
Component Data Sheet

Summary - Socket Write

Name socket write

Worker Type Application (Testing)

Version v1.5

Release Date 4/2019

Component Library ocpi.assets.util comps

Workers socket write.rcc

Tested Platforms centos7, xilinx13 3 (limited)

Functionality

The Socket Write component forwards all incoming data to a TCP port or acts as a demultiplexer/router by
parsing any protocol and routing different opcodes to various output ports.

The serving/listening TCP ports, along with various ways to determine the Worker’s “done” status, are extremely
configurable using Properties.

This Component provides minimal error checking and is not recommended for
production use, but is only intended for prototyping and testing of other Components.

Block Diagrams

Top level

Socket Write

“in”
Data to be streamed
to output port(s)

See property table

“out”
Data to be streamed

to follow-on Component

Remote Client
Remote Client
Remote Client
Remote Client
Remote Client

Source Dependencies

socket write.rcc

• <assets>/components/util comps/socket write.rcc/socket write.cc

• <assets>/components/util comps/socket write.rcc/ext src/connection.cpp

• <assets>/components/util comps/socket write.rcc/ext src/connection.hpp

• <assets>/components/util comps/socket write.rcc/ext src/connection manager.cpp

1

Component Data Sheet

• <assets>/components/util comps/socket write.rcc/ext src/connection manager.hpp

• <assets>/components/util comps/socket write.rcc/ext src/outbound.hpp

• <assets>/components/util comps/socket write.rcc/ext src/server.cpp

• <assets>/components/util comps/socket write.rcc/ext src/server.hpp

• <assets>/components/util comps/socket write.rcc/asio/* 1

socket write.rcc Compilation

Because OpenCPI maintains backwards compatibility with older compilers, a fully-compliant C++11 environment
is not required. However, the workaround for non-C++11-compliance is that the ASIO library has dependencies on
the Boost2 library, e.g. on CentOS 6, it requires the boost-devel, boost-thread, and boost-static RPMs.

To build this component targeting a non-x86 platform, the vendor must provide the appropriate boost_system

and boost_thread static library files. The Worker’s build system will attempt to find them using the locate

command in a subdirectory that has ${OCPI_CROSS_HOST} within the path.

See the enclosed README file for more information, including how to add new platforms.

1Externally provided ASIO library for asynchronous IO with C++, with OpenCPI-specific build system
2http://www.boost.org/

2

http://think-async.com/Asio/
http://www.boost.org/

C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

Component Spec Properties

Name Type SequenceLength ArrayDimensions Accessibility Valid Range Default Usage

outSocket1 Struct - - Writable, Readable2 - - TCP socket(s) to use for listening

outSocket.address String 16 - ” - 0.0.0.0 Address/interface to use for port3, e.g. 127.0.0.1

outSocket.expectedClients UShort - - ” Standard 0 Number of clients required to be connected before run()
method will proceed.4

outSocket.port UShort - - ” 1025 - 65535 - Output port to use if all data should remain combined 5

6

outSocket.ports UShort - 256 ” - - A list of port numbers to listen on, with 0 indicating un-
used 7 8

outSocket
.messagesInStream

Bool - 256 ” - false Write out data in “message” mode with embedded opcode

current Struct - - Volatile - - Current statistics for each opcode
current.Total Struct - - ” - - Statistics across all opcodes
current.Total.bytes ULongLong - - ” Standard - Number of bytes received
current.Total.messages ULongLong - - ” Standard - Number of messages received
current.Opcode Struct - 256 ” - - Statistics for each opcode

current.Opcode.* Various - ” - - - Various9

stopOn Struct - - Writable, Readable2 - - Condition(s) required to have Worker report completion10

stopOn.Total Struct - - ” - - Stops if any non-zero value is exceeded when counting all

data received
stopOn.Total.bytes ULongLong - - ” Standard 0 Stop on number of bytes received
stopOn.Total.messages ULongLong - - ” Standard 0 Stop in number of messages received
stopOn.Opcode Struct - 256 ” - - Stops if any non-zero value is exceeded when counting

data received using a specific opcode

stopOn.Opcode.* Various - - ” - - Various11

stopOn.Any Struct - - ” - - Stops if any non-zero value is exceeded when counting
data received using any single opcode

stopOn.Any.* Various - - ” - - Various11

stopOn.ZLM UShort - - ” 0 - 256 0 Stops if a Zero Length Message is received using a given
opcode.12

1This structure is only read at Component START to configure.
2“Readable” is deprecated and superfluous here. It will be removed in a future release.
3The default listens on all interfaces.
4Probably useful only for testing and may incorrectly inhibit data flow.
5ICANN reserves up to 49151.
6Attempting to use a port that is used by another process will cause a fatal error.
7See “Performance and Resource Utilization.”
8This Property is only used when port is set to 0.
9Internal structure equivalent to current.Total and not explicitly shown.

10Any matched condition will halt the processing.
11Internal structure equivalent to stopOn.Total and not explicitly shown.
12Default is opcode 0; set to invalid opcode 256 if this feature is not desired.

Worker Properties

socket write.rcc

Control Operations3 Start, Stop

3All TCP connections are terminated in the Stop state, while listening ports are opened in the Start state. If the Component is Stopped, any clients will be disconnected (i.e. not
paused) and must reconnect after it is Started.

3

C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

Component Ports

Name Producer Protocol Optional Advanced Usage
in false - false numberofopcodes=256 Data to be streamed to sockets(s)
out true - true numberofopcodes=256 Data pass-through

Worker Interfaces

There are no implementation-specific interfaces for this component.

4

Component Data Sheet

Performance and Resource Utilization

socket write.rcc

Each listening port requires system resources, such as an open file descriptor. When opening more than a handful
of ports, the user may need to use ulimit to increase the number of open file descriptors. To do this temporarily,
the command ulimit -n 2048 can sometimes fix the currently running shell. Consult the documentation for your
Operating System to permanently increase the limit for all processes.

TCP connections have a large overhead when compared to other transport processes, such as the OpenCPI internal
messaging system. Currently, this component does not combine Messages to optimize the outbound connection, e.g.
taking into account TCP Maximum Segment Size (MSS). It is highly recommended that users of this Component
use a minimum message size of 4K or combine multiple messages in some way in an upstream Component.

Data buffers are not returned to the framework nor sent out the optional “out” port until all TCP clients have
acknowledged receipt of their data. This may result in throttling or a possible denial-of-service attack if a malicious
client connects but never accepts data.

Test and Verification

Usage (local/x86)

After building the component, the user needs to type make tests RCC_CONTAINERS=1 in the socket write.test direc-
tory. Various properties and data flows will be tested to try to cover as many use cases as possible.

If the user would like to execute only one test, TESTS=test_XX can be added to the end of the command.

Experimental: Usage (remote/ARM)

Full test environment configuration (e.g. NFS mounting, OCPI_CDK_DIR, etc.) on the remote GPP is beyond the
scope of this document. The test procedures assume that both shells’ current working directory is the socket write.test
directory (NFS-mounted on remote) and ocpirun is in the remote’s current PATH. NFS must be used for the scripts
to properly verify the outputs.

In the host shell, the user types make tests IP=xx.xx.xx.xx. A command that can be copied and then pasted
into the remote shell will be displayed. This command should be executed in less than a minute to en-
sure the test system begins listening before the host times out. The timeout can be changed using the
LISTEN_TIMEOUT variable. Once the remote shell returns to the bash prompt, pressing “Enter” on the host will begin
the verification process.

Single tests can be performed in the same manner as documented above.

Specific Platform Note - Matchstiq-Z1

Some tests have had “Segmentation Faults” or “Alignment Errors” in certain scenarios on the Z1. The problem
becomes most evident when there are multiple clients connected, but has been more rarely observed with even a
single client. This seems to happen when both USB ports are used to simultaneously transmit a large amount of
data, e.g. high log-level output to a USB serial console as well as NFS-mounted output files over a USB-to-Ethernet
adapter. The default test setup avoids triggering this by limiting output that is fed to the user, but users should be
aware of this issue if non-default test scenarios are attempted. If ssh is used to have all data routed through the
USB-to-Ethernet adapter, this failure mode is avoided.

5

Component Data Sheet

Detailed Theory of Operation

Each test_XX subdirectory has the following files:

• description - a one-line description of the test

• application.xml - the OAS XML for the test setup

• portmap - (optional) list of TCP ports paired to output files

• localinclude.mk - (optional) custom Makefile rules needed for test

• golden.md5 - (optional) MD5 checksums of golden/expected output

• generate.[sh|pl|py] - (optional) script to generate test data

• verify.sh - (optional) script to verify output(s)

Data is sourced with a source component (often pattern or file_read) within the OAS. If the former, the source
data is encapsulated in the OAS. When the latter, a generate.py script generates the required data. Most OASs
dump the “current” property to a file UUT.current.dump, which is also confirmed to match expected output.
Some tests connect a file_write_demux to the out port to verify pass-through operation.

If generate.sh does not exist, a default one is created that will run generate.pl and/or generate.py if they
exist and are executable. This default script is removed with make clean.

At test launch, if a file portmap exists, it launches a Python-based utility script busy_loop_socket.py, which
opens a client on a given port and repeatedly attempts to connect. Each line is a port number followed by a
(relative) file path where the data is written upon successful connection.

If verify.sh does not exist, a default one is created that will ensure the application did not time out and then run
md5sum to verify all the checksums listed in golden.md5. This default script is also removed upon make clean.

6

