
Vivado Usage Notes ANGRYVIPER Team

Vivado Usage Notes

Version 1.5

1

Vivado Usage Notes ANGRYVIPER Team

Revision History

Revision Description of Change Date
v1.2 Initial creation for Release 1.2 8/2017
v1.4 Update for Release 1.4 9/2018
v1.5 Update for Release 1.5 4/2019

2

Vivado Usage Notes ANGRYVIPER Team

Table of Contents

1 References 4

2 Migrating an OpenCPI Platform from ISE to Vivado 4

3 Reverting an OpenCPI Platform from Vivado to ISE 4

4 Vivado Constraints Files 5

5 Using PreBuilt Cores/Netlists with Vivado and OpenCPI 5

6 Simulating Vivado IP or PreBuilt Cores with XSIM in OpenCPI 5

7 Using Vivado IP with OpenCPI 5

8 Makefile options for Vivado/XSIM compilation 6
8.1 Incremental Compilation - Place/Route . 6
8.2 Synthesis Options : Applies to primitives, workers, platforms, configs, assemblies, containers 6
8.3 Enabling Optimization Stages . 6
8.4 Implementation Options : Applies to Containers . 7
8.5 XSIM Options : Applies to primitives, workers, platforms, configs, assemblies, containers 7

9 Global Tcl Initialization Scripts 7

10 Opening up designs in the GUI 7
10.1 EDIF Netlist . 7
10.2 Project File . 8
10.3 Implementation Design Checkpoint . 10
10.4 Interactive Timing Report . 11
10.5 Elaborated XSIM design . 12
10.6 Open XSIM Wave Database . 13

11 OpenCPI Output Files for Vivado 14

12 OpenCPI Output Files for XSIM 15

3

Vivado Usage Notes ANGRYVIPER Team

1 References

This document assumes a basic understanding of the Linux command line (or “shell”) environment. A working
knowledge of OpenCPI is required for understanding what vendor tools are necessary to perform various OpenCPI
operations. The reference(s) in Table 1 can be used as an overview of OpenCPI and may prove useful.

Title Link
OpenCPI Overview Overview.pdf

Acronyms and Definitions Acronyms and Definitions.pdf

Getting Started Getting Started.pdf

Installation Guide RPM Installation Guide.pdf

HDL Development Guide OpenCPI HDL Development.pdf

Table 1: References

This document explains usage of Xilinx Vivado in the context of OpenCPI. For further information regarding
Xilinx Vivado, consult Xilinx’s documentation (e.g. UG835).

2 Migrating an OpenCPI Platform from ISE to Vivado

Note: This section explains how to migrate an OpenCPI Platform already created in a previous version of OpenCPI
to use Vivado. Documentation for defining a new platform can be found in the HDL Development Guide,
referenced in Table 1.

1. Modify hdl/platforms/<platform>/<platform>.mk to use a target part that maps to Vivado (e.g.
HdlPart matchstiq z1=xc7z020-1-clg484).

2. Port the platform’s UCF file to an XDC file. Reference Xilinx’s document Vivado Migration (UG911) for
assistance.

3. Port the UT file to an XDC file ending in “* bit.xdc”. Reference Xilinx’s document Vivado Migration
(UG911) for assistance.

4. Modify <platform>/Makefile to export both the XDC files (“*.xdc” and “* bit.xdc”) instead of the UCF
and UT files, via ExportFiles=.

5. Build for the platform using the platform name (HdlPlatform=<platform>) or the target-part
(HdlTarget=zynq).

3 Reverting an OpenCPI Platform from Vivado to ISE

This process is described in assets/hdl/platforms/matchstiq_z1/ise_constraints/README for the
“matchstiq_z1” platform. To summarize more generically:

1. Modify hdl/platforms/<platform>/<platform>.mk to use the “ise alias” of the target part (e.g. HdlPart
matchstiq z1=xc7z020 ise alias-1-clg484).

2. Port the platform’s XDC file (“*.xdc”) to a UCF file. Reference Xilinx’s document Vivado Migration
(UG911) for assistance.

3. Port the platform’s XDC configuration file (“* bit.xdc”) to a UT file. Reference Xilinx’s document Vivado
Migration (UG911) for assistance.

4. Modify <platform>/Makefile to export the UCF and UT files instead of the XDC files via ExportFiles=.

5. Build for the platform using the platform name (HdlPlatform=<platform>) or the target-part’s “ise alias”
(HdlTarget=zynq ise).

4

http://opencpi.github.io/releases/1.5.0/Overview.pdf
http://opencpi.github.io/releases/1.5.0/Acronyms_and_Definitions.pdf
http://opencpi.github.io/releases/1.5.0/Getting_Started.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf
http://opencpi.github.io/releases/1.5.0/OpenCPI_HDL_Development.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug835-vivado-tcl-commands.pdf

Vivado Usage Notes ANGRYVIPER Team

4 Vivado Constraints Files

By default, all constraints files in a platform’s directory with the extension “.xdc” are applied during the opt

design stage (the first post-synthesis implementation stage), except for files ending with “ bit.xdc”. Files ending
with “ bit.xdc” are applied later during bitstream generation (write bitstream).

Options such as pin assignments, clock constraints, I/O standards, etc. can be placed in an “.xdc” file that does
not end in “ bit.xdc”. For example:
set property PACKAGE PIN V9 [get ports lime spi sdo];

Constraints relating to project/chip/board configuration as well as bitstream settings can be placed in the “
bit.xdc” file. This file is the equivalent of Xilinx ISE’s “.ut” file. For example:
set property BITSTREAM.CONFIG.TCKPIN PullUp [current design];

5 Using PreBuilt Cores/Netlists with Vivado and OpenCPI

While Vivado generates netlists in the EDIF or DCP format, it can also read netlists in NGC format. So, NGC
cores prebuilt with ISE (e.g. the ddc_4243_4ch_v5 primitive or the complex mixer’s debug cores) can be used in
the same way a Vivado EDIF is used.

When including a core using Cores= (as seen with the complex mixer) worker, the core can be either an EDIF,
NGC, or DCP file for usage with Vivado. For NGC and EDIF netlists, you will also need to include a VHDL stub
file. DCP files, on the other hand, contain both a netlist and a stub, and you therefore do not need to explicitly
include a stub file (via SourceFiles=).

To include cores at the worker level, you can set the Cores make variable as follows:
Cores="netlist1.ngc mynetlist2.edf mynetlist3.dcp"

As noted above, for NGC and EDIF netlists, you will also need to include a VHDL stub file:
SourceFiles="netlist1 stub.vhd mynetlist2 stub.vhd"

Another option for including prebuilt cores with OpenCPI is to create an OpenCPI primitive core. In the primitive
core’s makefile, you would set “PreBuiltCore=mynetlist2.edf”. You would then create a VHDL package file.
This would comprise of a VHDL package containing the core’s component declaration. You would then be able to
include this core for any worker using “Cores=<core-name>”.

6 Simulating Vivado IP or PreBuilt Cores with XSIM in OpenCPI

You may be able to build for XSIM with OpenCPI by including the stub VHDL file mentioned in 5, but omitting
the netlist. If this does not work, you will have to generate a simulation netlist.

A simulation netlist can be generated by opening up the post-synthesis IP or core and running the following TCL
command:
> write vhdl <ip name> sim.vhd

Now include that as a source file in your worker Makefile:
SourceFiles=<ip name> sim.vhd

The corresponding synthesis stub and netlist files (if present) will need to be removed from the SourceFiles and
Cores variables in the Makefile before building for XSIM.

7 Using Vivado IP with OpenCPI

To use Vivado’s IP within OpenCPI, you can follow these steps:

• Create a new Vivado RTL project with no sources

5

Vivado Usage Notes ANGRYVIPER Team

• Window→IP Catalog

• Choose IP, Customize IP

• Generate IP output products in Global mode (stubs, test bench, xci)

• Run synthesis and Open Synthesized Design

• Generate the necessary netlist/source files:

- Generate the EDIF netlist and VHDL stub:

> write edif -security mode all <ip name>.edf

> write vhdl -mode synth stub <ip name>.vhd

- Or, generate the DCP (checkpoint file):

> write checkpoint <ip name>.dcp

Note: Reference section 5 for more information on using Vivado pre-built cores with OpenCPI

- Generate a simulation netlist for use with XSIM:

> write vhdl <ip name> sim.vhd

Note: For more information on simulating Vivado IP with ANGRYIPER, reference 6.

• Reference the Instantiation Template (*.vho) file when instantiating the module in your design.

8 Makefile options for Vivado/XSIM compilation

8.1 Incremental Compilation - Place/Route

Setting “VivadoIncrementalCompilation=true” (false by default) enables Vivado’s incremental compilation for
place and route. This applies during Container compilation only. If enabled, Vivado will attempt to reuse the
results of previous place/route runs for this Container. This is very useful when making small source changes (or
changes to comments) and then rebuilding.

8.2 Synthesis Options : Applies to primitives, workers, platforms, configs,
assemblies, containers

To set options for the synthesis stage of compilation:
VivadoExtraOptions synth="-<myoption1> -<myoption2>"

Only use the quotes at the command line. If setting this variable inside a Makefile, omit the quotes. If you are
setting this variable in an assembly Makefile and wish to apply it during container synthesis (as opposed to
assembly synthesis), you must prepend the command with ‘export ’. For example:
export VivadoExtraOptions synth=-directive runtimeoptimized

8.3 Enabling Optimization Stages

Setting “VivadoPowerOpt=true” enables Vivado’s power opt design stage. This is run directly after opt design

during container implementation.

Vivado’s optional phys opt design stage of implementation can be run after place design or after route design.
In each case, different optimizations are performed. The following options can be used to enable the phys opt

design stage in on or both of the position:

• “VivadoPostPlaceOpt=true” enables Vivado’s phys opt design stage after place design

• “VivadoPostRouteOpt=true” enables Vivado’s phys opt design stage after route design

6

Vivado Usage Notes ANGRYVIPER Team

8.4 Implementation Options : Applies to Containers

To set options for a specific implementation stage of compilation:
VivadoExtraOptions <stage>="-<myoption1> -<myoption2>"
Note: If setting these variables inside an assembly Makefile, you must prepend the command with ‘export ’ and omit the quotes.

Here, stage can be: opt, place, post place phys opt, route, post route phys opt, timing, bit.

8.5 XSIM Options : Applies to primitives, workers, platforms, configs, assemblies,
containers

To set options for the XSIM xvhdl and xvlog commands:
XsimExtraArgs=" -<myoption1> -<myoption2> "

To set options for the XSIM elaboration stage (xelab):
XsimXelabExtraArgs=" -<myoption1> -<myoption2> "
Note: Only use the quotes at the command line. If setting these variables inside a Makefile, omit the quotes.

9 Global Tcl Initialization Scripts

As explained in Xilinx’s UG835, you can place a Tcl script at $HOME/.Xilinx/Vivado/init.tcl to be executed
every time Vivado is launched. This is not recommended since it cannot be easily source-controlled with the rest of
your project.

10 Opening up designs in the GUI

Prior to running any vivado/xsim commands, you must source <path-to-vivado>/settings64.sh. Because these
settings interfere with OpenCPI’s environment, you should always do this in a separate terminal.

10.1 EDIF Netlist

To open up an EDIF (or NGC) netlist in Vivado, navigate to the directory containing the netlist and run: vivado
Once the GUI opens up, run the following Tcl commands: read edif <netlist-filename>; link design; You
can then navigate to the “Netlist” tab, right click the file, and choose “Schematic” (Figure 1).

7

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug835-vivado-tcl-commands.pdf

Vivado Usage Notes ANGRYVIPER Team

Figure 1: Xilinx Vivado Netlist

Another option for viewing EDIF netlists in Vivado involves creating a Post-Synthesis project and including the
netlist as a source file. You can then “Open Synthesized Design” to view the netlist in the GUI.

10.2 Project File

To open up a Vivado project at any level, run:
vivado target-<tgt>/<asset-name>.xpr

Because the framework runs compilation in Non-Project Mode, the source files and synthesis results will not be
opened side-by-side.

8

Vivado Usage Notes ANGRYVIPER Team

Figure 2: Xilinx Vivado Project

However, after a project file is opened in the GUI, synthesis can be rerun in Project Mode. The synthesized design
can then be opened, and the netlist and source can be viewed together.

Figure 3: Xilinx Vivado Open Synthesized Design

9

Vivado Usage Notes ANGRYVIPER Team

After this, netlists and sources can be viewed together.

Figure 4: Xilinx Vivado Netlist View

At this point, you can right click on elements of the netlist and “Go To Source”.

The various stages of implementation also generate project files. These project files can be opened, and
implementation can be run in Project-Mode via the Vivado GUI. The other option for viewing implementation
results is to open an implementation-stage’s checkpoint as described in 10.3.

10.3 Implementation Design Checkpoint

To open up a Vivado Design Checkpoint resulting from any post-synthesis implementation stage, run:
vivado <path-to-OCPI-container-dir>/target-<tgt>/<OCPI-container-name>-<stage>.dcp

10

Vivado Usage Notes ANGRYVIPER Team

Figure 5: Xilinx Vivado Post-Route Design Checkpoint

10.4 Interactive Timing Report

To open up an interactive timing report (result of timing stage of implementation):

1. Open up the Design Checkpoint for the route stage (shown in 10.3).

2. Open the interactive timing report:

File → Open Interactive Report → <container-name>-timing.rpx

11

Vivado Usage Notes ANGRYVIPER Team

Figure 6: Xilinx Vivado Interactive Timing Report

10.5 Elaborated XSIM design

To open up the results of XSIM’s xelab:
xsim <path-to-OCPI-container-dir>/target-<tgt>/<OCPI-container-name>

12

Vivado Usage Notes ANGRYVIPER Team

Figure 7: Xilinx Vivado Simulator Elaborated Design

10.6 Open XSIM Wave Database

As with any other simulator, you can run:
ocpiview <simulations-directory>

For example, for the complex mixer.test Unit Test, after running case00.00 with ocpidev’s --keep-simulations

option (or Make’s KeepSimulations=1) set, you can run:
ocpiview run/xsim/case00.00.complex mixer.hdl.simulation

13

Vivado Usage Notes ANGRYVIPER Team

Figure 8: Xilinx Vivado Simulator Wave Database

11 OpenCPI Output Files for Vivado

• .jou: Vivado journal file

• .jou.bak: Backup of the previously generated Vivado journal file

• <asset-name>-vivado.out: OpenCPI and Vivado output for synthesis of an asset

• <impl-stage>.out: OpenCPI and Vivado output for a stage of implementation

• .xpr: Every stage of compilation for every OpenCPI asset results in a Vivado project file. This project file
can be opened in Vivado to observe the source files associated with that stage.

• .edf: Vivado’s netlist format. This is the artifact of building any OpenCPI asset except primitive libraries.

• .dcp: After the container is synthesized, implementation begins. From then on, DCP (Vivado’s Design
Checkpoint) files are used as the result of each implementation stage.

• .rpx: Vivado’s Interactive Timing Report. This file is generated as a result of the timing stage which is run
after route.

• .libs, .sources, .cores: The OpenCPI files used to store information regarding the libraries, sources, and
cores that an asset depends on

• *.hw, *.ip user files, *.cache directories: Various directories generated by Vivado when creating a
project or running synthesis/implementation stages

14

Vivado Usage Notes ANGRYVIPER Team

12 OpenCPI Output Files for XSIM

• .log: XSIM log file for xelab, xvhdl, and xvlog commands

• .vdb: Output of XSIM’s source parser

• xsim.dir: Files generated by XSIM during setup and elaboration

• .pb: Message information for Vivado’s “Messages” window

15

	References
	Migrating an OpenCPI Platform from ISE to Vivado
	Reverting an OpenCPI Platform from Vivado to ISE
	Vivado Constraints Files
	Using PreBuilt Cores/Netlists with Vivado and OpenCPI
	Simulating Vivado IP or PreBuilt Cores with XSIM in OpenCPI
	Using Vivado IP with OpenCPI
	Makefile options for Vivado/XSIM compilation
	Incremental Compilation - Place/Route
	Synthesis Options : Applies to primitives, workers, platforms, configs, assemblies, containers
	Enabling Optimization Stages
	Implementation Options : Applies to Containers
	XSIM Options : Applies to primitives, workers, platforms, configs, assemblies, containers

	Global Tcl Initialization Scripts
	Opening up designs in the GUI
	EDIF Netlist
	Project File
	Implementation Design Checkpoint
	Interactive Timing Report
	Elaborated XSIM design
	Open XSIM Wave Database

	OpenCPI Output Files for Vivado
	OpenCPI Output Files for XSIM

