform as 
possible:

 It is discoverable (using ocpihdl search, or ocpirun -C)

 It appears as available without a bitstream being loaded

Previous versions of OpenCPI used the ocpihdl simulate command to start a 

simulator container as a server process.  This is no longer necessary or supported.  For 
backward compatibility for some test benches, this command does nothing but sleep 
indefinitely.

The following simulation server behavior is currently disabled, but will be enabled in a 
future release.

 A bitstream can be “loaded”, which in fact starts simulation (usually automatically 
as needed by ocpirun, or explicitly using ocpihdl load)

 It is persistent, so an application can be executed multiple times, which in fact will 
occur in the same simulation run

 It can be queried (e.g. to find the current value of a worker's properties) using 
various ocpihdl commands
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7.1 Execution of Simulation Bitstreams and Containers.

Simulators that are installed for use by OpenCPI are automatically available as 
containers, similar to HDL hardware platforms or even software containers.  When an 
application is run, these containers are available to be used if artifacts are built and 
accessible via the OCPI_LIBRARY_PATH environment variable.  For example, 

assuming that modelsim and isim simulators are installed for OpenCPI, on a CentOS7 
system, the command ocpirun -C would output:

Available containers: 
#  Model Platform       OS     OS-Version  Arch     Name 
0  hdl   isim                                       lsim:isim 
1  hdl   modelsim                                   lsim:modelsim 
2  rcc   centos7        linux  c7          x86_64   rcc0 

If an application is run, and bitstream files are available to use these simulators, they 
will be used automatically.  To force components in the application to use a particular 
simulator, the -P option to ocpirun can be used, e.g.:

% ocpirun -P=modelsim myapp

would run myapp, forcing all components to be executed with modelsim.  To force one 
component in the application to use modelsim, you could say:

% ocpirun -Pmycomp=modelsim myapp

The ocpirun command normally used to run OpenCPI applications has several options 
that apply only to simulators:

Table 20:  Simulations Options to ocpirun

Name Letter Description

sim_dir none The name of a directory where simulation outputs will be placed.  The 
default is simulations, relative to where ocpirun itself is running.

sim-
ticks

none The number of simulation clock cycles to execute or until the application is 
done.

A complete description of the ocpirun command is in the OpenCPI Application 

Development Guide.

As with execution on any hardware HDL device (FPGA), some of the components in the
application may be in software containers running on the host processor.  The data 
connections between workers inside the HDL device (or simulator) and outside the HDL 
device in software containers work normally.  Since HDL execution is much slower in 
simulators than in real FPGA hardware, the software workers will see data consumed or
produced by the HDL simulator device much slower.

When some OpenCPI application (e.g. executed using the ocpirun utility command) 
decides to run an assembly of workers on this simulator-based device (as it would with 
any other discovered and available HDL device/FPGA), it would request that the 
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bitstream (executable) be “loaded” and “started” on this device.  This would cause this 
simulated HDL device to run the actual simulator (e.g. modelsim) with that executable.

Each time a simulator is actually run under ocpirun, it will execute in a new 

subdirectory created for that simulation run, with the name:

<assembly-name>.<sim-platform>.<date-time>

Thus running applications that use simulators will result in one or more subdirectories 
holding simulation results for each simulation run.  No subdirectories are created when 
the simulator is simply discovered using ocpirun -C or ocpihdl search.

Each simulation execution that is launched by ocpirun when it runs an application will 

continue until one of the following occurs:

 The code being simulated explicitly asks for the simulation to terminate via the 

$finish system task in Verilog or an assert in VHDL.

 The simulation run exceeds the control-plane clock cycle count provided by the 

--sim-ticks option to ocpirun.

 This ocpirun command receives a control-C.

The results of any simulation run can be viewed using the ocpiview command.  This 

command with no arguments opens the most recent simulation run found in the 
simulations directory, using the simulation viewer associated with the simulator used

in that run.  If given an argument, it is the directory containing a particular simulation 
run.  The normal pattern of development is to run ocpiview after execution if 

examining the simulation run in detail is needed.

For Xilinx “isim”, the actual underlying viewing command (in the subdirectory for the 
simulation run) would be:

isimgui –view sim.wdb

For modelsim, it would be:

vsim -view vsim.wlf

In all cases the log of the simulator's output for the run is in the sim.out file.
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8 HDL Device Naming

The term HDL Device is used here to refer to an instance of an HDL platform in an 
OpenCPI system (and not a device attached to an FPGA inside the platform).  HDL 
devices have unique names within the system.  HDL devices host HDL containers for 
execution.  Each name starts with a prefix indicating how the device is discovered and 
controlled by OpenCPI software.

The control schemes currently supported are:

PCI
FPGA devices/boards accessible by PCI Express

Ether
FPGA devices accessible via link-layer Ethernet

LSim
FPGA devices that are in fact simulators (see the HDL S  imulation P  latforms   
section)

UDP
FPGA devices that are accessible via IP/UDP

PL
FPGA device in a Zynq SoC accessible via the on-chip AXI interconnect

The full device name is of the form:

<control-scheme>:<address-for-control-scheme>

As a convenience, if there is no known prefix in the name, then if there are 5 colons in 
the device name, it is assumed to be an Ether device name.  Otherwise it is assumed to
be a PCI device name.
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8.1 PCI-based HDL devices

HDL platform devices on the PCI express bus/fabric are identified by the syntax 
common to many PCI utilities such as lspci on Linux, namely:

<domain>:<bus>:<slot>.<function>

An example is:

0000:05:00.0

Since it is common to have “domain”, “slot”, and “function” all being zero, if the address 
field in the device is simply a number with no colons, it is assumed to be the bus 
number with the other fields being zero.  Thus “pci:5” implies “pci:0000:05:00.0”.  Since 
an identifier with no prefix and not having 5 colons is assumed to be a PCI device, the 
identifier “4”, is assumed to be “pci:0000:04:00.0”.

A common example of a PCIe device is the Xilinx ML605 development board.  Another 
is the Altera Stratix4 development board (called alst4 in OpenCPI).
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8.2 Ethernet-based HDL Devices

HDL devices that are attached to Ethernet and operate at the link (or MAC) layer (OSI 
layer 2) use the ether prefix.  This prefix implies access without using any routing or 

transport protocols such as IP/UDP or IP/TCP.  It is the fastest and lowest latency way 
to use a network, with the drawback that it cannot be “routed” through IP routers, but 
can only be “switched” by L2 Ethernet bridges and switches.  The syntax for naming 
such devices is:

Ether:[<interface>/]<mac-address>

The MAC-address is the typical 6 hexadecimal bytes separated by colons, such as:

c8:2a:14:28:61:86

The optional <interface> value is the name of a network interface on the computer 

accessing the device.  Typical examples are en0 or eth0.  Newer Linux systems use 

more complex (but predictable) names that relate to busses and slots, e.g. enp14s0 for

PCI-based network interfaces.  It is optional when there is only one such device. On 
systems with multiple interfaces it indicates which one should be used to reach the 
device. This is needed since there is no routing at this level of the network stack:  you 
must use the right network interface to reach the addressed device.

The available network interfaces can usually be identified by the ifconfig Linux 

command.  There is a more special purpose sub-command of the ocpihdl utility that 

lists only the network interfaces available and usable for OpenCPI (the ethers 

command to ocpihdl).
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8.3 Simulator Device Naming

OpenCPI runs HDL simulators in a way that makes them look like any other device to 
software.  When they are available (installed for OpenCPI), they are discoverable like 
any other device.  They are accessed by name according to this syntax:

LSim:<simulator>

Current simulators are modelsim and isim.  Such simulators are discovered 

automatically, and can be listed with the ocpihdl search command, along with 

hardware FPGA platform devices.
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9 The ocpihdl Command Line Utility for HDL Development

The ocpihdl utility program performs a variety of useful functions for OpenCPI HDL 
development.  These include:

 Searching for available FPGA devices (via PCI, Ethernet, UDP, simulators, etc.)

 Testing the existence of a specific FPGA device

 Reading and writing specific registers in an FPGA device

 Loading bitstreams on a device

 Extracting the XML metadata from a running device

The general syntax of ocpihdl is:

ocpihdl [<options>] <command> [<options>] [<command arguments>]

Options are the typical hyphen-letter options, some with arguments after the hypen-
letter argument.  The following sections describe each command and its associated 
options and arguments.  Here are the options that apply to many commands:

-v be verbose – put progress messages on standard output

-d  <hdl-device>
specify the HDL platform device;  see HDL Device Naming above

-p <hdl-platform>
specify the HDL platform type (e.g. ml605) for the command

-l <log-level>
specify the OpenCPI logging level that should apply during execution

-P produce “parseable” output for some commands that read registers

-i <network-interface>
the network interface (e.g. “en0”) to use for the command

-x print numeric values in hex rather than decimal

The default value for the -d <device> option can be set via the 

OCPI_DEFAULT_HDL_DEVICE environment variable.

The commands provided by the ocpihdl utility are summarized in the following table.  
The check-boxes show which ones require a device to be specified, a worker to be 
specified, or an Ethernet interface to be specified.
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Table 21:  The ocpihdl Commands

Name Device Worker Interface Description

admin ✔ Dump HDL device admin information

bram Create BRAM file from input (XML) file

deltatime ✔ Measure round-trip time for synchronization

emulate ✔ Emulate a UDP or Ethernet device

ethers List available/up/connected Ethernet interfaces

probe ✔ See if a specific device exists and responds

load ✔ Load a bitstream onto the device

getxml ✔ Extract XML metadata from running device

radmin ✔ Read addresses in HDL device admin space

reset ✔ Reset device (via control plane access)

rmeta ✔ Read metadata space from device

search ✔ List all discovered and responding HDL devices

settime ✔ Set the device’s GPS time to the system time

simulate Run a simulator server 

unbram Create an XML file from a BRAM file

wadmin ✔ Write admin space

wclear ✔ ✔ Clear worker status errors

wdump ✔ ✔ Print worker status registers (not properties)

wop ✔ ✔ Perform control operation on worker (e.g. start)

wread ✔ ✔ Read worker configuration property space

wreset ✔ ✔ Assert reset for worker

wunreset ✔ ✔ De-assert reset for worker

wwctl ✔ ✔ Write worker control registers

wwpage ✔ ✔ Write page register (to reach full 32 bit space)

wwrite ✔ ✔ Write worker configuration property space
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9.1 General, non-Worker Commands for the ocpihdl Utility

9.1.1 admin command – Print the Device’s Administrative Information

This command is used to dump all of the information and state in the devices “admin” 
space, which is the information for the device and loaded bitstream as a whole.  A 
device flag must be specified.  There are no command arguments.

9.1.2 bram command – Create a Configuration BRAM File from an XML File

This command converts an XML file that is expected to contain the “artifact description 
XML” into a format that will be processed into a read-only BRAM inside the FPGA 
bitstream.  This allows software to know what is inside a bitstream by only looking at the
device, without needing a separate bitstream file.  This command is used by the scripts 
that create bitstreams.  The output format is an ASCII format that the tools can use to 
initialize memories.  The two command arguments are <input-file> and <output-file>, 
e.g.:

ocpihdl bram my.xml mybram.bin

9.1.3 deltatime command – Perform Time Synchronization Test on Device

This command, which requires a device option, uses special time-difference hardware 
in the OpenCPI FPGA bitstream to measure the round-trip time for accessing the FPGA 
in order to reduce the time-skew between the system time-of-day and the FPGA's time-
of-day.  It takes 100 samples, averages them, eliminates 10% outliers, and then retests 
the time-skew after applying the correction.

9.1.4 emulate command – Emulate a Network-based Device (admin space only)

This command acts as an Ethernet or UDP-based HDL device and responds to 
discovery and admin-space accesses.  It is used to test software controls and network 
connectivity.  It can optionally be supplied with a network interface option (-i) to specify 
on which network interface should the emulated device appear.  With no network 
interface specified, it uses the first available that it finds (that is “up” and “connected”).  A
special case is the network interface whose name is “udp”, which means the command 
emulates an OpenCPI HDL device attached to the IP subnet of the host computer 
implementing discovery and control via UDP, e.g.:

ocpihdl -i udp emulate

9.1.5 ethers command – Display Available (Up and Connected) Network Interfaces

This command is used to list all of the available Ethernet network interfaces on the 
system and whether they are “up” and “connected”.  It also shows what the “default” 
interface is (the first listed that is up and connected) for commands that could take an 
interface (-i) option.  It also shows the identity chosen for the system, based on the first 
interface with an address and a MAC address.
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9.1.6 probe command – Test Existence and Availability of Device

The probe command takes a device (as an option or argument) and tries to contact it 
and see if it is responding.  This should work whether it is running an application or not.

9.1.7 load command – Load Bitstream

The load command takes a device (as an option or argument) and a bitstream file name
argument and loads the bitstream onto the device.

9.1.8 getxml command – Retrieve XML Metadata from Device

The getxml command takes a device (as an option or argument) and a filename to write 
the XML data to.  It retrieves and uncompresses the XML data stored in the running 
device and writes it to a file.

9.1.9 radmin command – Read a Specific Address in Device’s Admin Space

This command reads an individual word of data from the admin space of the specified 
device.  The command argument is the hexadecimal (starting with 0x) or decimal offset 
in the admin space.  If the offset ends in “/n” where n is 4 or 8, then that specifies the 
size of the access in bytes.  If there is no “/n”, then the access is a 32 bit access.

If the parseable option (-P) is specified the output is just the value returned in 
hexadecimal format.  Otherwise a prettier message with the offset and value is printed. 
An example that does a 2 byte read of offset 12 would be:

ocpihdl –d pci:5 radmin 12/2

9.1.10 reset command – Perform Soft Reset on Device

This reset command resets the device in a way that does not affect the control path to 
the device.  For example on a PCI-based device, it would not damage or reconfigure the
PCI Express interface.  All application workers and most other (infrastructure) workers 
are placed in reset and need to be specifically taken out of reset [unimplemented].

9.1.11 rmeta command – Read from Addresses in the Metadata Space of the Device

This command works exactly like the radmin command except it reads the 
configuration BRAM space rather than the admin space.

9.1.12 search command – Search for all Available HDL Devices

This command searches for all reachable HDL devices and reports what it finds.  It uses
all of the supported control paths (PCI, Ether, LSim).  If an interface (-i) option is 
specified it limits the Ether search to that one interface.

9.1.13 unbram command – Create an XML File from a Config BRAM File

This command reverses the function of the bram command, by converting a file 
formatted for initializing (during assembly build) the configuration bram in a bitstream 
back to the original XML file. The two command arguments are <input-file> and 

<output-file>, e.g.:
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ocpihdl unbram mybram.bin my.xml

9.1.14 wadmin command – Write Specific Addresses in the Device’s Admin Space

This debug command writes a 4-byte/32-bit or 8-byte/64-bit value in the device’s admin 
space at the specified offset.  The size in bytes (4 or 8) is optionally specified in the first 
argument with a slash.  The default size is 4.  The syntax is:

ocpihdl wadmin –d <hdl-device> <offset>[/<size-in-bytes> <value>

The value can be in hex (preceded by 0x) or decimal.  An example, to write an 8 byte 
value at offset 0x20 with the value 12345, would be:

ocpihdl wadmin –d PCI:5 0x20/8 12345

9.1.15 settime command – Set Device’s Time from System Time

This command sets the time on the device from the current system time.  It requires a 
device to be specified.  The current time of the device is shown in the output of the 
admin command.
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9.2 Worker Commands:  Commands that Operate on Individual Workers

There are two sets of worker commands.  The first set relies on embedded metadata 
and is generally more friendly and useful.  The second set does not rely on metadata 
and is more primitive, and all of the latter begin with the letter w.

The following four commands take a worker instance name as the first argument, which 
is the same as the instance name in the HDL assembly.  It can also be the index of the 
worker instance that is shown in previous commands, such as ocpihdl get, with no 

arguments.

9.2.1 get command — Get All or Single Worker Instance Property Information

With no arguments, this command displays information for all workers.  With an 
argument to specify one instance, it displays information for that instance.

With the verbose option (-v), it will display all property values.  Without the verbose 

option it will display only summary information.  Using the hex (-x) option, all the 

numeric values will be printed in hexadecimal, and without it the values will be decimal.

When a worker is specified, an additional argument can specify the name of a property 
to display.  Thus to display the prop1 value of the instX worker instance, in hex:

ocpihdl get -x instX prop1

This command knows the data types of properties and displays the values accordingly.

9.2.2 set command — Set Property Value in a Worker Instance

This command sets a particular property value of a particular worker instance.  The 
second argument is the property name and the third argument is the value to set.

The syntax of the value is the same syntax used to specify an initial or default value of 
properties in OCS, OWD, or HDL assembly XML.

To set the value of a property that was an array of three shorts, an example would be:

ocpihdl set instX prop1 “-1,0x12,o177”

9.2.3 control command — Change Control State of Worker Instance

This command performs a control operation on the worker instance specified in the first 
argument.  In addition to the defined life cycle control operations (initialize, start, stop, 
release, etc.), the operation can be reset and unreset.  The operation is the second 

argument after the argument that specifies the worker instance.  To put a worker in a 
reset condition (to assert reset), an example is:

ocpihdl control instX reset

9.2.4 status command — Display the Status of a Worker Instance

This command prints the status of the identified worker instance.  In this context the 
status includes the control state,  as well as the display output of the wdump command 
described below.
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9.2.5 Primitive worker commands using worker indices

The following worker commands operate on either a single worker or a sequential range
of workers.  They all require a device to be specified, and the first argument is either a 
single worker number or a set of worker numbers separated by commas.  Thus to 
perform a worker command on worker 5 would be:

ocpihdl w<cmd> -d pci:5 5 <worker command args if any>

To perform the command on workers 2, 5, and 6, would be:

ocpihdl w<cmd> -d pci:5 2,5,6 <worker command args if any>

The worker commands are:

9.2.6 wclear command – Clear a Worker’s Error Registers

Each worker has a set of control and status registers that are part of the control-plane 
infrastructure IP (not in the worker itself).  This command clears the error and attention 
bits in the worker’s status register. A worker’s status can be displayed by the “wdump” 
command.  An example for clearing error and attention status for worker 5 is:

ocpihdl wclear –d PCI:5 5

9.2.7 wdump command – Dump a Worker’s Status Registers (not Properties)

Each worker has a set of control and status registers that are part of the control-plane 
infrastructure IP (not in the worker itself).  This command displays the current status of 
the worker by dumping these registers.

9.2.8 wop command – Perform a Control Operation on a Worker

This worker command executes a control operation for the worker, directly accessing 
the hardware that makes the control operation request of the worker.  Only the “start” 
operation is implemented on all HDL workers.  Any others may have unpredictable or 
erroneous results when requested on a worker that doesn’t implement them.  The 
available operations are:

 initialize – after reset is deasserted (see wunreset), request that a worker initialize 
itself

 start – put the worker into an operational state, after stop or initialize

 stop – suspend operation of the worker

 release – return the worker to the “pre-initialized” state

 test – run the worker’s built-in test

 before – inform worker that a batch of property settings will happen

 after – inform a worker that a batch of property reads has completed

9.2.9 wread command – Read a Worker’s Configuration Property Space

This command reads a value from the worker’s property space.  The first argument is 
the offset in the worker’s property space (in bytes), with an optional size-in-bytes for the 
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access (1, 2, 4 or 8), and the second (optional) argument is how many sequential 
accessed to make.  The default for the size is 4, and the default for the second 
argument is 1.  E.g., to read 3 single bytes at offset 6 from worker 11 would be:

ocpihdl read –d 5 11 6/1 3

See the “wwpage” command for workers whose property space is larger than 1 MByte 
(2^20).

9.2.10 wreset command – Assert Reset for a Worker

This command asserts the control reset signal into the worker.  It stays asserted until 
the wunreset command is used.

9.2.11 wunreset command – Deassert Reset for a Worker

This command deasserts the control reset signal into the worker, after which the “wop 
initialize” command can be issued (or, if the worker does not implement the “initialize” 
command, the “wop start” command can be issued).

9.2.12 wwctl command – Write a Worker’s Control Register

This command writes the worker’s control register, which is in the control plane 
infrastructure IP, not in the worker itself.  The argument is a 32 bit value.  The bit 
definitions are described in the “OpenCPI HDL Infrastructure” document.

9.2.13 wwpage command – Write a Worker’s Window/Page Register

A worker’s property space can be a full 32 bit space (4 GBytes), but to access more 
than the first 1MByte (2^20 bytes), a “window” register in the control-plane infrastructure
must be set.  This command sets that register with the value in the first argument, which
sets the high order 12 address bits (31:20) of the effective address when the wread and
wwrite commands are issued.  The offset in those commands supplies bits (19:0) of the
effective address.  Thus to read location 0x12345678 in worker 7 with a full 4GByte 
property space, two commands would be used:

ocpihdl wwpage –d pci:5 7 0x123
ocpihdl wread –d pci:5 7 0x45678

9.2.14 wwrite command – Write a Worker’s Configuration Property Space

This command writes a single value into a worker’s property space at an offset (and 
size) specified in the first argument and a value specified in the second argument.  The 
wwpage command applies to this command also for workers with large property spaces.

Thus to write location 0x20 in worker 6 with the 64-bit value 0x123456789abc:

ocpihdl wwrite –d pci:5 6 0x20 0x123456789abc
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10 HDL Platform and Device Development

HDL Platform development is the activity that makes a FPGA-based hardware platform 
fully enabled for running OpenCPI applications.  This activity is sometimes called 
making a Board Support Package (BSP).  In OpenCPI the definition of an HDL 
platform is an FPGA surrounded by and connected to a set of devices, and possible 
slots that accept plug-in optional cards with devices on them.

Developing HDL platform workers and device workers is described in a separate 
OpenCPI Platform Development Guide document.  It covers the development of HDL:

 Platform workers:  the singleton worker that bootstraps the platform and container

 Device workers:  workers that support external devices attached to FPGAs

 Platform configurations:  assemblies of platform workers and some device workers

 Slot types:  standard definitions of the signals and pins of a slot connector

 Slots on platforms:  how to define slots on HDL Platforms

 Cards for slots:  how to define cards that contain devices and plug into slots

All of these asset types can be developed in projects along with other assets.
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