
Component Data Sheet ANGRYVIPER Team

Summary - Capture v2

Name Capture v2

Version v1.5

Release Date 5/2019

Component Library ocpi.assets.util comps

Workers Capture v2.hdl

Tested Platforms xsim, isim, matchstiq z1

Revision History

Revision Description of Change Date

v1.4 Initial Release 10/2018
v1.5

• Version bump.

5/2019

Functionality

The Capture v2 component provides the ability to store an input port’s data. Two modes are supported:
* ’leading’ - capture all messages from input port until the buffer is full. This has the affect of capturing messages
from the start of an application.
* ’trailing’ - capture all messages from input port and allow the buffer’s content to be overwritten while application
is in operation. This has the affect of capturing all messages (a buffers worth) near the end of an application.

This component provides an optional output port, so that, it may be placed between two components. The input
messages are directly passed to the output port with a latency of the control plane clock cycles.

The Capture v2 component takes input port messages and stores their data in a buffer via the data property as 4
byte words. Metadata associated with each message is stored as a record in a metadata buffer via the metadata
property. It captures four 4 byte words of metadata. The first metadata word is the opcode of the message and
message size (bytes); opcode 8 MSB and message size 24 LSB. The second word is the fraction time stamp for the
EOM. The third word is the fraction time stamp for the SOM. And the fourth word is the seconds timestamp for
the SOM. So that the metadata can be read on a little-endian processor, the ordering of the metadata is as follows:

1) opcode (8-bit) & message size (24-bit),
2) eom fraction (32-bit),
3) som fraction (32-bit),
4) som seconds (32-bit)

Some example python code for reading in the metadata property values written to a file packed little-endian:

data = struct.unpack(’<I’, ifile.read(4))[0] # 32/8 = 4 bytes

When the number of bytes sent for a message is not a multiple of 4, only the last (number of bytes modulus 4) least
significant bytes of the last word in the data buffer represent received data. The (number of bytes modulus 4) most
significant bytes will always be zero in the last word in the data buffer.
For example, given that last captured data buffer word is 0x0000005a:
- if number of bytes is 5, the last data received was 0x5a.
- if number of bytes is 6, the last data received was 0x005a.

The Capture v2 component counts the number of metadata records (metadataCount) have been captured and how
many data words have been captured (dataCount). It allows for the option to wrap around and continue to capture
data and metadata once the buffers are full or to stop capturing data and metadata when the data and metadata
buffers are full via the stoponFull property.

1



Component Data Sheet ANGRYVIPER Team

When stopOnFull is true (leading), data and metadata will be captured as long as the metadata buffer is not full.
If the data buffer is full before the metadata buffer, metadata will still be captured until the metadata buffer is full.
If the metadata buffer is full before the data buffer, no more metadata and no more data will be captured. When
stopOnFull is false (trailing), there will be a wrap around when the data and metadata buffers are full and data
and metadata will continue to be captured.

The component also has properties that keep track of whether or not the metadata and data buffers are full;
metaFull and dataFull.

Block Diagrams

Top level

Parameter Properties:
numRecords

numDataWords

numMetadataWords

Capture v2

“in”
Data

“out”
Data

Non-parameter Properties:
See property table

Source Dependencies

Capture v2.hdl

• assets/components/util comps/Capture v2.hdl/Capture v2.vhd

• core/hdl/primitives/util/util pkg.vhd

2



C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

A
N
G
R
Y
V
IP

E
R

T
e
a
m

Component Spec Properties

Name Type Default SequenceLength ArrayLength ArrayDimensions Parameter Accessibility Usage
stopOnFull bool false - - - false Initial True - Stop capturing data and metadata

when the data and metadata buffers are full.
If the metadata buffer is full before the data
buffer, no more metadata and no more data
will be captured. If the data buffer is full
before the metadata buffer, no more data is
captured, but continue to capture metadata
until the metadata buffer is full.
False - Wrap around and continue to capture
data and metadata once the buffers are full.
This stop functionality is independent of both
the control plane ’stop’ operation and ’fin-
ished’ worker state.

metadataCount uLong - - - - false Volatile Counter of metadata records written.
dataCount uLong - - - - false Volatile Counter of words captured.
numRecords uLong 256 - - - true - Number of metadata records/messages to be

captured.
numDataWords uLong 1024 - - - true - Number of four byte data words stored in the

data buffer. If stopOnFull is true, meaning no
wrap around, no more data will be captured
once the data buffer is full.

numMetadataWords uLong 4 - - - true - Due to a limitation, cannot use constrained
elements in unconstrained array declarations,
so cannot directly set the second dimension
for the metadata property to 4. The number
of metadata words must always be 4, since
there are four 4 byte words that are captured.
The first metadata word is the opcode for the
message and message size in bytes;opcode 8
MSB and message size 24 LSB. The second
word is the fraction timestamp for the EOM.
The third word is the fraction timestamp for
the SOM. And the fourth word is the seconds
timestamp for the SOM. So the default value
must not be changed.

metaFull bool false - - - false Volatile,
Initial

Metadata buffer full flag.

dataFull bool false - - - false Volatile,
Initial

Data buffer is full flag.

stopZLMOpcode uChar 0 - - - false Initial Opcode associated with the ZLM which indi-
cates the application is ’done’.

stopOnZLM bool false - - - false Initial Indicates stopping on ZLM of stopZLMOp-
code.

stopOnEOF bool true - - - false Initial As of now, this indicates stopping on ZLM
of opcode 0. In the future it is expected
that OpenCPI will standardize a definition
of EOF.

metadata uLong - - - numRecords,
numMetadata-
Words

false Volatile Multidimensional array containing metadata
records.

data uLong - - numDataWords - false Volatile Data buffer containing data words.

Component Ports

Name Protocol Producer Optional Usage
in - false false Data input to capture
out - true true Data from input passed to output unchanged

3



C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

A
N
G
R
Y
V
IP

E
R

T
e
a
m

Worker Interfaces

Capture v2.hdl

Type Name DataWidth (b) Advanced Usage
StreamInterface in 32 DataValueWidth = 8, NumberOfOpcodes=’256’, ZeroLengthMessages = true Data input to capture

StreamInterface out 32 DataValueWidth = 8, NumberOfOpcodes=’256’, ZeroLengthMessages = true
Data from input passed to

output unchanged

TimeInterface time
64 (32b sec MSW and

32b frac LSW)
-

Allows worker to capture
timestamps

4



Component Data Sheet ANGRYVIPER Team

Control Timing and Signals

The Capture v2 worker uses the clock from the Control Plane and standard Control Plane signals.

5



C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

A
N
G
R
Y
V
IP

E
R

T
e
a
m

Worker Configuration Parameters

Capture v2.hdl

Table 1: Table of Worker Configurations for worker: capture v2

Configuration numRecords numDataWords

0 256 1024

Performance and Resource Utilization

Capture v2.hdl

Table 2: Resource Utilization Table for worker ”capture v2”

Configuration OCPI Target Tool Version Device Registers (Typ) LUTs (Typ) Fmax (MHz) (Typ) Memory/Special Functions

0 stratix4 Quartus 17.1.0 N/A 524 695 N/A Block Memory Bits: 65536

0 zynq Vivado 2017.1 xc7z020clg400-3 519 742 N/A RAMB36E1: 3

0 zynq ise ISE 14.7 7z010clg400-3 516 890 309.245 RAMB36E1: 5

0 virtex6 ISE 14.7 6vcx75tff484-2 518 891 257.069 RAMB36E1: 5

6



Component Data Sheet ANGRYVIPER Team

Limitations

Since the raw property address (props in.raw.address) is currently 16 bits wide and data and metadata are raw
properties that contain 4 byte words, the total address space for these properties is 216/4. The framework does not
throw an error when the total number of elements between the two array properties exceeds 216/4 so the properties
will not be filled correctly. This failure is run time and the application will successfully execute. Once AV-4254 is
addressed to change the raw.address from 16 to 32, the new address space limit will be 232/4.

Test and Verification

The Capture v2-test.xml has a test property called testScenario that allows for four different test cases; testing
sending no data, testing making only metadata full, testing making data full, testing sending multiple zlms (with
different opcodes), a single word message, filling data and filling up metadata (for configurations where there are at
least six metadata records).

An input file is generated via generate.py. The generate.py script will output different input data based on the
testScenario chosen.

The tests are verified by verify.py script. It checks that the metadataCount, dataCount, status(metaFull and
dataFull), metadata and data match the expected results.

There are also some custom tests located in the Capture v2.test directory that tests things not currently supported
by the test suite. These tests are: testing stopping on an opcode other than 0 (need to be able to set
done=’Capture v2’ in the app xml to be able to test this) and testing the Capture v2 with no output connected.
The tests are built and run manually via a run_test.sh script.

The custom tests also have generate.py and verify.py scripts but they are simpler versions than the ones in the
top level Capture v2.test directory or they are specific to the custom test.

Applications

For an example of the Capture v2 component used in an application, please reference the tb bias v2 application
located in assets/applications/tb_bias_v2.

Something to note is that for the hdl worker, the BRAM2 module that is used to store the data and metadata
initializes the BRAM to an initial value of 0xAAAAAAAA (2863311530 in base 10) in simulation. This means at
the start of an application, in simulation, the data and metadata properties will have an initial value of
0xAAAAAAAA.

7


