
Component Data Sheet

Summary - Metadata Stressor

Name metadata stressor

Worker Type Application

Version v1.4

Release Date 9/2018

Component Library ocpi.core

Workers metadata stressor.hdl, metadata stressor.rcc

Tested Platforms
isim, xsim, modelsim, xilinx13 3, centos6, centos7, alst4, ml605, ZedBoard(PL),

Matchstiq-Z1(PL)

Functionality

The metadata stressor component tests an HDL worker’s robustness during development as part of the unit test
suite. An HDL worker is expected to accept all valid combinations of metadata without failure, though some are
unlikely to be encountered in normal operation. It also may starve the unit under test of data and insert delays
between messages. The data starvation may be random or based on a duty cycle. The worker is automatically built
into the HDL test assemblies generated by the framework. It can also add zero length messages between messages.
It passes through the data it receives without change.

Worker Implementation Details

metadata stressor.hdl

The metadata stressor test worker has four modes controlling its primary operation: bypass, data, metadata, and
full. In bypass mode, this worker passes through the data and metadata it receives without change. In data mode,
the worker passes through the metadata associated with a message unchanged, but the data will be withheld based
on the duty cycle or lfsr, imitating data starvation for the unit under test. (If enable take lsfr is not set to true or
take duty is not set to greater than 1, then the worker will set the duty cycle to 5.) In metadata mode, the worker
passes through the data (not intentionally withholding any data) but manipulates the metadata in the following
ways:

• early start of message (SOM), data, late end of message (EOM)

• early SOM, data, EOM with data

• SOM with data, data, late EOM

• SOM with data, data, EOM with data, (single word message if that is what is received)

• zero length message (if allow zlms is true)

It repeats those patterns so long as there is data. In full mode, the worker combines data and metadata modes,
manipulating both the metadata and starving the unit under test of data. Do not use data and allow zlms in
combination. Data mode does not allow for manipulation of metadata, so zero length messages cannot be inserted.
Enabling both does not cause a failure, but one behavior will preclude the expression of the other.

metadata stressor.rcc

The RCC version of this component is just a placeholder to fulfill the requirements of unit test framework. It passes
through data without change and shouldn’t be included in normal applications, as it provides no real functionality.

Theory

There are some combinations of metadata that are valid but not often encountered that a worker should be able to
handle without failure.

1



Component Data Sheet

Block Diagrams

Top level

Metadata Stressor
“in”

DATA WIDTH p bits
“out”

DATA WIDTH p bits

enable_give_lsfr, enable_take_lsfr
give_duty, take_duty, mode
seed, insert_nop, allow_zlms

Figure 1: Top Level Block Diagram

2



Component Data Sheet

State Machine

Below is an abbreviated representation of the primary finite state machine implemented in the HDL version of this
component.

Source Dependencies

metadata stressor.hdl

• projects/core/components//metadata stressor.hdl/metadata stressor.vhd

• core/hdl/primitives/util/util pkg.vhd

projects/core/hdl/primitives/util/zlm detector.vhd

metadata stressor.rcc

• projects/core/components/metadata stressor.rcc/metadata stressor.cc

3



C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

Component Spec Properties

Name Type SequenceLength ArrayDimensions Accessibility Valid Range Default Usage
enable_give_lsfr bool - - Readable, Writable Standard False True: MSB of lsfr drives give, False: give duty drives give
enable_take_lsfr bool - - Readable, Writable Standard False True: 7th bit of lsfr drives take, False: take duty drives

take
give_duty ushort - - Readable, Writable Standard 1 Set ‘give’ duty cycle if enable give lsfr is false
take_duty ushort - - Readable, Writable Standard 1 Set ‘take’ duty cycle if enable take lsfr is false
mode enum - - Readable, Writable Standard bypass bypass: worker passes through data and metadata, data:

worker varies data, but passes through metadata, meta-
data: vary metadata, keep data steady, full: vary all
metadata and data

seed ushort - - Readable, Writable Standard 1 seed for lsfr
allow_zlms bool - - Readable, Writable Standard False Insert ZLMs between some messages
insert_nop bool - - Readable, Writable Standard False Insert delays between messages

Worker Properties

metadata stressor.hdl

Type Name Type SequenceLength ArrayDimensions Accessibility Valid Range Default Usage
Property DATA_WIDTH_p UChar - - Readable, Parameter 8/16/32/64 12 I/O data width

Component Ports

Name Producer Protocol Optional Advanced Usage
in false None False - 32 bits
out true None False - 32 bits

Worker Interfaces

metadata stressor.hdl
Type Name DataWidth Advanced Usage

StreamInterface in DATA_WIDTH_p - Size defined by DATA_WIDTH_p

StreamInterface out DATA_WIDTH_p - Size defined by DATA_WIDTH_p

4



Component Data Sheet

Control Timing and Signals

metadata stressor.hdl

This worker implementation uses the clock from the Control Plane and standard Control Plane signals.

5



C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

Worker Configuration Parameters

metadata stressor.hdl

Table 1: Table of Worker Configurations for worker: metadata stressor

Configuration

0

Performance and Resource Utilization

metadata stressor.hdl

Table 2: Resource Utilization Table for worker ”metadata stressor”

Configuration OCPI Target Tool Version Device Registers (Typ) LUTs (Typ) Fmax (MHz) (Typ) Memory/Special Functions

0 zynq ise ISE 14.7 7z010clg400-3 463 903 304.897 N/A

0 zynq Vivado 2017.1 xc7z020clg400-3 467 554 N/A N/A

0 stratix4 Quartus 17.1.0 N/A 492 668 N/A N/A

0 virtex6 ISE 14.7 6vcx75tff484-2 463 837 231.085 N/A

6



Component Data Sheet

Test and Verification

This component is tested via the unit test automation feature of the framework. The component’s .test/ contains
XML files that describe the combinations of tests.

The test cases exercise changes in every property across three cases, though not every property in every case, as
that would take a prohibitively long time.

• Case 1 - Tests the component with crafted ZLMs and SWMs, backpressure on, timeout set to 120 seconds

1. enable give lsfr = True: use lsfr to vary give

2. enable take lsfr = True: use lsfr to vary take

3. insert nop = True: insert delay between messages

4. mode = full: vary data and metadata

• Case 2 - Tests the component with eight byte messages, backpressure on, timeout set to 120 seconds

1. enable give lsfr = True: use lsfr to vary give

2. enable take lsfr = True: use lsfr to vary take

3. insert nop = True: insert delay between messages

4. mode = full: vary data and metadata

• Case 3 - Tests the component with a single zlm, backpressure on, timeout set to 120 seconds

1. enable give lsfr = True: use lsfr to vary give

2. enable take lsfr = True: use lsfr to vary take

3. insert nop = True: insert delay between messages

4. mode = full: vary data and metadata

• Case 4 - Tests the component with crafted ZLMs and SWMs, backpressure on, timeout set to 120 seconds

1. enable give lsfr = True: use lsfr to vary give

2. enable take lsfr = True: use lsfr to vary take

3. insert nop = True: insert delay between messages

4. mode = data: only vary data

5. mode = metadata: only vary metadata

6. mode = full: vary data and metadata

• Cases 5-11 - Tests ending on different message types, message size set to 4, stressormode set to full,
backpressure on, timeout set to 120 seconds

1. mode = full: vary data and metadata

2. insert nop = True: insert delay between messages

3. insert nop = False: no delay between messages

• Case 12 - Tests most of the functionality, message size set to 128, backpressure on, stressormode set to full,
timeout set to 240 seconds

1. enable give lsfr = True: use lsfr to vary give

2. enable give lsfr = False: use duty cycle to vary give

3. enable take lsfr = True: use lsfr to vary take

4. enable take lsfr = False: use duty cycle to vary take

5. give duty = 1: constant

6. give duty = 4: 1 on 3 off

7. take duty = 1: constant

7



Component Data Sheet

8. take duty = 5: 1 on 4 off

9. mode = data: only vary data

10. mode = metadata: only vary metadata

11. mode = full: vary data and metadata

12. insert nop = True: insert delay between messages

13. insert nop = False: no delay between messages

14. seed = 35: seed for lsfr

• Case 13 - Tests the RCC version of this component, which is nothing but a placeholder, timeout set to 120
seconds

In all test cases, the data is simply passed through the component and the tests are determined to be successful by
comparing the input and output files.

8


