
OpenCPI
REDHAWK Export Guide

How to Export OpenCPI Applications and Components for Execution in a
REDHAWK environment (see redhawksdr.org)

OpenCPI REDHAWK Export Guide Page 1 of 14

http://redhawksdr.org/

Revision History
Revision Description of Change Date

1.0 Initial Version 2017-03-23

OpenCPI REDHAWK Export Guide Page 2 of 14

Table of Contents

1 References..4

2 Overview..5

3 Preparing the Application for Export...6
3.1 Defining the External Ports of the Application..7
3.2 Executing the Application or Component Prior to Export..8

4 Using the ocpirh_export Tool..10

5 Receiving and Using the Exported Package in REDHAWK...12

6 Building the ocpirh_export tool in an OpenCPI Source Installation..................................14

OpenCPI REDHAWK Export Guide Page 3 of 14

1 References

This document depends on the OpenCPI Application Development Guide. For
information on component development, which is not a prerequisite of this document,
see the OpenCPI Component Development Guide (CDG).

Table 1 - Table of Reference Documents

Title
Published
By

Link

OpenCPI Application
Development Guide

OpenCPI
Public URL:

https://github.com/opencpi/opencpi/raw/2017.Q1/doc/p
df/OpenCPI_Application_Development.pdf

OpenCPI Overview OpenCPI
Public URL:

https://github.com/opencpi/opencpi/raw/2017.Q1/doc/p
df/OpenCPI_Overview.pdf

OpenCPI Component
Development Guide

OpenCPI
Public URL:

http://www.opencpi.org/raw/2017.Q1/doc/pdf/OpenCPI_
Component_Development.pdf

OpenCPI REDHAWK Export Guide Page 4 of 14

https://github.com/opencpi/opencpi/raw/2017.Q1/doc/pdf/OpenCPI_Component_Development.pdf
https://github.com/opencpi/opencpi/raw/2017.Q1/doc/pdf/OpenCPI_Component_Development.pdf
http://opencpi.org/
https://github.com/opencpi/opencpi/raw/2017.Q1/doc/pdf/OpenCPI_Overview.pdf
https://github.com/opencpi/opencpi/raw/2017.Q1/doc/pdf/OpenCPI_Overview.pdf
http://opencpi.org/
https://github.com/opencpi/opencpi/raw/2017.Q1/doc/pdf/OpenCPI_Application_Development.pdf
https://github.com/opencpi/opencpi/raw/2017.Q1/doc/pdf/OpenCPI_Application_Development.pdf
http://opencpi.org/

2 Overview

The purpose of this document is to describe a tool, ocpirh_export, that exports
OpenCPI components and applications for execution as components in a REDHAWK
(RH) environment. This tool is part of OpenCPI. The user of this tool must be familiar
with application development in OpenCPI, as it is based on, and analogous to preparing
OpenCPI applications for execution in the OpenCPI runtime environment.

REDHAWK is a software-defined radio (SDR) framework, available at redhawksdr.org.
It is a software component-based framework based on Eclipse, CORBA and the
Software Communication Architecture (SCA) as defined at
http://www.public.navy.mil/JTNC/SCA, with some modifications and enhancements.

The capability described in this document is a specific bridge between the two
environments that facilitates exactly one of many possible interaction and integration
use cases between the OpenCPI and REDHAWK frameworks. Namely:

 An OpenCPI component or application developer needs to provide a package to a
RH developer such that the RH developer can install the OpenCPI component or
application as a component in the RH environment.

 The OpenCPI developer does not need to install or learn about RH to provide this
service.

 The RH developer does not need to learn about (but must install), the OpenCPI
environment.

The preparation for this export scenario is very similar to the preparation to execute any
OpenCPI application: component implementations must be built, available as
executable artifacts, and discoverable via the OCPI_LIBRARY_PATH environment
variable. Except when exporting a single OpenCPI component, the OpenCPI
application must be prepared and defined in an XML file called an OpenCPI Application
Specification (OAS).

The result of this export operation is a single package file that is in the normal format
used to export a component from one RH environment to another (called an RPM
package). It can be sent to a RH user as an email attachment or any other single file
transfer method.

The export package is heterogeneous, meaning that the package contains artifacts that
allows the OpenCPI components in the application to execute on any type of OpenCPI
container available in the OpenCPI installation on the RH system. This enables both
applications using a mix of workers targeting different processors as well as multiple,
alternative execution scenarios where multiple artifacts are provided for the same
component. The RH installation must be one of the RH supported platforms, currently
CentOS6 or CentOS7.

The OpenCPI developer prepares the OpenCPI application to execute in a number of
deployment scenarios (types of containers and artifacts), and then uses the
ocpirh_export tool to prepare the RH component package (RPM file) to transfer to
the RH user/developer.

OpenCPI REDHAWK Export Guide Page 5 of 14

http://www.public.navy.mil/JTNC/SCA
http://redhawksdr.org/

3 Preparing the Application for Export

As mentioned above, components or application may be exported from OpenCPI to RH.
Exporting a component means exporting an application consisting of that single
component, with its properties taking default values, and all its ports made external.
Thus exporting a component is just a shortcut for exporting a simple application based
on that component, with all its ports declared as external using the externals attribute
in the single instance element of the OAS.

OpenCPI REDHAWK Export Guide Page 6 of 14

3.1 Defining the External Ports of the Application

External ports are designated in the OAS XML file using one of these methods:

 the externals (plural) boolean attribute of an instance specifies that all its
unconnected ports should be considered external to the application, using the
instance's port names, e.g.:
<application>

<instance component='ocpi.bias' externals='true'/>
</application>

 the external (singular) string attribute of an instance can designate that a single
port of the instance be external, using the instance's port name.
<application>

<instance component='c1' external='input' connect='c2'/>
<instance component='c2' external='output'/>

</application>

 a connection element in the application can designate that a port of an instance
should be considered external, using a specified name that may be different than
the instance's port name., e.g.
<application>

<instance component='c1' connect='second'/>
<instance component='c2'/>
<connection>

<external name='extIn'/>
<port name='in' instance='c1'/>

</connection>
<connection>

<external name='extOut'/>
<port name='out' instance='c2'/>

</connection>
</application>

External ports of the OpenCPI application being exported become the ports of RH
component when it is imported. The OpenCPI port protocol is translated into a RH-
supported protocol (defined by CORBA IDL) so that the exported application can
interoperate with other RH components via ports. This translation has limitations since
not all OpenCPI protocols can be translated into a supported RH protocol. This
translation capability will be expanded over time, but is currently limited to protocols with
a single message (operation) carrying a sequence or array of scalar values. Any of the
OpenCPI scalar types is appropriately translated into the related RH “bulkIO” protocols.

OpenCPI REDHAWK Export Guide Page 7 of 14

3.2 Executing the Application or Component Prior to Export

Before exporting the application, it should be executed locally using ocpirun to ensure
it executes correctly. Once the application is verified to run correctly, it can be exported.

To execute an application with external ports using ocpirun, they can be redirected to
files using the -f or --file option to ocpirun, e.g.:

ocpirun –f in=test.input -f out=test.output myapp.xml

This redirection simply uses the file_read and file_write utility components to
produce data for external input ports and consume data from external output ports. The
syntax of these redirection options is the same as the HTTP URL query syntax in that
the file name can be followed by a ? to indicate further <name>=<value> options,
separated by &. In this case the options are property values supplied to the
file_read and file_write components. The most commonly used properties for
this purpose are the messagesInFile boolean property (indicating that the files
contain explicitly delimited and opcode-tagged messages), and the messageSize
attribute indicating the size of messages in bytes when reading or writing raw message
data without any delimiters or opcode tags. An example where an input file has been
previously written using the messagesInFile option, might be:

ocpirun –f in=test.input\?messagesInFile=true \
 -f out=test.output myapp.xml

Notice that the ? character is escaped for the shell command line.

The file redirection options are used to verify the correct behavior of the application at
its external ports. When actually exporting the application, they are not used at all.

When the application is working under these conditions, the other preparatory step
before exporting is to decide which OpenCPI deployments are to be enabled in the
exported package. A deployment is a file that is optionally written when an application
is executed, using the --deploy-out option to ocpirun. The file captures, for each
component in the application, which artifact file was used to execute each component.
Another (boolean) option, --no-execute, specifies that ocpirun should do all the
work to figure out how to execute the application (doing lots of error checking), and then
stop before the execution actually takes place. By combining these two options, a
deployment file is created that captures one way that the application could run.

If no deployment files are supplied to the export process, one is automatically created
by using these two options, creating a default deployment. When --no-execute is
specified, external ports do not need to be redirected at all.

So to prepare for export, testing is done with ocpirun using file redirection (or possibly
with a custom ACI application), and if needed, a set of deployment files should be
created if there is more than one way the application should be run when exported (i.e.
on different platforms or using different artifacts).

OpenCPI REDHAWK Export Guide Page 8 of 14

When the export function is run (using the ocpirh_export command described below), it
will use the application XML file (unless only a component is being exported), optionally
accompanied by a set of deployment files.

OpenCPI REDHAWK Export Guide Page 9 of 14

4 Using the ocpirh_export Tool

This tool is enabled when OpenCPI is built from source as described below. It's primary
input is either an OpenCPI application XML file (OAS) or the name of a component
(usually with a package prefix). Its primary output is an installable RH package file (an
RPM file). Without any options the RH package file is created in the current directory.

When this tool runs, it does not perform any compilation or linking since it relies on the
existence of OpenCPI artifact files that have resulted from building component
implementations (workers). It does not rely on any RH software being installed.

The syntax is:
ocpirh_export [options] <app-file-or-component-name> [<depfiles>...]

The output file will be in the current directory, and its name will start with the component
or application name, and have a .rpm suffix. The options are in the table below.
Boolean options have no value. String options have a value in the argument following
the option designation.

Table 2: Options to ocpirh_export

Letter Datatype Description

d String The name of a directory where the resulting package file will be created.
The default is the current directory where the command was run.

t String The staging directory used during the export process. The default will be a
temporary directory created by the command. The directory and its
contents will be removed when the comment completes unless the -k
option is specified.

k Bool Keep the contents of the staging directory after the command completes in
cases where failures need to be diagnosed.

c Bool Indicates that the argument after [options] will be treated as a component
name (with optional package prefix as in OAS instance elements). If -c
is not specified, the argument will be processed as an OAS XML file.

i Bool Install the resulting RH package RPM file on the local system, assuming
there is a RH installation present. The file will still exist after installation.

p String The RH package prefix to use for the resulting package. This is not
necessarily an OpenCPI package name. It will set the grouping name in
the RH IDE, the directory where the package will be installed under
/var/redhawk/sdr/dom/components, and the prefix on the name
of the resulting package file.

f String Specifies a file that should be included in the package that can be used by
the exported application. This option can occur multiple times.

OpenCPI REDHAWK Export Guide Page 10 of 14

As an example, the following command would create a RH package for the ocpi.bias
component, put the resulting RPM file in the myrh directory, assign this component in
the RH group mycomps, and add the file mydata to the package so that it is available
for the component to access when it runs. Before the command completes it will
immediately install the resulting RM package file in the local RH installation.

ocpirh_export -c -d myrh -p mycomps -f mydata -i ocpi.bias

The mydata file will be accessible from the current working directory of the component
when it executes.

Another example below, would export the myapp OpenCPI application, and ensure that
it will be able to run deployments as indicated in the dep1 and dep2 XML files. It would
use the mytmp directory as a staging area, and keep its contents intact for analysis of
the export process.

ocpirh_export -t mytmp -k myapp dep1 dep2

OpenCPI REDHAWK Export Guide Page 11 of 14

5 Receiving and Using the Exported Package in REDHAWK

The RH package file (an RPM file) can be installed into a RH environment in several
ways. The primary method is to use the yum command, e.g.:

yum install mycomps.bias.1.0.0.rpm

RPM files can also be installed while in the IDE using the Open->File menu item, which
will ask whether the RPM should be installed.

In both cases, if the RH IDE is running when the installation takes place it must be
restarted to recognize the existence of the newly installed components. This can be
done by existing and starting the IDE, or by using the File->Restart menu option in the
IDE.

The newly imported components will appear in the IDE under the “components” pallet,
under the category with the package name indicated during export. The components
that are built in to the RH system are found under the rh category. So if a number of
components or applications are being exported, they can all be part of such a grouping
when imported.

The following screen image shows the components hierarchy in two different places in
the RH IDE. In both, the rh group shows the built-in components that come with RH,
and the other three result from installing exported components and applications in the
ocpi, ocpipkg, and pkgocpi groups. These groups are determined at the time of
export.

OpenCPI REDHAWK Export Guide Page 12 of 14

OpenCPI REDHAWK Export Guide Page 13 of 14

6 Building the ocpirh_export tool in an OpenCPI Source
Installation

Using this ocpirh_export tool does not require a RH installation to be present at all.
However, to create this tool in a source distribution of OpenCPI, at least a partial RH
installation is required. If a complete RH installation has already been performed on the
system running OpenCPI, then the standard build of OpenCPI from source will build this
tool and the internal assets used by it.

If there is no RH installation on the system and no need for one, then a minimal
installation can be performed by the scripts/install-redhawk.sh script in the
OpenCPI source tree. The resulting installation is sufficient to build the
ocpirh_export tool (and its internal assets used at the time of export), but is not
otherwise sufficient for using RH. Once the build process is complete, even this
minimal RH installation is unnecessary.

This minimal subset RH installation is still installed globally on the system. This is
different from other prerequisite package installations that are normally installed in an
OpenCPI-specific sandbox area that does not affect or provide a global installation of
those packages. If a complete RH installation is performed later it will use the
preinstalled subset assuming the versions match.

When at the root of the OpenCPI source tree, the command:
./scripts/install-redhawk.sh

will install the subset after copying various files from their network download location.

Then the normal source build commands as described in the OpenCPI installation
document will also build this tool. If the RH installation (full or partial) is done later, then
rerunning the OpenCPI build commands will then build this tool even if it was not built
prior to the RH installation.

OpenCPI REDHAWK Export Guide Page 14 of 14

	1 References
	2 Overview
	3 Preparing the Application for Export
	3.1 Defining the External Ports of the Application
	3.2 Executing the Application or Component Prior to Export

	4 Using the ocpirh_export Tool
	5 Receiving and Using the Exported Package in REDHAWK
	6 Building the ocpirh_export tool in an OpenCPI Source Installation

