
Getting Started Guide

Version 1.5

i

Getting Started Guide ANGRYVIPER Team

Revision History

Revision Description of Change Date
v1.0 Initial creation 2/2016
v1.1 Updated for OpenCPI Release 1.1 3/2017
v1.2 Updated for OpenCPI Release 1.2 8/2017
v1.3 Updated for OpenCPI Release 1.3 2/2018
v1.4 Updated for OpenCPI Release 1.4 10/2018
v1.5 Updated for OpenCPI Release 1.5 4/2019

ii

Getting Started Guide ANGRYVIPER Team

Table of Contents

1 References 1

2 Overview of OpenCPI 2
2.1 Projects Overview . 2
2.2 What is the ANGRYVIPER Team? . 2

3 A Brief overview OpenCPI’s Architecture 3
3.1 Management Models . 3
3.2 Authoring Models . 3
3.3 Data Transport . 3

4 Getting Started 5
4.1 Installation of OpenCPI . 5
4.2 Environmental Variables . 5
4.3 Project Registry . 5
4.4 Set Up Work Environment (Projects and Registry) . 6

4.4.1 Create Registry and Projects . 6
4.4.2 Display Installed Projects . 7
4.4.3 Building Projects . 7
4.4.4 Build Core Project . 8
4.4.5 Build Assets Project . 9

5 Basic Example Application 10
5.1 Create a Project . 10
5.2 Create a Library . 11
5.3 Create Components . 12
5.4 Create Workers . 13
5.5 Create an HDL Assembly . 18
5.6 Create an Application . 19
5.7 Generate Input Data . 20
5.8 Run Simulation . 21
5.9 Examine the Output . 21
5.10 Adding Backpressure . 23

iii

Getting Started Guide ANGRYVIPER Team

List of Figures

1 Conceptual extensibility of the OpenCPI framework for new and expanding target bases. Reflecting
the three key concepts: Application Management, Authoring Model, and Data Transport. 3

2 Block diagram of simple HDL application with three user-defined workers, a FileRead, and a FileWrite. 10
3 “RAMP” Output (Passed through by “ANDER”) . 22
4 “ANDER” Output . 22
5 “SQUARE” Output = Input 2 to “ANDER” . 23

iv

Getting Started Guide ANGRYVIPER Team

List of Tables

1 References . 1
2 Project Types . 2
3 Commonly Used Variables . 5
4 Supported Platforms . 8

v

Getting Started Guide ANGRYVIPER Team

1 References

This document assumes a basic understanding of the Linux command line environment. It does not require a working
knowledge of OpenCPI.

Table 1: References

Title Link
OpenCPI Overview Overview.pdf

Acronyms and Definitions Acronyms and Definitions.pdf

Installation Guide RPM Installation Guide.pdf

Component Development Guide OpenCPI Component Development.pdf

RCC Development Guide OpenCPI RCC Development.pdf

HDL Development Guide OpenCPI HDL Development.pdf

1

http://opencpi.github.io/releases/1.5.0/Overview.pdf
http://opencpi.github.io/releases/1.5.0/Acronyms_and_Definitions.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf
http://opencpi.github.io/releases/1.5.0/OpenCPI_Component_Development.pdf
http://opencpi.github.io/releases/1.5.0/OpenCPI_RCC_Development.pdf
http://opencpi.github.io/releases/1.5.0/OpenCPI_HDL_Development.pdf

Getting Started Guide ANGRYVIPER Team

2 Overview of OpenCPI

Open Component Portability Infrastructure (OpenCPI) is a series of tools and runtime platform for developing and
deploying heterogeneous applications. It includes:

• A runtime environment to manage and deploy assets in both software and HDL.

• A set of tools for development of applications and components for software and HDL.

• A framework and methodology for targeting mixed processor architecture types.

• A set of HDL and software building blocks for developers to use and expand.

• A series of reference applications running on base platforms.

Assets and applications developed using OpenCPI are meant to simplify complex integration and improve code
portability of heterogeneous solutions. OpenCPI extends component-based architectures into GPPs and FPGAs to
decrease development costs and time to market through code portability, reuse, and ease of integration.

For more information, consult the Overview found in Table 1.

2.1 Projects Overview

Historically, all OpenCPI development, for both the core team and the end user, has been within a single directory
structure. As the team size and user base expand, this quickly becomes untenable, especially when taking version
control systems into account. The previous working area has been broken into several locations.

The CDK and the source for the Core and Assets Projects are provided by the ANGRYVIPER Team (cf. Section 2.2)
in the form of various RPMs that can be installed by a System Administrator. In order to exercise any of the supported
platforms, a user must have a writable copy of the Core project in order to build HDL using his/her own specific
FPGA tool version(s).

Table 2: Project Types

Name Contents Expectation/Usage
CDK Framework, Utilities End-user will use, not modified

Core Project Minimal Components, Primitives, RCC
Platforms, HDL Simulator Platforms

End-user will build, not modify

Assets Project Applications, Components, Primitives,
Platforms, Cards/Slots, Devices, Assemblies

End-user will build, run, maybe modify

BSP Project Platforms, Cards/Slots, Devices, etc. End-user will build, not modify
User Project User-provided Components, Applications, etc. End-user will build, run, modify

2.2 What is the ANGRYVIPER Team?

The ANGRYVIPER Team is a group of engineers contracted to support the OpenCPI framework with additional fea-
tures, reference assets (known as ocpi.assets), additional API, RPM-based modular installation, and an integrated
development environment (IDE).

2

Getting Started Guide ANGRYVIPER Team

3 A Brief overview OpenCPI’s Architecture

In this section, the basics of the framework are discussed including the communications, control, and data exchange.
At the highest level, the architecture of the framework is connectivity between three key concepts:

• Application Management Model: How component-based applications are managed and controlled includ-
ing loading, launching, starting, stopping, configuring, querying, etc. This is sometimes described as how
component-based applications are deployed.

• Authoring Model: How components are written in order to be effective on various processing technologies
and execution environments.

• Data Transport: How messages are moved between one component and another.

The core software is structured to allow extensions in any of these three dimensions: enable new management models,
add new authoring models, and adding new data transport technologies.

Figure 1 represents the conceptual plug and play functionality OpenCPI brings through the use of extensions. These
extensions can take the form of management models, new authoring models and new data technologies.

Figure 1: Conceptual extensibility of the OpenCPI framework for new and expanding target bases. Reflecting the
three key concepts: Application Management, Authoring Model, and Data Transport.

3.1 Management Models

The basis for the management model is to specify how applications are managed and deployed, including how a
control application would statically or dynamically decide to execute one or more component-based applications on
a given system. The framework provides two different modes: The first is an application called ocpirun, which
takes an application XML and control commands to execute. The second is through the use of native C++ API
for controlling and launching applications which gives the application developer a greater level of control, including
reading and writing properties during execution.

3.2 Authoring Models

The framework uses the concept of “containers” which can host and execute workers. These workers can be hardware-
oriented (VHDL within an FPGA) or software-oriented (C/C++ on a GPP1).

3.3 Data Transport

The communication model is conceptually based on a protocol model where a component is defined to be able to
send or receive messages with defined payloads. The protocol can be as simple as “frames of 200 16-bit unsigned
integers”. It can also be a variety of messages in a variety of formats based on variable length data types. The
transport mechanism can be:

• Passing buffer pointers with no data copying between co-located workers in software.

1Standalone CPU or embedded within an FPGA as an SoC

3

Getting Started Guide ANGRYVIPER Team

• Directly connecting wires from one FPGA worker to another.

• Moving messages over network sockets (TCP/IP).

• Moving messages between processors using standard buses (PCIe or AXI).

The benefit here is a flexible and transparent methodology for moving data of differing types from worker to worker.
This enables a simplified and abstracted development process that greatly removes the hardware implementation
from the application.

4

Getting Started Guide ANGRYVIPER Team

4 Getting Started

This section will walk through building the Core and Assets Project and all the fundamental steps of creating, build-
ing, running, and testing a simple application containing HDL workers. In the OpenCPI Component Development
Guide, the ocpidev command line tool is discussed in detail, but this example will serve as an introduction to using
the ocpidev command line tool.

4.1 Installation of OpenCPI

The most direct method for installation of the OpenCPI framework and IDE is through the use of the OpenCPI
RPMs2. The RPMs allows for a normalized installation process with the inclusion of all dependencies required. A
detailed installation process can be found in the RPM Installation Guide.

The remainder of this document assumes the RPMs have been installed.
The user’s environmental variables must also be configured to build with the Xilinx Vivado
software. For more information on Vivado installation/licensing and OpenCPI environment

configuration, see the FPGA Vendor Tools Installation Guide.

4.2 Environmental Variables

Various environmental variables are used to control OpenCPI. When installed, the RPMs provide “sane” defaults
for all, with OCPI_PROJECT_REGISTRY_DIR and OCPI_LIBRARY_PATH often the only ones an end user will need to
modify. However, the ones listed in Table 3 are often useful for debugging purposes.

Table 3: Commonly Used Variables

Variable Description
OCPI_CDK_DIR The location of the CDK’s installation. If unset, many scripts and programs will

fail to operate. With RPM installation, it is always /opt/opencpi/cdk.
OCPI_LIBRARY_PATH The set of locations (or projects) used to find runtime artifacts. Every file within

every path in this colon-separated list is opened and examined for deployment
metadata. For this reason, it is best to point to each projects’ exports subdi-
rectory and not their root location.

OCPI_LOG_LEVEL The amount of logging output by the runtime system. The default is zero (0),
indicating no logging output. The maximum logging is 20. Commonly useful
startup and diagnostic information (e.g. artifact discovery feedback) is provided
at log level 8. Unusual events are logged at level 4.

OCPI_PROJECT_PATH The set of projects used to find various artifacts and support infrastructure during
build time. This colon-separated list is legacy (but still supported) and largely
replaced by the project registry (detailed below).

OCPI_PROJECT_REGISTRY_DIR Override the default location of the project registry. If this is not set, the default
project registry is OCPI CDK DIR/../project-registry.

OCPI_SYSTEM_CONFIG The runtime system XML configuration file. Default is /opt/opencpi/system.
xml with a fallback to /opt/opencpi/cdk/default-system.xml.

4.3 Project Registry

A project registry is a directory that contains references to projects in a development environment. By registering a
project, a user is publishing his project so it can be referenced/searched by any other project using that same project
registry. The default project registry is explained in the OCPI PROJECT REGISTRY DIR row of Table 3. To add
a project to the default project registry in an RPM environment, a user needs to be in the opencpi user group. This
is described in detail the RPM Installation Guide.

2 An alternative “source build” is also available for advanced usage and is documented in the OpenCPI Installation Guide – that style

of installation is not supported by this document.

5

http://opencpi.github.io/releases/1.5.0/OpenCPI_Installation.pdf

Getting Started Guide ANGRYVIPER Team

The sharing of projects across users with a common registry has been known to be fragile for various
reasons (e.g. incorrect permission settings, default “umask” values, etc.) and is not recommended
for new users.

Note: This section is informational / reference; you will create your personal registry below (Section 4.4.1).

The ocpidev register project command is used to register a project.

To perform this operation within the IDE: (The project “my_ proj ” must be imported into the
IDE and then refresh the OpenCPI Projects view so the project is shown.)

• In the OpenCPI Projects view, select the project, right-click, select “register” from the
menu. (Depending on state of the project, this option may not be available.)

This is done automatically when the first copies of the core and assets projects are created. For user-provided projects
(or new copies/overrides of the core/assets projects), the register command can be used. unregister can be used
to remove an existing project from the registry.3

To perform this operation within the IDE: (The project “my_ proj ” must be imported into the
IDE and then refresh the OpenCPI Projects view so the project is shown.)

• In the OpenCPI Projects view, select the project, right-click, select “unregister” from
the menu. (Depending on state of the project, this option may not be available.)

The project registry must also be set on a per-project basis using ocpidev set registry <registry-location>

to “point back” to the registry. See ocpidev --help set for more information.

4.4 Set Up Work Environment (Projects and Registry)

4.4.1 Create Registry and Projects

With the opencpi-devel rpm installed, a core and assets project can be created. It is recommended that each
user has his/her own copy of the core and assets projects. Included with the CDK is an installation script,
ocpi-copy-projects. This script will copy all of the read-only projects out of /opt/opencpi/projects/ and into
another location. The script takes two parameters: destination location for copied projects and the registry location
where copied projects are registered (defaulting to /opt/opencpi/project-registry or OCPI_PROJECT_REGISTRY_
DIR). The recommended destination location is ~/ocpi_projects.

If no arguments are given, the script is interactive and the user is required to input required information. It is
recommended that the user uses interactive mode. In interactive mode, the user is able to do the following:

1. Unregister any projects from the destination registry if they choose

2. Create a new registry (recommended)

3. Update .bashrc to set the environment variable OCPI_PROJECT_REGISTRY_DIR to the destination registry

% ocpi-copy-projects

This command may produce a handful of warnings. It is likely that these warnings can be ignored. If the command
actually outputs an Error, it is likely because the user is not a member of the opencpi group in an RPM environment
with a shared registry.

After execution, you will be reminded that OCPI_PROJECT_REGISTRY_DIR must be set to use this new registry. You
can open a new terminal and ensure it is set if the script edited .bashrc for you. If you don’t want to at this time,
you must at least execute the export command given before continuing or opening the IDE.

3Note that unregister does not remove your project, it just delists it from the registry

6

Getting Started Guide ANGRYVIPER Team

4.4.2 Display Installed Projects

To confirm which projects are installed and where they live, the command ocpidev show projects can be used.

4.4.3 Building Projects

In this step, the Project’s contents will be built. Before completing the remaining steps, the environment must be
set up as described in the RPM Installation Guide.

To build a project, first pick the desired Platform to build for. The available options are listed in Table 4.

The relationships between vendor tools and targets (i.e. platforms) is discussed in the FPGA Vendor Tools Installation

Guide.pdf

7

http://opencpi.github.io/releases/1.5.0/FPGA_Vendor_Tools_Installation_Guide.pdf
http://opencpi.github.io/releases/1.5.0/FPGA_Vendor_Tools_Installation_Guide.pdf

Getting Started Guide ANGRYVIPER Team

Table 4: Supported Platforms

Simulator Vendor Platform Name Project Package-ID 1 Link
ModelSim DE 10.6a/10.4c modelsim ocpi.core https://www.mentor.com/

products/fv/modelsim/

Xilinx Vivado 2017.1 xsim ocpi.core https://www.xilinx.

com/support/download/

index.html/content/

xilinx/en/downloadNav/

vivado-design-tools.html

Xilinx ISE 14.7 isim ocpi.core https://www.xilinx.com/

support/download/index.

html/content/xilinx/en/

downloadNav/design-tools.

html

Hardware Platform Platform Name Project Package-ID Link
Epiq Solutions Matchstiq-Z1 matchstiq z12 ocpi.assets https://epiqsolutions.com/

matchstiq/

Avnet ZedBoard (Vivado build) zed3 ocpi.assets http://zedboard.org/

Avnet ZedBoard (ISE build) zed ise4 ocpi.assets http://zedboard.org/

Altera Stratix IV GX alst4 ocpi.assets https://www.intel.com/

content/www/us/en/

products/programmable/

fpga/stratix-iv.html

Xilinx ML605 (Virtex-6) ml605 ocpi.assets https://www.xilinx.com/

products/boards-and-kits/

ek-v6-ml605-g.html

Ettus USRP E310 e3xx ocpi.bsp.e310 https://www.ettus.com/

product/details/E310-KIT

Software Platform Platform Name Project Package-ID Link
Centos6 centos6 ocpi.core https://www.centos.org/

Centos7 centos7 ocpi.core https://www.centos.org/

Xilinx Linux (xilinx-v2013.4 release) xilinx13 35 ocpi.core https://github.com/Xilinx/

linux-xlnx/releases/tag/

xilinx-v2013.4

Xilinx Linux (xilinx-v14.7 release) xilinx13 46 ocpi.core https://github.com/Xilinx/

linux-xlnx/releases/tag/

xilinx-v14.7

1The Project Package-ID is the unique identifier for a project. Please reference the Component Development Guide for more details
2Reference the Matchstiq-Z1 Getting Started Guide to build for matchstiq z1
3Reference the Zedboard Getting Started Guide to build for zedboard
4Use Xilinx ISE tools to build for this platform
5RCC platform associated with the zedboard and matchstiq z1 platforms
6RCC platform associated with the e310 platform

4.4.4 Build Core Project

This section presents a handful of commands that can be used to build for various platforms. To complete this Guide
using the xsim simulator, use the build command in the box at the end of this section.

The steps in this section are specific to the xsim simulator, which is installed as part as the
Xilinx Vivado software. For more information on Vivado installation/licensing and

OpenCPI environment configuration, see the FPGA Vendor Tools Installation Guide.

Note that all build commands in this Guide can optionally be performed using the ANGRYVIPER IDE instead of
“ocpidev build”.

8

https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools.html
https://epiqsolutions.com/matchstiq/
https://epiqsolutions.com/matchstiq/
http://zedboard.org/
http://zedboard.org/
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-iv.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-iv.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-iv.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-iv.html
https://www.xilinx.com/products/boards-and-kits/ek-v6-ml605-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v6-ml605-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v6-ml605-g.html
https://www.ettus.com/product/details/E310-KIT
https://www.ettus.com/product/details/E310-KIT
https://www.centos.org/
https://www.centos.org/
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v2013.4
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v2013.4
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v2013.4
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v14.7
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v14.7
https://github.com/Xilinx/linux-xlnx/releases/tag/xilinx-v14.7

Getting Started Guide ANGRYVIPER Team

To build the RCC workers, go to the core project and run:

If user will later target the Zedboard or Matchstiq-Z1:
% ocpidev build --rcc --rcc-platform xilinx13 3

To perform this operation within the IDE:

1. Open the ANGRYVIPER Perspective

2. Select the asset from OpenCPI Project View

3. Import to ANGRYVIPER Operations Panel using “>” button

4. Select the RCC and/or HDL platforms for the build (use Ctrl for multiple selection)

5. Click “Build”

If user will later target the Zedboard and/or Centos7:
% ocpidev build --rcc --rcc-platform xilinx13 3 --rcc-platform centos7

The --rcc-platform option specifies the RCC platform to the build for.

Use the following ocpidev command to build the project for the desired platform using the information from Table 4.

% ocpidev build --rcc-platform <platform name> --hdl-platform <platform name>

Building for multiple platforms can be combined into a single ocpidev call, e.g.:

% ocpidev build --hdl-platform modelsim --hdl-platform xsim --hdl-platform isim --rcc-platform centos7

--rcc-platform xilinx13 3

In the core project, the last operation this command performs is to build the project’s hdl platforms. You can be
sure it succeeded if the last few sections of output are “=======Building platform xsim”.

For the example in Section 5, you must build for xsim at a minimum. This takes
approximately 10 minutes:

ocpidev build --hdl-platform xsim

Note: If you have ISE installed instead of Vivado, you can follow this guide using isim instead of xsim

4.4.5 Build Assets Project

Refer to table 4 to determine whether the platform being built for lives in the ocpi.assets project. If so, follow the
same building procedures documented in Section 4.4.3 for the same platforms. The last assets built in the assets

project are applications. You can be sure it succeeded if the last few sections of output include “========Building
apps cic int dc offset iq imbalance mixer cic dec”.

If the xsim platform is being used, the ocpi.assets project does not need to be built at this time.

9

Getting Started Guide ANGRYVIPER Team

5 Basic Example Application

This section provides a basic example application that the user can create.
There are more detailed examples and presentation slides available as “Standalone

Training” on github.io.

This simple application will contain three HDL Workers: ramp, square, and ander, which can be seen in Figure 2.

Figure 2: Block diagram of simple HDL application with three user-defined workers, a FileRead, and a FileWrite.

For testing and simulation purposes, the OpenCPI file_read and file_write workers will be used to read input
data from, and write output data to, files on the system.

The basic format of an ocpidev command is “ocpidev [options] <verb> <noun> <name>”. For this demonstra-
tion, the following nouns will be used: project, library, spec, worker, hdl assembly, and application. ocpidev
supports “tab-completion” for most options, including platform names. It is recommended that the user take ad-
vantage of this capability when performing these examples to help get a feel for the options available from the tool.

The full list of ocpidev verbs, nouns and options can be explored via ocpidev --help, ocpidev --help <verb>,
or the OpenCPI Component Development Guide.

5.1 Create a Project

Choose the name “DemoProject” for this project. To create the “DemoProject” project use the following ocpidev

command:

% ocpidev create project --register DemoProject

To perform this operation within the IDE:

• Place the cursor in the OpenCPI Projects panel, right click, select asset wizard.

• Select the asset type (“Project”) in the drop-down, fill in the required inputs, click
finish.

• When the process finishes, the new asset is displayed in both project views. (If the asset
has an XML editor, then the editor opens.)

The project that was just created should have also been registered. The project registration can be done separately
using the following ocpidev command from within the project:

% ocpidev register project

10

http://opencpi.github.io/

Getting Started Guide ANGRYVIPER Team

To perform this operation within the IDE: (The project “DemoProject ” must be imported
into the IDE and then refresh the OpenCPI Projects view so the project is shown.)

• In the OpenCPI Projects view, select the project, right-click, select “register” from the
menu. (Depending on state of the project, this option may not be available.)

Observe the directory structure created, as well as the files.

$ tree --charset ascii DemoProject

|-- exports

| |-- imports -> ../imports

| ‘-- project-package-id

|-- imports -> /opt/opencpi/project-registry

|-- Makefile

|-- Project.exports

|-- Project.mk

‘-- project.xml

3 directories, 5 files

Change directories into “DemoProject”.

5.2 Create a Library

A library is a convenient way of grouping workers. For a simple case, the framework defaults to a components

directory as the library. To create the default “components” library, use the following ocpidev command:

% ocpidev create library components

To perform this operation within the IDE:

• Place the cursor in the OpenCPI Projects panel, right click, select asset wizard.

• Select the asset type in the drop-down, fill in the required inputs, click finish.

• When the process finishes, the new asset is displayed in both project views. (If the asset
has an XML editor, then the editor opens.)

Observe the directory structure created, as well as the files:

DemoProject

|-- components

| |-- lib

| | |-- package-id

| | ‘-- workers

| |-- Library.mk

| ‘-- Makefile

|-- exports

| |-- imports -> ../imports

| ‘-- project-package-id

|-- imports -> /opt/opencpi/project-registry

|-- Makefile

|-- Project.exports

|-- Project.mk

‘-- project.xml

For more advanced projects, one or more libraries would be placed within the components directory. This usage is
highly recommended and explained in the OpenCPI Component Development Guide.

11

Getting Started Guide ANGRYVIPER Team

5.3 Create Components

Components are black boxes that dictate what properties and interfaces are implemented. A single implementa-
tion of a component is referred to as a worker, which is discussed in the next section. Components are defined
by an OpenCPI Component Specification (OCS). The OCS is commonly referred to as the spec file or spec. Each
spec includes the details that are to be consistent among different authoring models; meaning that if there
are various implementations of a single component, e.g. a software (RCC) worker and an HDL worker, both work-
ers expect the same input and both should have the same output regardless of which architecture the worker runs on.

This application requires three components, so three specs will be generated. To create the three template specs use
the following ocpidev commands:

% ocpidev create component ramp

% ocpidev create component square

% ocpidev create component ander

To perform this operation within the IDE:

• Place the cursor in the OpenCPI Projects panel, right click, select asset wizard.

• Select the asset type in the drop-down, fill in the required inputs, click finish.

• When the process finishes, the new asset is displayed in both project views. (If the asset
has an XML editor, then the editor opens.)

DemoProject

|-- components

| |-- lib

| | |-- ander-spec.xml -> ../specs/ander-spec.xml

| | |-- package-id

| | |-- ramp-spec.xml -> ../specs/ramp-spec.xml

| | |-- square-spec.xml -> ../specs/square-spec.xml

| | ‘-- workers

| |-- Library.mk

| |-- Makefile

| ‘-- specs

| |-- ander-spec.xml

| |-- ramp-spec.xml

| ‘-- square-spec.xml

|-- exports

| |-- imports -> ../imports

| ‘-- project-package-id

|-- imports -> /opt/opencpi/project-registry

|-- Makefile

|-- Project.exports

|-- Project.mk

‘-- project

Notice that three spec templates were generated. Also note that spec files can be easily identified by their -spec

postfix4. In between the ComponentSpec XML tags, the component properties and interfaces need to be defined.
Every component interface (or port) must define the direction and format of the messages they will
send or receive. This formatting is known as the protocol, and for this example, we will use rstream, which is a
stream of up to 4096 16-bit samples per message.

For the ramp component, insert the following XML snippet in between the ComponentSpec XML tags:

<Port Name="in" Producer="false" Protocol="rstream_protocol.xml"/>

<Port Name="out" Producer="true" Protocol="rstream_protocol.xml"/>

4Some older spec files use spec as well.

12

Getting Started Guide ANGRYVIPER Team

For the square component, insert the following XML snippet in between the ComponentSpec XML tags:

<Port Name="out" Producer="true" Protocol="rstream_protocol.xml"/>

For the ander component, insert the following XML snippet in between the ComponentSpec XML tags:

<Port Name="in1" Producer="false" Protocol="rstream_protocol.xml"/>

<Port Name="in2" Producer="false" Protocol="rstream_protocol.xml"/>

<Port Name="out" Producer="true" Protocol="iqstream_protocol.xml"/>

For more details, see the OpenCPI Component Development Guide. Now that the specs are defined, the next
step is to create the workers.

5.4 Create Workers

As mentioned in the previous section, workers are specific implementations of components. More than one worker
can implement a component. For this example, only one implementation per component will be used, and each of
these workers are HDL Workers. More details about HDL Workers can be found in the OpenCPI HDL Development
Guide. This example does not use any RCC (Software) Workers, but more details about them can be found in the
OpenCPI RCC Development Guide.

When creating workers, two options need to be defined, one implicitly and one explicitly. The type of worker is
defined implicitly by appending either .rcc or .hdl to the name of the worker. HDL Workers use the general format
for the worker names: worker_name.hdl. The language of the worker can be explicitly defined; for RCC Workers
there are currently two choices: C++ or C.

To create the HDL Workers, use the following ocpidev commands:

% ocpidev create worker ramp.hdl

% ocpidev create worker square.hdl

% ocpidev create worker ander.hdl

To perform this operation within the IDE:

• Place the cursor in the OpenCPI Projects panel, right click, select asset wizard.

• Select the asset type in the drop-down, fill in the required inputs, click finish.

• When the process finishes, the new asset is displayed in both project views. (If the asset
has an XML editor, then the editor opens.)

Notice that the creation of the ramp, square, and ander HDL Workers generated a .hdl directory for each. Each
of the .hdl directories contain that worker ’s OpenCPI Worker Description (OWD), which can be identified by the
following format: worker_name.xml. The OWD is where that worker’s specific properties and port protocols are
defined. The definitions in the OWD are specific to each individual worker and may override a set of attributes
defined in the OCS. Later the OWD will be edited for each worker.

Observe that in each of the .hdl directories there is also the skeleton file or wrapper in the language that was
specified. In this case, the worker_name.vhd is the skeleton file for the language option VHDL. Later, the skeleton
file will be edited for each worker.

The gen directory contains other important code that is generated from the framework and will not need to be
edited. For more details see the OpenCPI Component Guide.

13

Getting Started Guide ANGRYVIPER Team

The project should now look similar to the following:

DemoProject/

|-- components

| |-- ander.hdl

| | |-- ander.vhd

| | |-- ander.xml

| | |-- gen

| | | |-- ander-build.xml

| | | |-- ander-defs.vhd

| | | |-- ander-defs.vhd.deps

| | | |-- ander-impl.vhd

| | | |-- ander-impl.vhd.deps

| | | |-- ander.mk

| | | |-- ander-skel.vhd

| | | ‘-- ander-skel.vhd.deps

| | ‘-- Makefile

| |-- lib

| | |-- ...

| | ‘-- workers

...

| |-- ramp.hdl

| | |-- gen

| | | |-- ramp-build.xml

| | | |-- ramp-defs.vhd

| | | |-- ramp-defs.vhd.deps

| | | |-- ramp-impl.vhd

| | | |-- ramp-impl.vhd.deps

| | | |-- ramp.mk

| | | |-- ramp-skel.vhd

| | | ‘-- ramp-skel.vhd.deps

| | |-- Makefile

| | |-- ramp.vhd

| | ‘-- ramp.xml

| |-- specs

| | |-- ander-spec.xml

| | |-- ramp-spec.xml

| | ‘-- square-spec.xml

| ‘-- square.hdl

| |-- gen

| | |-- square-build.xml

| | |-- square-defs.vhd

| | |-- square-defs.vhd.deps

| | |-- square-impl.vhd

| | |-- square-impl.vhd.deps

| | |-- square.mk

| | |-- square-skel.vhd

| | ‘-- square-skel.vhd.deps

| |-- Makefile

| |-- square.vhd

| ‘-- square.xml

...

14

Getting Started Guide ANGRYVIPER Team

However, if you are using version controla, you can determine the key files:

First, navigate to the directory above DemoProject
% ocpidev clean project DemoProject

To perform this operation within the IDE: In the OpenCPI Projects view, select the project,
right-click, select clean from the menu.

% tree --charset ascii DemoProject/

DemoProject/

|-- components

| |-- ander.hdl

| | |-- ander.xml

| | ‘-- Makefile

| |-- lib

| | |-- ander-spec.xml -> ../specs/ander-spec.xml

| | |-- package-id

| | |-- ramp-spec.xml -> ../specs/ramp-spec.xml

| | |-- square-spec.xml -> ../specs/square-spec.xml

| | ‘-- workers

| |-- Library.mk

| |-- Makefile

| |-- ramp.hdl

| | |-- Makefile

| | ‘-- ramp.xml

| |-- specs

| | |-- ander-spec.xml

| | |-- ramp-spec.xml

| | ‘-- square-spec.xml

| ‘-- square.hdl

| |-- Makefile

| ‘-- square.xml

|-- exports

| |-- imports -> ../imports

| |-- lib

| | ‘-- components -> ../../components/lib

| ‘-- project-package-id

|-- imports -> /opt/opencpi/project-registry

|-- Makefile

|-- Project.exports

|-- Project.mk

‘-- project.xml

11 directories, 21 files

aThe lib, imports, and exports should not be in SCM.

Now the OWD files for each worker will be updated. This will provide implementation-specific information for the
interfaces that were abstractly defined at the component level in the OCS.

The version 2 HDL worker API was introduced in OpenCPI v1.5. It is the recommended interface for future designs.
All of the workers in this guide will use this API. For more information on the differences between version 1 and 2
HDL worker APIs, see the OpenCPI HDL Development Guide and the release notes for OpenCPI v1.5.

15

Getting Started Guide ANGRYVIPER Team

For the ramp worker, replace the worker OWD (in components/ramp.hdl/ramp.xml) with this XML:

<HdlWorker language="vhdl" spec="ramp-spec" version="2">

<StreamInterface Name="in" DataWidth="16"/>

<StreamInterface Name="out" DataWidth="16" InsertEOM="true"/>

</HdlWorker>

For the square worker, replace the worker OWD (in components/square.hdl/square.xml) with this XML:

<HdlWorker language="vhdl" spec="square-spec" version="2">

<StreamInterface Name="out" DataWidth="16" InsertEOM="true"/>

</HdlWorker>

For the ander worker, replace the worker OWD (in components/ander.hdl/ander.xml) with this XML:

<HdlWorker language="vhdl" spec="ander-spec" version="2">

<StreamInterface Name="in1" DataWidth="16"/>

<StreamInterface Name="in2" DataWidth="16"/>

<StreamInterface Name="out" DataWidth="32" InsertEOM="true"/>

</HdlWorker>

For more details, see the OpenCPI Component Development Guide. Now that the OWDs are defined, the next step
is to edit the VHDL skeleton files.

At this point, if you did the “ocpidev clean” example above, you need to regenerate the example code:

• ocpidev build worker ramp.hdl

• ocpidev build worker square.hdl

• ocpidev build worker ander.hdl

Replace the ramp.vhd skeleton file (components/ramp.hdl/ramp.vhd) with the following VHDL:

library IEEE; use IEEE.std_logic_1164.all; use ieee.numeric_std.all;

library ocpi; use ocpi.types.all; -- remove this to avoid all ocpi name collisions

architecture rtl of worker is

signal do_work : bool_t;

signal out_data_i, buff_data : std_logic_vector(15 downto 0);

begin

-- When we are allowed to process data:

do_work <= out_in.ready and in_in.valid;

-- Outputs:

in_out.take <= do_work;

out_out.valid <= do_work;

out_data_i <= std_logic_vector(signed(in_in.data) + signed(buff_data));

out_out.data <= out_data_i;

-- Initialize or save off previous value when valid:

ramp : process(ctl_in.clk)

begin

if rising_edge(ctl_in.clk) then

if ctl_in.reset = '1' then

buff_data <= (others => '0');

elsif its(do_work) then

buff_data <= out_data_i;

end if;

end if;

end process ramp;

end rtl;

16

Getting Started Guide ANGRYVIPER Team

Replace the square.vhd skeleton file (components/square.hdl/square.vhd) with the following VHDL:

library IEEE; use IEEE.std_logic_1164.all; use ieee.numeric_std.all;

library ocpi; use ocpi.types.all; -- remove this to avoid all ocpi name collisions

architecture rtl of worker is

signal do_work : bool_t;

signal cnt : unsigned(7 downto 0);

begin

-- When we are allowed to process data:

do_work <= out_in.ready;

-- Outputs:

out_out.data <= (others => '1') when cnt < 32 else

(others => '0');

out_out.valid <= do_work;

-- Generate the square pulse's counter

square : process(ctl_in.clk)

begin

if rising_edge(ctl_in.clk) then

if ctl_in.reset = '1' then

cnt <= (others => '0');

elsif its(do_work) then -- advance when we are pushing

cnt <= cnt + 1;

if cnt = 63 then

cnt <= (others => '0');

end if;

end if;

end if;

end process square;

end rtl;

Replace the ander.vhd skeleton file (components/ander.hdl/ander.vhd) with the following VHDL:

library IEEE; use IEEE.std_logic_1164.all; use ieee.numeric_std.all;

library ocpi; use ocpi.types.all; -- remove this to avoid all ocpi name collisions

architecture rtl of worker is

signal do_work : bool_t;

begin

-- When we are allowed to process:

do_work <= out_in.ready and in1_in.valid and in2_in.valid;

-- Outputs:

in1_out.take <= do_work;

in2_out.take <= do_work;

out_out.valid <= do_work;

out_out.data(15 downto 0) <= in1_in.data and in2_in.data;

out_out.data(31 downto 16) <= in1_in.data;

end rtl;

The workers must be built at this time using the following ocpidev command from the DemoProject directory:

% ocpidev build --hdl-platform xsim

17

Getting Started Guide ANGRYVIPER Team

To perform this operation within the IDE:

1. Open the ANGRYVIPER Perspective

2. Select the asset from OpenCPI Project View

3. Import to ANGRYVIPER Operations Panel using “>” button

4. Select the RCC and/or HDL platforms for the build (use Ctrl for multiple selection)

5. Click “Build”

5.5 Create an HDL Assembly

Before an application can be made, an assembly for the HDL workers needs to be created. An HDL assembly is
a synthesized netlist of connected application workers. For this example, use demo_assembly as the name of the
assemblies directory for the application. From the DemoProject directory, run the following ocpidev command to
create the assembly:

% ocpidev create hdl assembly demo_assembly

To perform this operation within the IDE:

• Place the cursor in the OpenCPI Projects panel, right click, select asset wizard.

• Select the asset type in the drop-down, fill in the required inputs, click finish.

• When the process finishes, the new asset is displayed in both project views. (If the asset
has an XML editor, then the editor opens.)

Notice that this command produces the hdl directory, assemblies directory within it, demo_assembly directory
within that, and the OpenCPI HDL Assembly (OHAD) (demo_assembly.xml).

DemoProject/hdl/

|-- assemblies

| |-- demo_assembly

| | |-- demo_assembly.xml

| | ‘-- Makefile

| ‘-- Makefile

‘-- Makefile

Navigate to the demo_assembly directory and replace demo_assembly.xml with this XML:

<HdlAssembly>

<Instance Worker="file_read" Connect="ramp"/>

<Instance Worker="ramp"/>

<Instance Worker="square"/>

<Instance Worker="ander" Connect="file_write"/>

<Instance Worker="file_write"/>

<Connection>

<Port Instance="ramp" Name="out"/>

<Port Instance="ander" Name="in1"/>

</Connection>

<Connection>

<Port Instance="square" Name="out"/>

<Port Instance="ander" Name="in2"/>

</Connection>

</HdlAssembly>

Now the assembly for this application is complete. To build the HDL assembly, run the following command:

% ocpidev build --hdl-platform xsim

18

Getting Started Guide ANGRYVIPER Team

To perform this operation within the IDE:

1. Open the ANGRYVIPER Perspective

2. Select the asset from OpenCPI Project View

3. Import to ANGRYVIPER Operations Panel using “>” button

4. Select the RCC and/or HDL platforms for the build (use Ctrl for multiple selection)

5. Click “Build”

This will take a couple of minutes to run. You can confirm that it succeeded by locating the *.bitz file in
hdl/assemblies/demo_assembly/container-demo_assembly_xsim_base/target-xsim/.

5.6 Create an Application

One of the simplest ways to make an application is to use the -X option of ocpidev. This flag will create a
“simple” OpenCPI Application Specification (OAS) in the applications directory. In this case, it will also create
the applications directory, since it does not yet exist. For the example, choose the name DemoApp for the name
of the application. Run the following ocpidev command from the DemoProject directory to generate the application:

% ocpidev -X create application DemoApp

To perform this operation within the IDE:

• Place the cursor in the OpenCPI Projects panel, right click, select asset wizard.

• Select the asset type in the drop-down, fill in the required inputs, click finish.

• When the process finishes, the new asset is displayed in both project views. (If the asset
has an XML editor, then the editor opens.)

Notice that this command generated the applications directory as well as the DemoApp.xml.

DemoProject

|-- applications

| |-- DemoApp.xml

| ‘-- Makefile

...

There are two things to keep in mind while using this demo application. One is that the property filename in
the components file_read and file_write. The fileName Value defines where the file_read component will
look for input data into the application and where the file_write component will write the output data out of the
application.

Navigate to the applications directory and create the two directories mentioned in the file_read and file_write

component instance:

% mkdir idata odata

19

Getting Started Guide ANGRYVIPER Team

In order to complete the OAS, replace applications/DemoApp.xml with this XML:

<Application>

<Instance Component="ocpi.core.file_read" Connect="ramp">

<Property Name="fileName" Value="idata/input_file.bin"/>

</Instance>

<Instance Component="local.DemoProject.ramp"/>

<Instance Component="local.DemoProject.square"/>

<Instance Component="local.DemoProject.ander" Connect="file_write"/>

<Instance Component="ocpi.core.file_write">

<Property Name="fileName" Value="odata/output_file.bin"/>

</Instance>

<Connection>

<Port Instance="ramp" Name="out"/>

<Port Instance="ander" Name="in1"/>

</Connection>

<Connection>

<Port Instance="square" Name="out"/>

<Port Instance="ander" Name="in2"/>

</Connection>

</Application>

In order to simulate the application, input data needs to be generated to drive the application. The next section will
focus on generating input data for this application.

5.7 Generate Input Data

The file_read component will search the idata directory for input_file.bin to drive the application. For this
example, a simple Python script is provided to generate the expected input. This application is very simple and the
ramp component could generate data internally, but in order to have a more complete example, the ramp worker was
designed to depend on externally generated data.

Create a file generate_input.py in the applications/idata directory and insert the following Python code into
the file.

#!/usr/bin/env python2

import numpy as np

import sys

verify input arg count

if len(sys.argv) < 4:

print("Usage expected:\n\t"+sys.argv[0]+" filename val len\n")

sys.exit(1)

create array of length "len" filled with "val"

data = np.empty(int(sys.argv[3]), dtype=np.int16)

data.fill(sys.argv[2])

write data to output file

data.tofile(sys.argv[1])

To generate the expected input, run the following command from the idata directory:

% python generate_input.py input_file.bin 128 2000

The first argument into the script is the output file. The second argument is the value at which the ramp will
accumulate by. The last argument is simply the number of values written to the file. This means the ramp will end
up accumulating 128 (or 0x80) 2,000 times.

20

Getting Started Guide ANGRYVIPER Team

5.8 Run Simulation

To run the simulation, navigate to the applications directory and run the following commands:

OCPI_LIBRARY_PATH provides a list of locations for the framework to search for built

RCC and HDL artifacts. For this example, make’s default OCPI_LIBRARY_PATH is

sufficient, so the variable can be unset.

% unset OCPI_LIBRARY_PATH

% make run OcpiRunArgs="-d -t 1"

The simulation will run for one second of runtime (“-t 1”) and write the output to a file in odata/output_file.bin.
This make command uses ocpirun to run the application. For more details on ocpirun and running applications,
see the OpenCPI Application Development Guide.

5.9 Examine the Output

To observe the output, another Python script is provided which will demultiplex and plot the data.

Create a file plot_output.py in the odata directory and insert the following Python code into the file:

#!/usr/bin/env python2

import numpy as np

import matplotlib.pyplot as plt

import sys

verify input args

if len(sys.argv) < 2:

print("Need data file name, ex:\n\t"+sys.argv[0]+" filename\n")

sys.exit(1)

read data from input file

data=np.fromfile(sys.argv[1],dtype=np.int16)

demultiplex data, odds to the upper 16-bits, evens to the lower 16-bits

upper16=data[1::2]

lower16=data[0::2]

plot the upper 16-bits

plt.figure(1)

plt.plot(upper16)

plt.title("Output Data - Upper 16")

plt.grid()

plot the lower 16-bits

plt.figure(2)

plt.plot(lower16)

plt.title("Output Data - Lower 16")

plt.grid()

plt.show()

To plot the generated output, run the following command from the odata directory:

% python plot_output.py output_file.bin

21

Getting Started Guide ANGRYVIPER Team

Figures 3 and 4 show the upper and lower 16 bits of the ander output. The upper 16 bits are the output of ramp,
passed through for display. The lower 16 bits are the result of “anding” this input with a square wave from square.

Figure 3: “RAMP” Output (Passed through by “ANDER”)

Figure 4: “ANDER” Output

22

Getting Started Guide ANGRYVIPER Team

For completeness, the output plot of the square component is provided in Figure 5. The steps to generate a unit
test for the square component are outside the scope of this document.

Figure 5: “SQUARE” Output = Input 2 to “ANDER”

5.10 Adding Backpressure

For more realistic testing, the “backpressure” component can simulate downstream components being “too busy”
to receive data. By default, all unit tests of a single component includes backpressure to assist development (see
the Component Development Guide). This section adds the backpressure component between the ander and
file_write. If ander properly implements backpressure, it will indicate to ramp and square that they should not
push more data to it. If they properly handle backpressure, they will halt their generation routines and avoid a
discontinuity in their output.

New Assembly XML

Replace the existing assembly XML (from Section 5.5) with the following code:

<HdlAssembly>

<Instance Worker="file_read" Connect="ramp"/>

<Instance Worker="ramp" />

<Instance Worker="square"/>

<Instance Worker="ander" Connect="backpressure"/>

<Instance Worker="backpressure" Connect="file_write"/>

<Instance Worker="file_write"/>

<Connection>

<Port Instance="ramp" Name="out"/>

<Port Instance="ander" Name="in1"/>

</Connection>

<Connection>

<Port Instance="square" Name="out"/>

<Port Instance="ander" Name="in2"/>

</Connection>

</HdlAssembly>

23

Getting Started Guide ANGRYVIPER Team

New Application XML

Replace the existing application XML (from Section 5.6) with the following code:

<Application>

<Instance Component="ocpi.core.file_read" Connect="ramp">

<Property Name="fileName" Value="idata/input_file.bin"/>

</Instance>

<Instance Component="local.DemoProject.ramp"/>

<Instance Component="local.DemoProject.square"/>

<Instance Component="local.DemoProject.ander" Connect="backpressure"/>

<Instance Component="ocpi.core.backpressure" Connect="file_write">

<property name=’enable_select’ value=’true’/>

</Instance>

<Instance Component="ocpi.core.file_write">

<Property Name="fileName" Value="odata/output_file.bin"/>

</Instance>

<Connection>

<Port Instance="ramp" Name="out"/>

<Port Instance="ander" Name="in1"/>

</Connection>

<Connection>

<Port Instance="square" Name="out"/>

<Port Instance="ander" Name="in2"/>

</Connection>

</Application>

Results

Once the workers (Section 5.4) and assemblies (Section 5.5) are rebuilt, the application’s results (Sections 5.8 and 5.9)
should be exactly as the output without backpressure. If not, the HDL workers will most likely drop data when
deployed to a non-simulation platform.

24

	References
	Overview of OpenCPI
	Projects Overview
	What is the ANGRYVIPER Team?

	A Brief overview OpenCPI's Architecture
	Management Models
	Authoring Models
	Data Transport

	Getting Started
	Installation of OpenCPI
	Environmental Variables
	Project Registry
	Set Up Work Environment (Projects and Registry)
	Create Registry and Projects
	Display Installed Projects
	Building Projects
	Build Core Project
	Build Assets Project

	Basic Example Application
	Create a Project
	Create a Library
	Create Components
	Create Workers
	Create an HDL Assembly
	Create an Application
	Generate Input Data
	Run Simulation
	Examine the Output
	Adding Backpressure

