
Component Data Sheet ANGRYVIPER Team

Summary - Advanced Pattern

Name advanced pattern

Worker Type Application

Version v1.5

Release Date 4/2019

Component Library ocpi.assets.util comps

Workers advanced pattern.rcc

Tested Platforms centos7, xilinx13 3 (limited)

Functionality

The Advanced Pattern Component provides predefined data to assist in the testing of other Components.

The data can be arranged in messages of up to 2048 bytes at a time with each block having a specific opcode. By
default, 32 of these messages are available, but that configuration is exposed as a build-time parameter with a
default configuration building additional Workers allowing for 64, 128, and 256 messages.

This Component provides minimal error checking and is not recommended for
production use, but is only intended for prototyping and testing of other Components.

Block Diagrams

Top level

Advanced Pattern
“out”

Data defined in properties

See property table

Source Dependencies

advanced pattern.rcc

• <assets>/components/util comps/advanced pattern.rcc/advanced pattern.cc

1

C
o
m
p
o
n
e
n
t
D
a
ta

S
h
e
e
t

A
N
G
R
Y
V
IP

E
R

T
e
a
m

Component Spec Properties

Name Type SequenceLength ArrayDimensions Accessibility Valid Range Default Usage

maxPatternLength ULong - - Parameter Standard 32 Maximum “Pattern” sequence length to allow 1

Pattern Struct maxPatternLength - Initial, Readable2 - - Message to send

Pattern.Opcode UChar - - ” Standard 0 Opcode metadata to send with this message’s data

Pattern.Bytes UChar 2048 - ” Standard 0 Data to send

LoopCount ULongLong - - Initial, Readable2 Standard 1 How many times to repeat the “Pattern” sequence3

ZLM UShort - - Initial, Readable2 0 . . . 256 0 Opcode for a Zero Length Message with when finished.4

current Struct - - Volatile - - Current statistics for each opcode

current.Total Struct - - ” - - Statistics across all opcodes

current.Total.bytes ULongLong - - ” Standard - Number of bytes received

current.Total.messages ULongLong - - ” Standard - Number of messages received

current.Opcode Struct - 256 ” - - Statistics for each opcode

current.Opcode.* Various - - ” - Various Various5

1Each Pattern entry requires about 2K of RAM.
2“Readable” is deprecated and superfluous here. It will be removed in a future release.
30 will continue as long as Worker is running.
4Default is opcode 0; set to invalid opcode 256 if this feature is not desired.
5Internal structure equivalent to current.Total and not explicitly shown.

Worker Properties

There are no implementation-specific properties for this component.

Component Ports

Name Producer Protocol Optional Advanced Usage

out true - - numberofopcodes=256 Data defined in properties

Worker Interfaces

There are no implementation-specific interfaces for this component.

2

Component Data Sheet ANGRYVIPER Team

Test and Verification

Usage (local/x86)

After building the component, the user needs to type make tests RCC_CONTAINERS=1 in the advanced pattern.test

directory. Various properties and data flows will be tested to try to cover as many use cases as possible.

If the user would like to execute only one test, TESTS=test_XX can be added to the end of the command.

Experimental: Usage (remote/ARM)

Full test environment configuration (e.g. NFS mounting, OCPI_CDK_DIR, etc.) on the remote GPP is beyond the scope
of this document. The test procedures assume that both shells’ current working directory is the advanced pattern.test

directory (NFS-mounted on remote) and ocpirun is in the remote’s current PATH. NFS must be used for the scripts
to properly verify the outputs.

In the host shell, the user types make tests IP=xx.xx.xx.xx. A command that can be copied and then pasted
into the remote shell will be displayed. Once the remote shell returns to the bash prompt, pressing “Enter” on the
host will begin the verification process.

Single tests can be performed in the same manner as documented above.

Detailed Theory of Operation

Each test_XX subdirectory has the following files:

• description - a one-line description of the test

• application.xml - the OAS XML for the test setup

• golden.md5 - (optional) MD5 checksums of golden/expected output

• generate.[sh|pl|py] - (optional) script to generate test data

• verify.sh - (optional) script to verify output(s)

Data is internally generated and then written to disk using the file_write_demux component. Some OASs have
the pattern information embedded within the XML itself, while others use the valueFile option to import a file
named UUT.Pattern.input. Most OASs dump the “current” property from the tested component as well as the
file writer to files named UUT.current.dump and fwout.current.dump respectively, which are also confirmed to
match expected output.

If generate.sh does not exist, a default one is created that will run generate.pl and/or generate.py if they
exist and are executable. This default script is removed with make clean.

If verify.sh does not exist, a default one is created that will run md5sum and verify all the checksums listed in
golden.md5. This default script is also removed upon make clean.

3

