
Component Data Sheet ANGRYVIPER Team

Summary - File Write Demux

Name file write demux

Worker Type Application

Version v1.5

Release Date 4/2019

Component Library ocpi.assets.util comps

Workers file write demux.rcc

Tested Platforms centos7, xilinx13 3 (limited)

Functionality

The File Writer Demux component acts as a demultiplexer/router by parsing any protocol and routing different
opcodes to various output files.

The names of the files being written, along with various ways to determine the Worker’s “done” status, are
extremely configurable using Properties.

This Component provides minimal error checking and is not recommended for
production use, but is only intended for prototyping and testing of other Components.

Block Diagrams

Top level

File Write Demux

“in”
Data to be streamed

to output file(s)
File(s)

See property table

Source Dependencies

file write demux.rcc

• <assets>/components/util comps/file write demux.rcc/file write demux.cc

1

C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

A
N
G
R
Y
V
IP

E
R

T
e
a
m

Component Spec Properties

Name Type SequenceLength ArrayDimensions Accessibility Valid Range Default Usage

outFile Struct - - Writable, Readable1 - - File name(s) to write to

outFile.prefix String 1024 - ” - None File prefix2

outFile.digits UChar - - ” 1 - 3 1 Width for opcode number output padding

outFile.suffix String 1024 - ” - .bin File suffix2

outFile.messagesInFile Bool - 256 ” - false Write file in “message” mode with embedded opcode
current Struct - - Volatile - - Current statistics for each opcode
current.Total Struct - - ” - - Statistics across all opcodes
current.Total.bytes ULongLong - - ” Standard - Number of bytes received
current.Total.messages ULongLong - - ” Standard - Number of messages received
current.Opcode Struct - 256 ” - - Statistics for each opcode

current.Opcode.* Various - ” - - - Various3

stopOn Struct - - Writable, Readable1 - - Condition(s) required to have Worker report completion4

stopOn.Total Struct - - ” - - Stops if any non-zero value is exceeded when counting all

data received
stopOn.Total.bytes ULongLong - - ” Standard 0 Stop on number of bytes received
stopOn.Total.messages ULongLong - - ” Standard 0 Stop in number of messages received
stopOn.Opcode Struct - 256 ” - - Stops if any non-zero value is exceeded when counting

data received using a specific opcode

stopOn.Opcode.* Various - - ” - - Various5

stopOn.Any Struct - - ” - - Stops if any non-zero value is exceeded when counting
data received using any single opcode

stopOn.Any.* Various - - ” - - Various5

stopOn.ZLM UShort - - ” 0 - 256 0 Stops if a Zero Length Message is received using a given
opcode.6

1“Readable” is deprecated and superfluous here. It will be removed in a future release.
2The output filename will use strftime substitutions to format the string if any % is found within it.
3Internal structure equivalent to current.Total and not explicitly shown.
4Any matched condition will halt the processing.
5Internal structure equivalent to stopOn.Total and not explicitly shown.
6Default is opcode 0; set to invalid opcode 256 if this feature is not desired.

Worker Properties

file write demux.rcc

Control Operations: Stop

Component Ports

Name Producer Protocol Optional Advanced Usage
in false - false numberofopcodes=256 Data to be streamed to output file(s)

Worker Interfaces

There are no implementation-specific interfaces for this component.

2

Component Data Sheet ANGRYVIPER Team

Test and Verification

Usage (local/x86)

After building the component, the user needs to type make tests RCC_CONTAINERS=1 in the file write demux.test

directory. Various properties and data flows will be tested to try to cover as many use cases as possible.

If the user would like to execute only one test, TESTS=test_XX can be added to the end of the command.

Experimental: Usage (remote/ARM)

Full test environment configuration (e.g. NFS mounting, OCPI_CDK_DIR, etc.) on the remote GPP is beyond the scope
of this document. The test procedures assume that both shells’ current working directory is the file write demux.test

directory (NFS-mounted on remote) and ocpirun is in the remote’s current PATH. NFS must be used for the scripts
to properly verify the outputs.

In the host shell, the user types make tests IP=xx.xx.xx.xx. A command that can be copied and then pasted
into the remote shell will be displayed. Once the remote shell returns to the bash prompt, pressing “Enter” on the
host will begin the verification process.

Single tests can be performed in the same manner as documented above.

Detailed Theory of Operation

Each test_XX subdirectory has the following files:

• description - a one-line description of the test

• application.xml - the OAS XML for the test setup

• golden.md5 - (optional) MD5 checksums of golden/expected output

• generate.[sh|pl|py] - (optional) script to generate test data

• verify.sh - (optional) script to verify output(s)

Data is sourced with the pattern component or file_read within the OAS. If the former, the source data is
encapsulated in the OAS. When the latter, a generate.py script generates the required data. Most OASs dump
the “current” property to a file UUT.current.dump, which is also confirmed to match expected output.

If generate.sh does not exist, a default one is created that will run generate.pl and/or generate.py if they
exist and are executable. This default script is removed with make clean.

If verify.sh does not exist, a default one is created that will run md5sum and verify all the checksums listed in
golden.md5. This default script is also removed upon make clean.

3

