
Board Support Package Documentation ANGRYVIPER Team

Zipper Deprecation Notice:

Beginning with OpenCPI Version 1.5, support for Lime Microsystems’ Zipper card is now deprecated.

ALST4 Getting Started Guide

1 Hardware Prerequisites

This section describes the hardware prerequisites required for an operational alst4 (Altera Stratix IV) platform using
OpenCPI. The optional HSMC Debug Loopback and HSMC Debug Breakout Header cards are only intended for
testing purposes. Also note that the slot configurations in Table 1 are limited by what FPGA bitstreams are currently
built by OpenCPI and not by what hardware configurations are theoretically possible using OpenCPI.

Hardware prerequisites are as follows.

• A Stratix IV GX230 board, which has undergone an OpenCPI-specific initial one-time hardware setup [1] and
is plugged into a PCIE slot of an x86 computer.

• Optionally, one of the following HSMC card configurations in Table 1 may exist

Table 1: OpenCPI-supported Stratix IV hardware HSMC slot configurations
HSMC A slot HSMC B slot

Test loopback A setup HSMC Debug Loopback Card (empty)
Test loopback B setup (empty) HSMC Debug Loopback Card

Test dual loopback setup HSMC Debug Loopback Card HSMC Debug Loopback Card
Test breakout A setup HSMC Debug Breakout Header Card (empty)
Test breakout B setup (empty) HSMC Debug Breakout Header Card

Zipper A setup1 Modified[4] Zipper/MyriadRF (empty)
transceiver card

Zipper B setup1 (empty) Modified[4] Zipper/MyriadRF
transceiver card

2 Software Prerequisites

• A CentOS 6 or CentOS 7 operating system installed on the x86 computer.

• Altera Quartus installed on the x86 computer. For more information refer to [2]

• OpenCPI framework and prerequisite RPMs installed on the x86 computer. For more information refer to [3]

• OpenCPI core project compiled for alst4.

• OpenCPI assets project compiled for alst4.

3 Reserve Memory for Driver

When OpenCPI communicates to cards via PCI, it uses a loadable Linux kernel device driver for discovery and
DMA-based communication, which requires local (reserved) DMA memory resources. DMA memory resources
must be allocated or reserved on the CPU-side memory, that is accessible to both the CPU (via the local mmap
system call), as well as, OpenCPI’s PCI DMA engine with the board is issuing PCI READ or WRITE TLPs. By
default, Linux allocates 128 KB of memory for the OpenCPI driver. However, OpenCPI applications may have
buffering requirements that necessitate additional memory resources.

1Deprecated Support as of OpenCPI 1.5

1

Board Support Package Documentation ANGRYVIPER Team

In the example provided below, special measures (memmap=) are used to allocate 128 MB of memory. The
memmap parameter is used to reserved more block memory from the Linux kernel. While this variable supports
many formats, the following usage has proven to be sufficient:

memmap=SIZE$START

Where SIZE is the number of bytes to reserve in either hexadecimal or decimal, and START is the physical address
in hexadecimal bytes. It is required that the pages for all addresses and sizes are on even boundaries (0x1000 or
4096 bytes).

3.1 Calculate Values in Preparation for Memory Reservation

At this time, the OpenCPI PCI DMA engine requires that the user-mode DMA memory pool be in a 32 or 64-bit
memory range and due to the manner with which Linux manages memory, it is recommended that the address be
higher than the first 24 bits. With these requirements, the first step is to find a usable contiguous memory range by
examining the BIOS physical RAM map as reported by dmesg.

Run dmesg and filter on BIOS to review the physical RAM map:

dmesg | grep BIOS

The output will look something like:

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009f800 (usable)

BIOS-e820: 000000000009f800 - 00000000000a0000 (reserved)

BIOS-e820: 00000000000ca000 - 00000000000cc000 (reserved)

BIOS-e820: 00000000000dc000 - 00000000000e4000 (reserved)

BIOS-e820: 00000000000e8000 - 0000000000100000 (reserved)

BIOS-e820: 0000000000100000 - 000000005fef0000 (usable)

BIOS-e820: 000000005fef0000 - 000000005feff000 (ACPI data)

BIOS-e820: 000000005feff000 - 000000005ff00000 (ACPI NVS)

BIOS-e820: 000000005ff00000 - 0000000060000000 (usable)

BIOS-e820: 00000000e0000000 - 00000000f0000000 (reserved)

BIOS-e820: 00000000fec00000 - 00000000fec10000 (reserved)

BIOS-e820: 00000000fee00000 - 00000000fee01000 (reserved)

BIOS-e820: 00000000fffe0000 - 0000000100000000 (reserved)

Select a ”(usable)” section of memory and reserve a subsection of that memory. Once the memory is reserved, the
Linux kernel will ignore it. In this example, there are three usable sections:

BIOS-e820: 0000000000000000 - 000000000009f800 (usable)

BIOS-e820: 0000000000100000 - 000000005fef0000 (usable)

BIOS-e820: 000000005ff00000 - 0000000060000000 (usable)

Upon close review of the usable regions, the first range is too small and below the first 24 bits, while the third
ranges is simply too small. Fortunately the second address space meets the address range requirement (between 24
and 32 bits) and it is large enough for to reserve several hundred megabytes of memory.

The starting memory address for the user-mode DMA region is calculated by subtracting 0x08000000 (128 MB)
from the largest memory region available, as long as it is greater than 0x08000000 (128MB) and inside the 32-bit
address range (address is less than 4GB). In this example, the 2nd region is the largest: 0x5FEF0000 - 0x100000 =
0x5FDF0000 = 1,608,450,048 (1.6GB) and it is inside of the 32-bit address space. The starting memory address
(0x5FEF0000 - 0x08000000) is 0x57EF0000. And this is the value that used to construct the memmap parameter,
as shown below:

memmap=128M$0x57EF0000

When calculating the starting address, the user must ensure that address occurs on an even page boundary of 4
KB. This may necessitate an additional adjustment to the starting address.

2

Board Support Package Documentation ANGRYVIPER Team

In some cases, the $dmesg | grep BIOS returns a value like 0x5FEFFFFF. It is recommended that the user simply
change this address, such that, its low word is all zeros, ex. 0x5FEF0000, prior to calculating the starting address.

3.2 Configure Memory Reservation

Critical Note: If other memmap parameters are implemented, e.g. for non-OpenCPI PCI cards,

then grubby usage will be different. The OpenCPI driver will use the first memmap parameter on

the command line OR the parameter “opencpi memmap” if it is explicitly given. If this parameter

is given, the standard memmap command with the same parameters must ALSO be passed to the

kernel.

Once the memmap parameter as been calculated, it will need to be added to the kernel command line in the boot
loader.

For CentOS, the utility “grubby” can be used to add the parameter to all kernels in the start-up menu. The single
quotes are REQUIRED or the shell will interpret the $0:

CentOS6 :

sudo grubby --update-kernel=ALL --args=memmap='128M\$0x57EF0000'

CentOS 7 uses grub2, which requires a DOUBLE backslash:

sudo grubby --update-kernel=ALL --args=memmap='128M\\$0x57EF0000'

To verify the current kernel has the argument set:

sudo -v

sudo grubby --info $(sudo grubby --default-kernel)

CentOS 7 displays a SINGLE backslash before the $, for example:

args="ro rdblacklist=nouveau crashkernel=auto rd.lvm.lv=vg.0/root quiet audit=1 boot=UUID=96933\
cb5-f478-4933-a0d4-16953cf47f5c memmap=128M\$0x57EF0000 LANG=en_US.UTF-8"

If no longer desired, the parameter can also be removed:

sudo grubby --update-kernel=ALL --remove-args=memmap

More information concerning grubby can be found at:
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_

Administrators_Guide/sec-Making_Persistent_Changes_to_a_GRUB_2_Menu_Using_the_grubby_Tool.html

For the memmap parameter:
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

3.3 Apply Memory Reservation

Reboot the system, making certain to boot from the new configuration.

3.4 Verify Memory Reservation

Once the system has finished booting, examine the state of the physical RAM map to confirm that the desired
memory has been reserved:

3

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Making_Persistent_Changes_to_a_GRUB_2_Menu_Using_the_grubby_Tool.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Making_Persistent_Changes_to_a_GRUB_2_Menu_Using_the_grubby_Tool.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Board Support Package Documentation ANGRYVIPER Team

dmesg | more

Linux version 2.6.18-128.el5 (mockbuild@hs20-bc1-7.build.redhat.com) (gcc version 4.1.2 \
20080704 (Red Hat 4.1.2-44)) #1 SMP Wed Dec 17 11:41:38 EST 2008

Command line: ro root=/dev/VolGroup00/LogVol00 rhgb quiet memmap=128M$0x57EF0000

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009f800 (usable)

BIOS-e820: 000000000009f800 - 00000000000a0000 (reserved)

BIOS-e820: 00000000000ca000 - 00000000000cc000 (reserved)

BIOS-e820: 00000000000dc000 - 00000000000e4000 (reserved)

BIOS-e820: 00000000000e8000 - 0000000000100000 (reserved)

BIOS-e820: 0000000000100000 - 000000005fef0000 (usable)

BIOS-e820: 000000005fef0000 - 000000005feff000 (ACPI data)

BIOS-e820: 000000005feff000 - 000000005ff00000 (ACPI NVS)

BIOS-e820: 000000005ff00000 - 0000000060000000 (usable)

BIOS-e820: 00000000e0000000 - 00000000f0000000 (reserved)

BIOS-e820: 00000000fec00000 - 00000000fec10000 (reserved)

BIOS-e820: 00000000fee00000 - 00000000fee01000 (reserved)

BIOS-e820: 00000000fffe0000 - 0000000100000000 (reserved)

user-defined physical RAM map:

user: 0000000000000000 - 000000000009f800 (usable)

user: 000000000009f800 - 00000000000a0000 (reserved)

user: 00000000000ca000 - 00000000000cc000 (reserved)

user: 00000000000dc000 - 00000000000e4000 (reserved)

user: 00000000000e8000 - 0000000000100000 (reserved)

user: 0000000000100000 - 0000000057ef0000 (usable)

user: 0000000057ef0000 - 000000005fef0000 (reserved) <== New

user: 000000005fef0000 - 000000005feff000 (ACPI data)

user: 000000005feff000 - 000000005ff00000 (ACPI NVS)

user: 000000005ff00000 - 0000000060000000 (usable)

user: 00000000e0000000 - 00000000f0000000 (reserved)

user: 00000000fec00000 - 00000000fec10000 (reserved)

user: 00000000fee00000 - 00000000fee01000 (reserved)

user: 00000000fffe0000 - 0000000100000000 (reserved)

DMI present.

A new ”(reserved)” area is shown between the second ”(useable)” section and the (ACPI data) section. Now, when
the ”ocpidriver load” is ran, it will detect the new reserved area, and pass that data to the OpenCPI kernel module.

4 Driver Notes

When available, the driver will attempt to make use of the CMA region for direct memory access. In use cases where
many memory allocations are made, the user may receive the following kernel message:

alloc_contig_range test_pages_isolated([memory start], [memory end]) failed

This is a kernel warning, but does not indicate that a memory allocation failure occurred, only that the CMA engine
could not allocate memory in the first pass. Its default behavior is to make a second pass, and if that succeeded, the
end user should not see any more error messages. This message cannot be suppressed, but can be safely ignored. An
actual allocation failure will generate unambiguous error messages.

5 Loading the OpenCPI driver

When OpenCPI is installed via RPMs, the OpenCPI driver should have been installed. However, when developing
with source OpenCPI, the user is required to manage the loading of the OpenCPI driver.
The following terminal outputs are intended to provide the user with expected behavior of when the driver is not

4

Board Support Package Documentation ANGRYVIPER Team

and is loaded. The user should note that only when the driver is installed can the alst4 be discovered as a valid
OpenCPI container.

ocpidriver unload

The driver module was successfully unloaded.

ocpidriver load

Found generic reserved DMA memory on the linux boot command line and assuming it is for OpenCPI\
: [memmap=128M$0x1000000]

Driver loaded successfully.

ocpidriver unload

The driver module was successfully unloaded.

ocpirun -C

OCPI(2:816.0497): When searching for PCI device '0000:03:00.0': Can't open /dev/mem, forgot to\
load the driver? sudo?

OCPI(2:816.0499): When searching for PCI device '0000:08:00.0': Can't open /dev/mem, forgot to\
load the driver? sudo?

OCPI(2:816.0544): In HDL Container driver, got PCI search error: Can't open /dev/mem, forgot \
to load the driver? sudo?

Available containers:

Model Platform OS OS-Version Arch Name

0 rcc centos7 linux c7 x86_64 rcc0

ocpidriver load

Found generic reserved DMA memory on the linux boot command line and assuming it is for OpenCPI\
: [memmap=128M$0x1000000]

Driver loaded successfully.

ocpirun -C

Available containers:

Model Platform OS OS-Version Arch Name

0 hdl ml605 PCI:0000:08:00.0

1 hdl alst4 PCI:0000:03:00.0

2 rcc centos7 linux c7 x86_64 rcc0

6 Proof of Operation

The following commands may be run in order to verify correct OpenCPI operation on the x86/Stratix IV system.

Existence of alst4 RCC/HDL containers may be verified by running the following command and verifying that
similar output is produced.

ocpirun -C

Available containers:

Model Platform OS OS-Version Arch Name

0 rcc centos7 linux c7 x86_64 rcc0

1 hdl alst4 PCI:0000:02:00.0

Operation of the RCC container can be verified by running the hello application via the following command and
verifying that identical output is produced. Note that the OCPI LIBRARY PATH environment variable must be
setup to include the hello world.rcc built shared object file prior to running this command.

5

Board Support Package Documentation ANGRYVIPER Team

ocpirun -t 1 assets/applications/hello.xml

Hello, world

Simultaneous RCC/HDL container operation can be verified by running the testbias application via the following
command and verifying that identical output is produced. Note that the OCPI LIBRARY PATH environment vari-
able must be setup correctly for your system prior to running this command.

ocpirun -d -m bias=hdl assets/applications/testbias.xml

Property 0: file_read.fileName = "test.input" (cached)

Property 1: file_read.messagesInFile = "false" (cached)

Property 2: file_read.opcode = "0" (cached)

Property 3: file_read.messageSize = "16"

Property 4: file_read.granularity = "4" (cached)

Property 5: file_read.repeat = "<unreadable>"

Property 6: file_read.bytesRead = "0"

Property 7: file_read.messagesWritten = "0"

Property 8: file_read.suppressEOF = "false"

Property 9: file_read.badMessage = "false"

Property 10: file_read.ocpi_debug = "false" (parameter)

Property 11: file_read.ocpi_endian = "little" (parameter)

Property 12: bias.biasValue = "16909060" (cached)

Property 13: bias.ocpi_debug = "false" (parameter)

Property 14: bias.ocpi_endian = "little" (parameter)

Property 15: bias.test64 = "0"

Property 16: file_write.fileName = "test.output" (cached)

Property 17: file_write.messagesInFile = "false" (cached)

Property 18: file_write.bytesWritten = "0"

Property 19: file_write.messagesWritten = "0"

Property 20: file_write.stopOnEOF = "true" (cached)

Property 21: file_write.ocpi_debug = "false" (parameter)

Property 22: file_write.ocpi_endian = "little" (parameter)

Property 3: file_read.messageSize = "16"

Property 5: file_read.repeat = "<unreadable>"

Property 6: file_read.bytesRead = "4000"

Property 7: file_read.messagesWritten = "251"

Property 8: file_read.suppressEOF = "false"

Property 9: file_read.badMessage = "false"

Property 15: bias.test64 = "0"

Property 18: file_write.bytesWritten = "4000"

Property 19: file_write.messagesWritten = "250"

Known Issues

JTAG Daemon

When loading FPGA bitstreams onto the alst4 FPGA (which can occur when running either ocpihdl load or
ocpirun), multiple issues exists with the Altera jtag daemon which may cause the FPGA loading to fail. The
following is an example of the terminal output when this failure occurs:

Checking existing loaded bitstream on OpenCPI HDL device "PCI:0000:0b:00.0"...

OpenCPI FPGA at PCI 0000:0b:00.0: bitstream date Wed Oct 19 16:04:45 2016, platf

orm "alst4", part "ep4sgx230k", UUID 482195b4-9637-11e6-8002-d76b7b3cbb11

Existing loaded bitstream looks ok, proceeding to snapshot the PCI configuration

(into /tmp/ocpibitstream15980.1).

Scanning for JTAG cables...

Found cable "USB-Blaster [3-11]" to use for device "PCI:0000:0b:00.0" (no serial

6

Board Support Package Documentation ANGRYVIPER Team

number specified).

Error: did not find part ep4sgx230k in the jtag chain for cable USB-Blaster [3-1

1].

Look at /tmp/ocpibitstream15980.log for details.

Error: Could not find jtag position for part ep4sgx230k on JTAG cable "USB-Blast

er [3-11]".

OpenCPI FPGA at PCI 0000:0b:00.0: bitstream date Wed Oct 19 16:04:45 2016, platf

Exception thrown: Bitstream loading error (exit code: 1) loading "../../hdl/ass

emblies/dc offset iq imbalance mixer cic dec timestamper/container-dc offset iq imba

lance mixer cic dec timestamper alst4 base alst4 adc hsmc port b/target-stratix4/dc

offset iq imbalance mixer cic dec timestamper alst4 base alst4 adc hsmc port b.sof.gz

" on HDL device "PCI:0000:0b:00.0" with command: /opt/opencpi/cdk//scripts/loadBi

tStream "../../hdl/assemblies/dc offset iq imbalance mixer cic dec timestamper/conta

iner-dc offset iq imbalance mixer cic dec timestamper alst4 base alst4 adc hsmc port b

/target-stratix4/dc offset iq imbalance mixer cic dec timestamper alst4 base alst4 adc

hsmc port b.sof.gz" "PCI:0000:0b:00.0" "alst4" "ep4sgx230k" "" ""

The failure may also manifest as a permissions issue:

Scanning for JTAG cables...

JTAG cable setup for platform "alst4" failed.

Dump of /tmp/ocpibitstream5904.cables:

**

Cable "USB-Blaster variant [3-7]": cannot get serial number.

**

Dump of /tmp/ocpibitstream5904.log:

**

Error when locking chain - Insufficient port permissions

**

The follow commands implement a known remedy for each of the aforementioned errors:

sudo killall jtagd

sudo chmod 755 /sys/kernel/debug/usb/devices

sudo chmod 755 /sys/kernel/debug/usb

sudo chmod 755 /sys/kernel/debug

sudo mount --bind /dev/bus /proc/bus

sudo ln -s /sys/kernel/debug/usb/devices /proc/bus/usb/devices

sudo <quartus_directory>/bin/jtagd

sudo <quartus_directory>/bin/jtagconfig

Single Port of Data from CPU to FPGA

The current implementations of the PCI-e specification on this platform correctly implements data flow from the
CPU to the FPGA, only under certain configurations (assembly/container) and is limited to only a single port of
data from CPU to FPGA. Fundamentally, OpenCPI only supports a single port connection from the CPU to the
FPGA.

To ensure the proper configurations are met, assembly and container XML files must be designed based on the
following rules:

1. When a single worker exists in an assembly and it ports are connected to the assembly (Externals=’true’), then
the container must be built for the ”base” container. (i.e. the assembly’s Makefile must contain ”DefaultCon-
tainer=”).

2. When an assembly’s external connections are explicitly defined (i.e. not using Externals=’true’), then the first
external assembly connection that is defined in the assembly XML must be that of the CPU to FPGA, and

7

Board Support Package Documentation ANGRYVIPER Team

the ”base” container used (i.e. the assembly’s Makefile must contain ”DefaultContainer=”), or

3. When defining external connections in a container XML, then the first interconnect container connection defined
must be that of the CPU to FPGA and the ”base” container used (i.e. the assembly’s Makefile must contain
”DefaultContainer=”).

Note that this applies to the TX/DAC data path connections for bitstreams with transceiver transmit data flow from
a CPU (e.g. RCC worker to FPGA TX/DAC data path). See projects/assets/hdl/assemblies/empty/cnt_1rx_
1tx_bypassasm_fmcomms_2_3_lpc_LVDS_ml605.xml as an example.

8

Board Support Package Documentation ANGRYVIPER Team

References

[1] ALST4 Hardware Setup

[2] FPGA Vendor Tools Guide

[3] OpenCPI RPM Installation Guide

[4] Required Modifications for Myriad-RF 1 and Zipper Daughtercards

9

http://opencpi.github.io/releases/1.5.0/assets/Alst4_Hardware_Setup.pdf
http://opencpi.github.io/releases/1.5.0/FPGA_Vendor_Tools_Installation_Guide.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf
http://opencpi.github.io/releases/1.5.0/assets/Required_Modifications_for_Myriad-RF_1_Zipper_Daughtercards.pdf

	Hardware Prerequisites
	Software Prerequisites
	Reserve Memory for Driver
	Calculate Values in Preparation for Memory Reservation
	Configure Memory Reservation
	Apply Memory Reservation
	Verify Memory Reservation

	Driver Notes
	Loading the OpenCPI driver
	Proof of Operation

