Vivado Usage Notes ANGRYVIPER Team

Vivado Usage Notes

Version 1.5

Vivado Usage Notes

ANGRYVIPER Team

Revision History

Revision | Description of Change Date
v1.2 Initial creation for Release 1.2 8/2017
vl.4 Update for Release 1.4 9/2018
v1.5 Update for Release 1.5 4/2019

Vivado Usage Notes ANGRYVIPER Team

Table of Contents

I_References| 4
2 Migrating an OpenCPI Platform from ISE to Vivado| 4
|13 Reverting an OpenCPI1 Platform from Vivado to ISE] 4
I Vivado C . Files 5
[5 Using PreBuilt Cores/Netlists with Vivado and OpenCP]| 5
[6 Simulating Vivado IP or PreBuilt Cores with XSIM in OpenCPl| 5
|7 Using Vivado IP with OpenCPl| 5
[8 Makefile options for Vivado/XSIM compilation| 6
8.1 Incremental Compilation - Place/Route] L L 6
8.2 Synthesis Options : Applies to primitives, workers, platforms, configs, assemblies, containers|. 6
| Fnabling Optimization SLAes| . - . « « v v v v v e e e et e e e e e 6
[§-4 Tmplementation Options : Applies t0 CONTAINETS|« o v v v v e e e e e e e e 7
8.5 XSIM Options : Applies to primitives, workers, platforms, configs, assemblies, containers|. 7
9 Global Tcl Initialization Scripts| 7
[10 Opening up designs in the GUI| 7
MOTEDIFNEIST . .« « o o o vt e e e e e e e e e 7
110.2 Project File| o e 8
110.3 Implementation Design Checkpoint| o o 10
110.4 Interactive Timing Report| o o o 11
[10.5 Elaborated XSIM design|. 12
10.6 Open ave Database| L e 13
(11 OpenCPI Output Files for Vivado| 14
12 Open utput Files for 15

Vivado Usage Notes ANGRYVIPER Team

1 References

This document assumes a basic understanding of the Linux command line (or “shell”) environment. A working
knowledge of OpenCPI is required for understanding what vendor tools are necessary to perform various OpenCPI
operations. The reference(s) in Table [1| can be used as an overview of OpenCPI and may prove useful.

Title Link
OpenCPI Overview Overview.pdf
Acronyms and Definitions Acronyms_and Definitions.pdf
Getting Started Getting Started.pdf
Installation Guide RPM_Installation_Guide.pdf
HDL Development Guide OpenCPI_HDL Development .pdf

Table 1: References

This document explains usage of Xilinx Vivado in the context of OpenCPI. For further information regarding
Xilinx Vivado, consult Xilinx’s documentation (e.g. UG835).

2 Migrating an OpenCPI Platform from ISE to Vivado

Note: This section explains how to migrate an OpenCPI Platform already created in a previous version of OpenCPI
to use Vivado. Documentation for defining a new platform can be found in the HDL Development Guide,
referenced in Table

1. Modify hdl/platforms/<platform>/<platform>.mk to use a target part that maps to Vivado (e.g.
HdlPart matchstiq z1=xc7z020-1-clgd84).

2. Port the platform’s UCF file to an XDC file. Reference Xilinx’s document Vivado Migration (UG911) for
assistance.

3. Port the UT file to an XDC file ending in “*_bit.xdc”. Reference Xilinx’s document Vivado Migration
(UGY11) for assistance.

4. Modify <platform>/Makefile to export both the XDC files (“*.xdc” and “*_bit.xdc”) instead of the UCF
and UT files, via ExportFiles=.

5. Build for the platform using the platform name (Hd1Platform=<platform>) or the target-part
(HdlTarget=zynq).

3 Reverting an OpenCPI Platform from Vivado to ISE

This process is described in assets/hdl/platforms/matchstiq_z1/ise_constraints/README for the
“matchstiq_z1” platform. To summarize more generically:

1. Modify hdl/platforms/<platform>/<platform>.mk to use the “ise alias” of the target part (e.g. HdlPart_
matchstiq z1=xc7z020_ise_alias-1-clg484).

2. Port the platform’s XDC file (“*.xdc”) to a UCF file. Reference Xilinx’s document Vivado Migration
(UGY11) for assistance.

3. Port the platform’s XDC configuration file (“*_bit.xdc”) to a UT file. Reference Xilinx’s document Vivado
Migration (UG911) for assistance.

4. Modify <platform>/Makefile to export the UCF and UT files instead of the XDC files via ExportFiles=.

5. Build for the platform using the platform name (Hd1Platform=<platform>) or the target-part’s “ise alias”
(HdlTarget=zynq-ise).

http://opencpi.github.io/releases/1.5.0/Overview.pdf
http://opencpi.github.io/releases/1.5.0/Acronyms_and_Definitions.pdf
http://opencpi.github.io/releases/1.5.0/Getting_Started.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf
http://opencpi.github.io/releases/1.5.0/OpenCPI_HDL_Development.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug835-vivado-tcl-commands.pdf

Vivado Usage Notes ANGRYVIPER Team

4 Vivado Constraints Files

By default, all constraints files in a platform’s directory with the extension “.xdc” are applied during the opt_
design stage (the first post-synthesis implementation stage), except for files ending with “ bit.xdc”. Files ending
with “_bit.xdc” are applied later during bitstream generation (write_bitstream).

Options such as pin assignments, clock constraints, I/O standards, etc. can be placed in an “.xdc” file that does
not end in “_bit.xdc”. For example:

set_property PACKAGE_PIN V9 [get_ports lime_spi_sdo];

Constraints relating to project/chip/board configuration as well as bitstream settings can be placed in the “_
bit.xdc” file. This file is the equivalent of Xilinx ISE’s “.ut” file. For example:

set_property BITSTREAM.CONFIG.TCKPIN PullUp [current_design];

5 Using PreBuilt Cores/Netlists with Vivado and OpenCPI

While Vivado generates netlists in the EDIF or DCP format, it can also read netlists in NGC format. So, NGC
cores prebuilt with ISE (e.g. the ddc_4243_4ch_v5 primitive or the complex_mixer’s debug cores) can be used in
the same way a Vivado EDIF is used.

When including a core using Cores= (as seen with the complex_mixer) worker, the core can be either an EDIF,
NGC, or DCP file for usage with Vivado. For NGC and EDIF netlists, you will also need to include a VHDL stub
file. DCP files, on the other hand, contain both a netlist and a stub, and you therefore do not need to explicitly
include a stub file (via SourceFiles=).

To include cores at the worker level, you can set the Cores make variable as follows:
Cores="netlistl.ngc mynetlist2.edf mynetlist3.dcp"

As noted above, for NGC and EDIF netlists, you will also need to include a VHDL stub file:
SourceFiles="netlistl_stub.vhd mynetlist2_stub.vhd"

Another option for including prebuilt cores with OpenCPI is to create an OpenCPI primitive core. In the primitive
core’s makefile, you would set “PreBuiltCore=mynetlist2.edf”. You would then create a VHDL package file.
This would comprise of a VHDL package containing the core’s component declaration. You would then be able to
include this core for any worker using “Cores=<core-name>”.

6 Simulating Vivado IP or PreBuilt Cores with XSIM in OpenCPI

You may be able to build for XSIM with OpenCPI by including the stub VHDL file mentioned in [5| but omitting
the netlist. If this does not work, you will have to generate a simulation netlist.

A simulation netlist can be generated by opening up the post-synthesis IP or core and running the following TCL
command:

> write_vhdl <ip_name>_sim.vhd

Now include that as a source file in your worker Makefile:
SourceFiles=<ip_name>_sim.vhd

The corresponding synthesis stub and netlist files (if present) will need to be removed from the SourceFiles and
Cores variables in the Makefile before building for XSIM.

7 Using Vivado IP with OpenCPI

To use Vivado’s IP within OpenCPI, you can follow these steps:

e Create a new Vivado RTL project with no sources

Vivado Usage Notes ANGRYVIPER Team

Window—IP Catalog

Choose IP, Customize IP

Generate IP output products in Global mode (stubs, test bench, xci)

Run synthesis and Open Synthesized Design

Generate the necessary netlist/source files:
- Generate the EDIF netlist and VHDL stub:
> write_edif -security mode all <ip_name>.edf
> write_vhdl -mode synth_stub <ip_name>.vhd
- Or, generate the DCP (checkpoint file):
> write_checkpoint <ip_name>.dcp
Note: Reference section [5 for more information on using Vivado pre-built cores with OpenCPI
- Generate a simulation netlist for use with XSIM:
> write_vhdl <ip_name>_sim.vhd

Note: For more information on simulating Vivado IP with ANGRYIPER, reference [0}

e Reference the Instantiation Template (*.vho) file when instantiating the module in your design.

8 Makefile options for Vivado/XSIM compilation

8.1 Incremental Compilation - Place/Route

Setting “VivadoIncrementalCompilation=true” (false by default) enables Vivado’s incremental compilation for
place and route. This applies during Container compilation only. If enabled, Vivado will attempt to reuse the
results of previous place/route runs for this Container. This is very useful when making small source changes (or
changes to comments) and then rebuilding.

8.2 Synthesis Options : Applies to primitives, workers, platforms, configs,
assemblies, containers

To set options for the synthesis stage of compilation:

VivadoExtraOptions_synth="-<myoptionl> -<myoption2>"

Only use the quotes at the command line. If setting this variable inside a Makefile, omit the quotes. If you are
setting this variable in an assembly Makefile and wish to apply it during container synthesis (as opposed to
assembly synthesis), you must prepend the command with ‘export ’. For example:

export VivadoExtraOptions_synth=-directive runtimeoptimized

8.3 Enmnabling Optimization Stages

Setting “VivadoPowerOpt=true” enables Vivado’s power_opt_design stage. This is run directly after opt_design
during container implementation.

Vivado’s optional phys_opt_design stage of implementation can be run after place_design or after route_design.
In each case, different optimizations are performed. The following options can be used to enable the phys_opt_
design stage in on or both of the position:

e “VivadoPostPlaceOpt=true” enables Vivado’s phys_opt_design stage after place_design

e “VivadoPostRouteOpt=true” enables Vivado’s phys_opt_design stage after route_design

Vivado Usage Notes ANGRYVIPER Team

8.4 Implementation Options : Applies to Containers

To set options for a specific implementation stage of compilation:
VivadoExtraOptions_<stage>="-<myoptionl> -<myoption2>"
Note: If setting these variables inside an assembly Makefile, you must prepend the command with ‘export ’ and omit the quotes.

Here, stage can be: opt, place, post_place_phys_opt, route, post_route_phys_opt, timing, bit.

8.5 XSIM Options : Applies to primitives, workers, platforms, configs, assemblies,
containers

To set options for the XSIM xvhdl and xvlog commands:
XsimExtraArgs=" -<myoptionl> -<myoption2> "

To set options for the XSIM elaboration stage (xelab):

XsimXelabExtraArgs=" -<myoptionl> -<myoption2> "
Note: Only use the quotes at the command line. If setting these variables inside a Makefile, omit the quotes.

9 Global Tcl Initialization Scripts

As explained in Xilinx’s UG835, you can place a Tcl script at $HOME/ .Xilinx/Vivado/init.tcl to be executed
every time Vivado is launched. This is not recommended since it cannot be easily source-controlled with the rest of
your project.

10 Opening up designs in the GUI

Prior to running any vivado/xsim commands, you must source <path-to-vivado>/settings64.sh. Because these
settings interfere with OpenCPI’s environment, you should always do this in a separate terminal.

10.1 EDIF Netlist

To open up an EDIF (or NGC) netlist in Vivado, navigate to the directory containing the netlist and run: vivado
Once the GUI opens up, run the following Tcl commands: read_edif <netlist-filename>; link design; You
can then navigate to the “Netlist” tab, right click the file, and choose “Schematic” (Figure .

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug835-vivado-tcl-commands.pdf

Vivado Usage Notes ANGRYVIPER Team

Vivado 2017.1 = o x
File Edit Flow Tools Window Layout Wew Help Q- Quick Access

= e H © & 2 Timing Analysis ~

4

SYNTHESIZED DESIGN - xc7z020clg484-1 ? X

Sources | Netlist x CellPropert| 2 _ 0O O Device x Schematic x 00

= 4 & - @ Q ¥ N O C 1359cCells 8B YO Ports 3017 Nets &
) complex_mixer_0_zed_base) 2

> Nets (3017)

> Leaf Cells (1353)

> [@ |&opicomp\ex_mixer_0_i (complex_mixer_0_rv)|

> [@ ftopspfeenfig_i (base) B _

> [@ ftopfunoc_term2_0_i (sdp_term_rv)

> [@ ftopfunoc_term3_0_i (sdp_term_rv)

> [@ ftopfzyna_sdp_pipeline0_o_i (sdp_pipeline_rv)

> [@ ftopfzyna_sdp_pipelinel_0_i (sdp_pipeline_rv)

> [@] ftopfzyng_sdp_receive0_0_i (sdp_recei

> [ftopfzyng_sdp_sendl_0_j (sdp_send_rv)

Tcl Console x Messages | Timing ?_00

a = I B E @
INFO: [Project 1-570] Preparing netlist for logic optimization =
. INFO: [Opt 31-138] Pushed © inverter(s) to O load pin(s).
. INFO: [Project 1-111] Unisim Transformation Summary:
A total of 27 instances were transformed.
RAMLEX1D => RAM32¥1D (RAMD32, RAMD32): 1 instances
RAM32M == RAM32M (RAMD32, RAMD32, RAMD32, RAMD32, RAMD32, RAMD32, RAMS32, RAMS32): 26 instances

i link_design: Time (s): cpu = 00:90:34 ; elapsed = 00:00:15 . Memory (MB): peak = 7047.102 ; gain = 769.336 ; free physical = 12441 ; free virtual = 67804
() design_1

< »
Type a Tcl command here

Figure 1: Xilinx Vivado Netlist

Another option for viewing EDIF netlists in Vivado involves creating a Post-Synthesis project and including the
netlist as a source file. You can then “Open Synthesized Design” to view the netlist in the GUL.

10.2 Project File

To open up a Vivado project at any level, run:
vivado target-<tgt>/<asset-name>.xpr

Because the framework runs compilation in Non-Project Mode, the source files and synthesis results will not be
opened side-by-side.

Vivado Usage Notes

ANGRYVIPER Team

bias-16-rv - [/data/Documents/workspace/ocpibase-_testing/components/bias-16.hdl/target-zynq/bias-16-rv.xpr] - Vivado 2017.1 = o x
File Edit Flow Toeols Window Layout View Help Q- Quick Access Ready
=, P, H O X == Default Layout ~
Flow Navigator = =" PROJECT MANAGER - bias_16_rv ? X
v PROJECT MANAGER
Sources ?_001 X Project Summary 00 X
¥ settings
a = : + 0 o

Add Sources
Language Templates

¥ IP Catalog

v IP INTEGRATOR
Create Block Design
Open Block Design

Generate Block Design

~ SIMULATION

Run Simulation

v RTL ANALYSIS
> Open Elaborated Design

v SYNTHESIS
P Run Synthesis

> Open Synthesized Design

<

IMPLEMEMTATION
P Run Implementation

> Openimplemented Design

v PROGRAM AND DEBUG
¥ Generate Bitstream

> Open Hardware Manager

~ = Design Sources (90)

> @9 MakeResetA (MakeResetsw) (1)
» @ SyncRegister (SyncRegister,
~ @ bias_16(rtl) (bias_l&-mplvhd) (1)

> @id& rv: bias_16_rvirtl) (bias_16-impl
cwd(rtl) (cwd.vhd) (1)

flush_writer(rtl) (flush_writer.vhd) (1)
message_bounds(rtl) (message_bount
part_slave(rtl) (part_slave.vhd) (1)
plusarg(rtl) (plusarg.vhd) (17
srl_fifo(rth) (srl_fifo.vhd) (1)
trace_buffer_ulong(rtl) (trace_buffer u

O
=

@ BRAML (ERAML.v)

W mmaRa A o et e
e 2.
Hierarchy Libraries Compile Order
Properties ?_00 X

Select an object to see properties

Tcl Console | Messages |Log | Reports
a T2 + %
Name Constraints Status
~ [> synth_1 constrs_1 Mot started

- impl_l constrs_1 Not started

WHNS

Settings Edit

Project name:

Project location:

bias_16_rv

/datafDocumentsfworkspace,

_testing/components/bias_16.hdlftarget-zyng

Not started
No errors or warnings
®c7z020clg400-3

Product family: Zyng-7000

Project part: ®c7z020clg400-3

Top module name: bias_16_rv

Target language: Verilog

Simulator language: Mixed

Ssynthesis Implementation
Status: Mot started Status:
Messages: No errors or warnings Messages:

Part: wc7z020¢clg400-3 Part:

Strategy: Wivado Synthesis Defaults Strategy:

DRC Violations

Incremental compile;

Timing

Run Implementation to see DRC results

Utilization

Power

Run Synthesis to see utilization results

Design Runs

THNS WHS THS

TPWS

Total Power Failed Routes

Vivado Implementation Defaults

None

Run Implementation to see timing results

Run Implementation to see power results

LuT

FF BRAMs URAM DSP Start Elapsed

Figure 2: Xilinx Vivado Project

However, after a project file is opened in the GUI, synthesis can be rerun in Project Mode. The synthesized design
can then be opened, and the netlist and source can be viewed together.

MNext

Synthesis Completed

0 Synthesis successfully completed.

Bun Implementation
(=) Open Synthesized Design
View Reports

Don't show this dialog again

Figure 3: Xilinx Vivado Open Synthesized Design

Vivado Usage Notes ANGRYVIPER Team

After this, netlists and sources can be viewed together.

bias_16_rv - [/data/Documents/workspace/ocpibase_testing/components/bias_16.hdl/target-zyng/bias_16_rv.xpr] - Vivado 2017.1 = o x
File Edit Flow Tools Window Layout Wiew Help Q- Quick Access Synthesis Complete ~
=, =] L L~ N] O » 2= Timing Analysis v
Flow Navigator = 7 SYNTHESIZED DESIGN - xc7z020clg400-3 (active) ? X
v PROJECT MAMAGER - - . : .)
Sources | Netlist x Netlist Pro ? 00 Project Summary x| Device x| Schematic x| Schematic(2) x 00
£ settings
= H & 8 g i & © C 174cells 183W0Ports 406 MNets fF
Add Sources
3 |bias_16 * EEI
Language Templates ~
» Mets (406)
T IP Catalog > Leaf Cells (171)
» [@ in_port (slave)
v IP INTEGRATOR » [E out_port (master)
Create Block Design > [@ wei (bias_16_wei)
» [E worker (bizs_16_worker)
Open Block Design
Generate Block Design E=
v SIMULATION

Run Simulation

v RTL AMALYSIS

> Open Elaborated Design

v SYNTHESIS

P Run Synthesis

~ Open Synthesized Des

Constraints Wizard

Edit Tirming Constraint

W Set Up Debug q -
Tcl Console | Messages |Log | Reports | Design Runs | Timing x ? 00

% Report Timing Summa

Mo timing reports are available for display. To report timing click one of the following links:
Report Clock Netwaork:

Check Timing Check the design for possible timing problems.
Report Clock Interacti
Report Methodology Report Timing Summary Generate a timing summary to understand if the design met timing.
Report DRC Report Timing Generate a timing report,
Report Noise Report COC Generate a clock domain crossings report,
Report Utilization Report Pulse Width Reports the pulse width of the specified clock signals in the clock network and upon reaching the flip-flop.
& Report Power
Report Datasheet Create & datasheet report for the current design, providing the timing characteristics at the /0 pads,
Y schematic - =

Figure 4: Xilinx Vivado Netlist View

At this point, you can right click on elements of the netlist and “Go To Source”.

The various stages of implementation also generate project files. These project files can be opened, and
implementation can be run in Project-Mode via the Vivado GUI. The other option for viewing implementation
results is to open an implementation-stage’s checkpoint as described in

10.3 Implementation Design Checkpoint

To open up a Vivado Design Checkpoint resulting from any post-synthesis implementation stage, run:
vivado <path-to-0CPI-container-dir>/target-<tgt>/<0CPI-container-name>-<stage>.dcp

10

Vivado Usage Notes ANGRYVIPER Team

complex—_mixer-O-zed-base-route.dcp - [/data/Documents/workspace/ocpiassets_testing/components/dsp-comps/complex-mixer.test/gen/assemblies/complex-mixer-0/con... - o x

File Edit Flow Tools Window Layout Wiew Help

= B a H O o ¥ Timing Analysis v

4

CHECKPOINT DESIGN - xc7z020clg484-1

Netlist Device
E = B - o} ¥oEle 3R @ o o

i |complex_mixer_0_zed_base

> MNets (2224

Leaf Cells (1350

ftop/complex_mixer_0_i (complex_mixer_0_rv
ftop/pfeonfig_i (base_n
ftop/unoc_term2_0_| (sdp_term_r
ftop/unoc_term3_0_i (sdp_term_rv_HD1
ftopizyng_sdp_pipelineo_o_i (sdp_pipeli
ftopizyng_sdp_pipelinel _0_i (sdp_|
ftopizyng_sdp_receive0_0_i
ftopizyng_sdp_sendl_0_j (sdp_s

Vv v v v v v
B B B EEEE E

O
0
B
B
5
g
2
g

< »
Timing
Mo timing reports are available for display. To report timing click one of the following links: 2
Check Timing Check the design for possible timing problems.
eport Timing Summary Generate 3 timing summary to understand if the design met timing.

Report Timing Generate a timing report.

Report CDC Gererate a clock domain crossings report.

Report Pulse Width Reports the pulse width of the specified clock signals in the clock network and upon reaching the flipflop.

port Datasheet Create a datasheet report for the current design, providing the timing characteristics at the /O pads.
~

Figure 5: Xilinx Vivado Post-Route Design Checkpoint

10.4 Interactive Timing Report
To open up an interactive timing report (result of timing stage of implementation):
1. Open up the Design Checkpoint for the route stage (shown in [10.3]).

2. Open the interactive timing report:

File — Open Interactive Report — <container-name>-timing.rpx

11

Vivado Usage Notes

ANGRYVIPER Team

complex-mixer-O_zed_base-route.dcp - [/data/Documents/workspace/ocpiassets_testing/components/dsp-comps/complex_mixer.test/gen/assemblies/complex_mixer-O/con... = o x
File Edit Flow Tools Window Layout Wiew Help
=, B X & 39 © &)4 Timing Analysis ~
CHECKPOINT DESIGN - xc7z020¢clg484-1
Netlist Device
T B - @ a = ¢ H Rk @ o o
@ PS7_i(PST) i
il PS_CLK_BIBUF (EIELF)
i PS_PORB_BIBUF (EIELF)
il PS_SRSTB_BIBUF (EIBLIF)
il VCC (VCC)
~[@ sriSyncReseta)
> Mets (22]
~ Leaf Cells (20)
[l reset_hold[17]_i_1 (LUTL)
i reset_hold_reg[0] (FDCE]
il reset_hold reg[l] (FOCE)
il reset_hold reg[2] (FOCE)
il reset_hold reg[3] (FOCE)
il reset_hold regld] (FOCE)
il reset_hold reg[s] (FOCE)
il reset_hold regl6] (FOCE)
i reset_hold_reg[7] (FDCE]
i reset_hold_reg[8] (FDCE]
il reset_hold reg[9] (FOCE)
il reset_hold_reg[10] (FDCE)
il reset_hold_reg[11] (FDCE)
il reset_hold_reg[12) (FDCE)
[l reset_hold_reg(13) (FOCE)
Timing
Q T s C W Q = & @ =4 € M1 Timing Checks - Setup
General Information Name Slack 1 Levels High Fanout From To Total Delay Logic Delay Met Delay Logic
Settings Path 43 0.712 1 475 ftop/pfeonfig...old_reg[17]/C ftop/pfeonfig...unt_reg[10]/R 8.496 0.580 7.916 i
~ Timing Checks (50) Path 44 0.712 1 475 ftop/pfeonfig..old_reg(l71/C ftop/pfeonfig..unt_reg[111/R 8,496 0,580 7.916
Setup (40) Path 45 0.712 1 475 ftopipfconfig.. old reg[17]/C ftop/pfconfig ...ount reg[8|/R 8.496 0.580 7.016
Hold (40) Path 46 0.712 1 475 ftop/pfconfig...old_reg[171/C frop/pfconfig_...ount_reglSI/R 8,496 0.580 7.916
0.745 6 80 ftop/pfeonfig..ilSAXIHPLACLK ftop/zyng_sdp...eg_reg[2]/CE 8.754 2,409 6.345 2
Path 48 0.755 1 475 ftop/pfconfig...old_reg[17]/C ftop/pfconfig_..ount_reg[4]/R 8,452 0.580 7.872

<

Report Timing - complex_mixer_0_zed base-timing (saved)

Figure 6: Xilinx Vivado Interactive Timing Report

10.5 Elaborated XSIM design

To open up the results of XSIM’s xelab:
xsim <path-to-0CPI-container-dir>/target-<tgt>/<0CPI-container-name>

12

Vivado Usage Notes

ANGRYVIPER Team

Vivado 2017.1

File Edit Tools Window Layout View Bun Help Quick Access
=, B o ¥ 4 » % 10|ns v|®
SIMULATION - Simulation - complex_mixer_0_frw_xsim_base

Scope % Sources I Objects

Q = 3 #|1Q

Name Design Unit Block Type Name

~ £} complex_mixer_0_frw_xsim_base complex_mix.. VHDLER... » 4y ocpi_deb...
> @ ftop complex_mix.. VHDLEM. > g ocpi_endi.
@ glbl glbl werilog ... » &g sdp_widt...

Tcl Console

Q x = 1
© INFO:
. # xsim {complex_mixer @ frw xsim_base} -autoloadwcfg
© ¥ivado Simulator 2817.1

Time resolution is 1 ps

X Messages

B BE O

Value

0
01

[IP_Flow 19-2313] Loaded Vivado IP repository '/opt/Xilinx/Vivado/2017.1/data/ip’.

= o x
Default Layout ~
? X
oo Xx
-]
Data .. ™
Array
Array
Array
>
? 00

Sim Time: 0 fs

Figure 7: Xilinx Vivado Simulator Elaborated Design

10.6 Open XSIM Wave Database

As with any other simulator, you can run:
ocpiview <simulations-directory>

For example, for the complex_mixer.test Unit Test, after running case00.00 with ocpidev’s —-keep-simulations
option (or Make’s KeepSimulations=1) set, you can run:
ocpiview run/xsim/case00.00.complex mixer.hdl.simulation

13

Vivado Usage Notes ANGRYVIPER Team

Vivado 2017.1 = o x
Eile Edit Tools Window Layout View Bun Help
=, o 10 | ns Default Layout v
SIMULATION Simulation Result - xsim wdb | simulation Result - xsim.wdb (2) |
Scope Untitled 1*
Q = = o Q 4 | W @ g X o« 14l T o
Name Name o
~) complex_mixer_0_frw_xsim_base > fictlin
~ 4 ftop > ctl_out
» @ pfconfig_i » @ props_in
~ @ complex_mixer_0_frw_i > i props_out
~ @ assy > din_n
~ 0} complex_mixer ¥ @ in_out
~ o > fiout_in
> Ghwei > [out_out
» G in_port btake_s
» @ out_port & give_s
» 4 worker b som_s
> @ complex_mixer_in beom s
> @ complex_mixer_out Bld_s
> 4 sdp_unoc2ecp_i > #msg_cntl..
» 0} ocscp_i ¥ 3§ max_sam...
> 0 metadata_| Bzm_curre...
@ glbl b zm_take
% zlm_force. .
b zm_force...
bzm_force..,
< B >
Tcl Console
Q x = I B B @O
xsim {xsim.wdb} -autoloadwcfg -tclbatch {view.tcl} il

source view.tcl
open_wave_database xsim.wdb
add_wave {{/complex_mixer_0_frw_xsim_base/ftop/complex_mixer_0_frw_i/assy/complex_mixer/rv/worker}}

< ¥
Sim Time: 202145 ns

Figure 8: Xilinx Vivado Simulator Wave Database

11 OpenCPI Output Files for Vivado

e .jou: Vivado journal file

e .jou.bak: Backup of the previously generated Vivado journal file

e <asset-name>-vivado.out: OpenCPI and Vivado output for synthesis of an asset
e <impl-stage>.out: OpenCPI and Vivado output for a stage of implementation

e .xpr: Every stage of compilation for every OpenCPI asset results in a Vivado project file. This project file
can be opened in Vivado to observe the source files associated with that stage.

e .edf: Vivado’s netlist format. This is the artifact of building any OpenCPI asset except primitive libraries.

e .dcp: After the container is synthesized, implementation begins. From then on, DCP (Vivado’s Design
Checkpoint) files are used as the result of each implementation stage.

e .rpx: Vivado’s Interactive Timing Report. This file is generated as a result of the timing stage which is run
after route.

e .1libs, .sources, .cores: The OpenCPI files used to store information regarding the libraries, sources, and
cores that an asset depends on

e x.hw, x.ip user_files, *.cache directories: Various directories generated by Vivado when creating a
project or running synthesis/implementation stages

14

Vivado Usage Notes

ANGRYVIPER Team

12 OpenCPI Output Files for XSIM

e .log: XSIM log file for xelab, xvhdl, and xvlog commands
e .vdb: Output of XSIM’s source parser
e xsim.dir: Files generated by XSIM during setup and elaboration

e .pb: Message information for Vivado’s “Messages” window

15

	References
	Migrating an OpenCPI Platform from ISE to Vivado
	Reverting an OpenCPI Platform from Vivado to ISE
	Vivado Constraints Files
	Using PreBuilt Cores/Netlists with Vivado and OpenCPI
	Simulating Vivado IP or PreBuilt Cores with XSIM in OpenCPI
	Using Vivado IP with OpenCPI
	Makefile options for Vivado/XSIM compilation
	Incremental Compilation - Place/Route
	Synthesis Options : Applies to primitives, workers, platforms, configs, assemblies, containers
	Enabling Optimization Stages
	Implementation Options : Applies to Containers
	XSIM Options : Applies to primitives, workers, platforms, configs, assemblies, containers

	Global Tcl Initialization Scripts
	Opening up designs in the GUI
	EDIF Netlist
	Project File
	Implementation Design Checkpoint
	Interactive Timing Report
	Elaborated XSIM design
	Open XSIM Wave Database

	OpenCPI Output Files for Vivado
	OpenCPI Output Files for XSIM

