
OpenCPI
RCC Development

Guide

OpenCPI RCC Development Guide Page 1 of 75

Revision History
Revision Description of Change Date

0.1 Initial, from earlier doc sources 2015-10-31
0.9 Add all C++ content slave/proxy content, references to CDG 2016-01-27
0.95 Another editing pass with more consistent typography 2016-02-04
1.0 Accommodate additional issues, debug, opcodes, additional C++ container methods, debugging, C++

example
2016-04-13

1.0.1 Clarify run conditions, beforeQuery, firstRun, minbuffercount, port masks, ordinal() 2016-09-24
1.0.2 Clarify (non) interaction between minbuffercount OWD attribute and run conditions 2016-10-18
1.1 Update for 2017Q1 2017-02-21
1.2 Update for 2017.Q1 2017-08-08
1.3 More multi-threaded guidance and limited library/local service functions 2018-02-23
1.4 C++ log methods added, and setRunCondition clarifications, multiple slaves using slave elements 2018-09-24
1.5 Update for release 1.5 2019-04-25

OpenCPI RCC Development Guide Page 2 of 75

Table of Contents

1 Introduction..6
1.1 References..7

2 Overview...8

3 XML Description Files (OWD) for RCC Workers...9
3.1 Attributes of a Top-level RCCWorker Element...10

3.1.1 Name Attribute — See the CDG..10
3.1.2 Spec Attribute — See the CDG..10
3.1.3 ControlOperations Attribute — See the CDG..10
3.1.4 Language Attribute...10
3.1.5 Slave Attribute — C++ Language Only..10
3.1.6 ExternMethods Attribute — C Language Only..10
3.1.7 StaticMethods Attribute — C Language Only...11
3.1.8 StaticPrereqLibs Attribute...11
3.1.9 DynamicPrereqLibs Attribute..11

3.2 Attributes of Port Elements in the OWD..12
3.2.1 Name Attribute...12
3.2.2 MinBufferCount Attribute...12

3.3 Attributes of Slave Elements in the OWD..13
3.3.1 Name Attribute of the Slave Element...13
3.3.2 Worker Attribute of the Slave Element...13

4 The RCC Worker Interface..14
4.1 The RCC Execution Model...16
4.2 Worker Methods: Called by the Container, Implemented by the Worker..................................17

4.2.1 RCCWorker Structure Type – C Language Only...17
4.2.2 The Worker Derived Class – C++ Language Only...18
4.2.3 RCCResult Enumeration Type — C and C++ Languages...19
4.2.4 Worker Initializations..20
4.2.5 initialize — Worker Method..20
4.2.6 start — Worker Method...21
4.2.7 stop — Worker Method..22
4.2.8 release — Worker Method...22
4.2.9 run — Worker Method...22

4.3 Container Methods, Called by the Worker...24
4.3.1 firstRun — Container Method..24
4.3.2 setError — Container Method..25
4.3.3 log — Container Method..25
4.3.4 willLog — Container Method..25
4.3.5 time/getTime — Container Method...26
4.3.6 The RCC::RunCondition C++ Class and RCCRunCondition C Structure....................................26
4.3.7 getRunCondition — Container Method — C++ Language Only..29
4.3.8 setRunCondition — Container Method — C++ Language Only...29

4.4 Port Management Data Members and Methods...31
4.4.1 advance — Release Current Buffer, and Request Another..32
4.4.2 hasBuffer — Query a Port for Whether It Has a Current Buffer-to-release.............................32

OpenCPI RCC Development Guide Page 3 of 75

4.4.3 isConnected — Query a Port for Being Connected...33
4.4.4 ordinal — Obtain an Ordinal for a Port...33
4.4.5 request — Request a New Buffer..33
4.4.6 send — Send an Input Buffer on an Output Port..34
4.4.7 setDefaultLength — Set Default Message Length at an Output Port — C++ Language Only. .34
4.4.8 setDefaultOpCode — Set Default Opcode at Output Port — C++ Language Only..................35
4.4.9 take — Take a Buffer from an Input Port..35

4.5 Buffer Management Data Members and Methods..37
4.5.1 checkLength — Check Size of the Buffer — C++ Language Only...37
4.5.2 data — Access the Raw Contents of the Buffer..37
4.5.3 length — Retrieve the Length of the Message in a Buffer – C++ Language Only....................38
4.5.4 maxLength — Retrieve the Maximum Available Space in the Buffer......................................38
4.5.5 opCode — Retrieve the OpCode of the Message in a Buffer..38
4.5.6 eof — Retrieve the EOF status of the Buffer...39
4.5.7 release — Release a Buffer...39
4.5.8 setLength — Set the Length of the Message in a Buffer — C++ Language Only.....................39
4.5.9 setOpCode — Set the OpCode for the Message in a Buffer — C++ Language Only................40
4.5.10 setInfo — Set the Metadata Associated with a Buffer — C++ Language Only......................40
4.5.11 setEOF — Set the EOF status of the Buffer...40
4.5.12 topLength — Retrieve the Size of the Single Sequence in a Message — C++ Language Only
..40

4.6 Accessing the Contents of Messages...42
4.6.1 Accessing Messages in C Language Workers...42
4.6.2 Accessing Messages in C++ Language Workers...43

4.7 How a Worker Accesses its Properties...44
4.7.1 The Worker Property Structure..44
4.7.2 The Accessing Worker Properties in C..44
4.7.3 Accessing Worker Properties in C++...45
4.7.4 Property Access Notifications in C++..45
4.7.5 Accessing the Values of Parameter Properties..46

4.8 Controlling Slave Workers from Proxies — C++ Language Only...47
4.8.1 start — Slave Method...47
4.8.2 stop — Slave Method...48
4.8.3 isOperating — Slave Method..48
4.8.4 getProperty_<property> — Slave Method...48
4.8.5 setProperty_<property> — Slave Method..49
4.8.6 get_<property> — Slave Method...49
4.8.7 set_<property> — Slave Method..49
4.8.8 getLength_<property> — Slave Method...50
4.8.9 Examples..50

4.9 Worker Dispatch Structures — C Language Only...51
4.9.1 RCCDispatch Structure Type...51

5 Code Generation for RCC Workers...53
5.1 Namespace Management...54
5.1 Generated Data Types...55

5.1.1 The Enumeration Constants for the Worker’s Ports..55
5.1.2 The Properties Structure Type..55

OpenCPI RCC Development Guide Page 4 of 75

5.1.3 Structures for Message Payloads — C Language Only..56
5.1.4 Worker Base Class — C++ Language Only...57

6 RCC Local Services...58
6.1 RCC Local Services AEP as a Small Subset of POSIX and ISO-C...60

7 Summary of OpenCPI RCC Authoring Model..62

8 Building RCC Workers..63
8.1 RCC Compiler and Linking Options..63

9 Worker Code Examples..66
9.1 C Language Examples..66

9.1.1 Worker Using the Default Run Condition..66
9.1.2 Worker Using the State-machine Style...67

9.2 C++ Language Examples..71
9.2.1 Worker Using the State-machine Style...73

10 Glossary..74

11 List of Abbreviations and Acronyms...75

OpenCPI RCC Development Guide Page 5 of 75

1 Introduction

This document specifies the OpenCPI Resource-Constrained C/C++ Language
(RCC) authoring model and describes how to write RCC workers in C or C++. This
model is based on the C language and makes most design choices to minimize
resources appropriate for resource-constrained embedded systems. DSP processors
with on-chip memories, micro-controllers, and multi-core processors are natural targets
for this authoring model. The RCC model is also an appropriate model for any general-
purpose processor with a C compiler, when the developer is comfortable with the
constraints of the C language.

This document also describes a C++ variant of this authoring model that takes
advantage of the expressive power of the C++ language. Both the C and C++ language
variants are considered to be based on this one authoring model as so many concepts
and details are common.

This specification is based on the authoring model concept as defined in the OpenCPI
Component Development Guide, and is a prerequisite to this document. That
document introduces key concepts for all authoring models, including the configuration
and lifecycle model of components, and the software execution model for most
authoring models targeting general purpose software platforms.

All OpenCPI authoring models are required to coexist and interoperate with the other
existing models that are more appropriate for their respective processing technologies.
These include the OCL authoring model for GPUs, and the HDL authoring model for
FPGAs. Other models and any unique aspects to their associated development
workflow, are described in their own documents.

OpenCPI RCC Development Guide Page 6 of 75

1.1 References

This document depends on several others. Primarily, it depends on the OpenCPI
Component Development Guide, which describes concepts and definitions common
to all OpenCPI authoring models. As the RCC authoring model is based on the C
language, specifically C90: ISO/IEC 9899:1990, it also depends on the ISO-C language
reference manual and associated libraries. The exceptions to the C90 basis are the use
of <stdint.h> from C99. The C++ authoring model is based on the language as
defined in ISO/IEC 14882:2003, prior to Cxx11. While it is possible to develop workers
enabling C++11 (or later) features, this reduces portability for embedded systems
running older compilers. A later major release will be centered on C++11.

Table 1: Table of Reference Documents

Title Published By Link

OpenCPI Overview OpenCPI
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_
Overview.pdf

OpenCPI Component
Development Guide OpenCPI

https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI_
Component_Development.pdf

ISO C Language
Specification

C Language ISO/IEC 9899:90

ISO C++ Language
Specification

C++ Language ISO/IEC 14882:2003

OpenCPI RCC Development Guide Page 7 of 75

http://www.open-std.org/JTC1/SC22/WG21/
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Component_Development.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Component_Development.pdf
http://opencpi.org/
https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI_Overview.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI_Overview.pdf
http://opencpi.org/

2 Overview

RCC workers are C/C++ language component implementations. They are hosted in an
OpenCPI container, which is responsible for:

 loading, executing, controlling, and configuring the worker

 effecting data movement to and from the data ports of the worker

 providing interfaces for the local services available to RCC workers.

RCC workers that are executing and collocated together in the same container can
make use of local zero-copy approaches to move data between them. For connections
between workers in different containers, the containers move data between each other
using a common data transport mechanism. Containers make use of a default data
transport between the two devices unless explicitly configured to do otherwise.

The OpenCPI Component Development Guide (CDG) contains sections for the
general introduction to the control plane functionality of workers and containers,
followed by the general execution model of software-based workers. The specifics of
the RCC authoring model are included here, consisting of:

 container-to-worker interfaces: how the container calls the worker’s entry points

 worker-to-container interfaces: how the worker calls the container’s entry points

 the local services: how the worker uses local services and which ones are
available.

Creating a component implementation (a.k.a. authoring a worker), includes writing
source code as well as specifying certain characteristics of the implementation in a
separate XML file. This XML file is called the OpenCPI Worker Description (OWD). It
refers to the OpenCPI Component Specification (OCS) being implemented, specifies
the authoring model and language, and describes any non-default constraints or
behavior of this particular component implementation. It includes attributes and
information that are specific to the authoring model. RCC OWDs are initially generated
using the ocpidev tool and then may be further customized. The ocpidev tool and
the OWD aspects that are common to all authoring models are described in the
OpenCPI Component Development Guide.

RCC workers can act as a proxy for other workers, which then act as slaves. Proxy
workers provide a control interface via their properties and control operations that are
translated into lower level controls for workers that are more primitive, usually device
specific, and usually written using different more processor-specific authoring models.

Having a proxy for higher level, more generic control processing relieves the slave
workers of the complexity and burden and footprint of adapting to common interfaces
and control protocols. A common use-case for proxies is controlling device workers,
which are fully described in the OpenCPI Platform Development Guide. In an
application, a proxy is guaranteed to be configured and started before its slaves are
started, allowing the proxy to privately configure the slave.

OpenCPI RCC Development Guide Page 8 of 75

3 XML Description Files (OWD) for RCC Workers.

This section describes the format and structure of the RCC OWD. This XML document
specifies for the worker:

 The OCS being implemented (required)

 The authoring model (required) and language (may default)

 Some generic worker attributes allowed in all authoring models (all optional)

 Some attributes and elements specific to RCC workers (all optional)

 Property information beyond what is in the OCS (all optional)

 Port information beyond what is in the OCS (all optional)

The top level XML element for a RCC worker is RCCWorker, which implies the
authoring model. Using defaults the simplest OWD for an RCC worker would be:

<RCCWorker spec='myspec'/>

The RCCWorker XML element includes or references an OCS, and then describes
implementation information about this particular RCC implementation of that OCS. The
RCCWorker element must either include as a child element a complete OCS, or include
one by reference, using the spec attribute of the top-level element. For example, the
“vsadd” RCC implementation of the “vsadd-spec” OCS would reference the component
specification this way:

<RCCWorker spec=”vsadd-spec”
---other attributes---
>
---other child elements---

</RCCWorker>

The RCCWorker follows the specification of OWDs in general as specified in the CDG.
This section only defines the aspects of the RCC OWD that are not common to all
OWDs. A more complete example is below:

<RCCWorker language='c++' spec='vsadd-spec'>
 <SpecProperty name='control' readable='true'/>
 <Property name='debug' type='float' volatile='true'/>
 <Port name='in' minBufferCount='2'/>
</RCCWorker>

The RCCWorker element may also include the OCS as an embedded child element in
the rare cases when there can never be alternative implementations of that OCS.

OpenCPI RCC Development Guide Page 9 of 75

3.1 Attributes of a Top-level RCCWorker Element

The name, spec, controlOperations, onlyPlatforms, excludePlatforms,
sourceFiles, includeDirs and componentLibraries attributes are the same for
all authoring models and are described in the CDG.

3.1.1 Name Attribute — See the CDG

3.1.2 Spec Attribute — See the CDG

3.1.3 ControlOperations Attribute — See the CDG

3.1.4 Language Attribute

The Language attribute of the component implementation for RCC workers should
have the value c or c++. The default is c.

3.1.5 Slave Attribute — C++ Language Only

This attribute indicates that this worker is a proxy for one other worker, and that other
worker is named as the string value of this attribute. This attribute is only supported for
C++. The name of the slave worker may have a package prefix, denoted with periods, if
the slave worker is not in the same namespace as this worker. The slave worker name
must include the authoring model suffix. An example is:

<RCCWorker language='c++' slave='ocpi.devices.xyz_adc.hdl'/>

This would indicate that this worker is a proxy for the HDL worker named xyz_adc, in
the ocpi.devices package name scope. The indicated slave worker must be in the
same library as this proxy.

This attribute cannot be used when a worker is a proxy for more than one slave. In that
case the slave element must be used. See Slave Elements.

3.1.6 ExternMethods Attribute — C Language Only

The default scope and name for RCC worker methods in C is to be declared static, i.e.
name-scoped in the file, and have the method name in lower case, e.g.:

static RCCResult start(RCCWorker *self);

This attribute is used to change the name scope to external, and provide a pattern string
to use when generating the names of methods. The pattern string value of this attribute
is like a sprintf format string where various letter codes are preceded by % to insert
values into the string. The letter codes are: m (lower case method name), M (capitalized
method name), w (lower case worker name), and W (capitalized worker name). An
example is the pattern %W_%m, which, for the start method of the XYZ worker, would be:

extern RCCResult Xyz_start(RCCWorker *self);

The code generator uses this pattern when generating the skeleton file for the worker.
Making worker methods have externally-scoped names allows them to be implemented
in separate source files.

OpenCPI RCC Development Guide Page 10 of 75

3.1.7 StaticMethods Attribute — C Language Only

This attribute provides a pattern like the ExternMethods attribute, but leaves the
worker methods in the file scope, declared static.

3.1.8 StaticPrereqLibs Attribute

This attribute provides a list of names of prerequisite libraries needed by this worker.
Prerequisite libraries are only those built in to OpenCPI (at this time). Mentioning these
libraries automatically adds the header file directory associated with the library to be
searched when the worker source files are compiled.

The indicated libraries are statically linked into the binary artifact for this worker and are
thus not shared by any other worker. This static mode makes using the worker simpler
since there is no requirement for the library to be present, as a dynamically loaded
library, in the runtime environment.

3.1.9 DynamicPrereqLibs Attribute

This attribute provides a list of prerequisite libraries needed by this worker. Prerequisite
libraries are only those built in to OpenCPI (at this time). Mentioning these libraries
automatically adds the header file directory associated with the library to be searched
when the worker source files are compiled.

The indicated libraries are dynamically linked with the binary artifact for this worker and
are thus sharable by any other worker. This dynamic mode makes using the worker's
use of the library require the library to be present, as a dynamically loaded library, in the
runtime environment.

OpenCPI RCC Development Guide Page 11 of 75

3.2 Attributes of Port Elements in the OWD

The port child element of the RCCWorker specifies information about a data port in the
OCS. It references an OCS port, or dataInterfaceSpec, element by its Name
attribute. The Name attribute of the Port element must match the Name attribute of a
Port or DataInterfaceSpec element of the ComponentSpec. The Port element
adds implementation-specific information about the port initially defined in that
ComponentSpec.

A number of attributes available for the port element are common to all authoring
models and are described in the CDG. These are usually used to override attributes
inferred from the protocol associated with the data port.

3.2.1 Name Attribute

This attribute specifies the name used to reference the Port or DataInterfaceSpec
element in the OCS. It must match the name used for the port in the OCS.

3.2.2 MinBufferCount Attribute

This numeric attribute specifies the minimum number of message buffers required by
the worker for a port. The Worker Interface allows the worker code (typically in the
run method) to take a buffer from an input port, and ask for a new buffer for that port
while retaining ownership of the previous buffer from that port. This behavior requires
the infrastructure to provide at least two buffers for that port.

The buffers are guaranteed to exist, so the worker can keep one that is full while waiting
for another one and be guaranteed that it will be able to receive a second buffer while
holding onto the first (i.e. not deadlock). If the worker wants to compare the previous
buffer with the next buffer, it requires there to be two, but it does not require that when
the first one arrives, the second one is also full of data ready to process.

This attribute informs the infrastructure as to the minimum buffering requirements of the
worker implementation for that port. The default value is one. This attribute should not
be used to tune the buffer count for performance. It should only specify the actual
minimum requirements for the correct function of the worker.

MinBufferCount only applies to input ports, since there is no way to use the current
worker interface to depend on the existence of multiple output buffers.

This value has no effect on the behavior or interface for run conditions. See the
RunCondition and run worker method sections for more details. In particular it does not
wait for more than one buffer to be available before running the worker.

The stronger contract, where the worker will only be run when all of the required buffers
for a port are available, is not supported.

OpenCPI RCC Development Guide Page 12 of 75

3.3 Attributes of Slave Elements in the OWD

While the slave attribute can be conveniently used to indicate that this worker is a
proxy for a single slave, the slave element is used when there are multiple slaves.
One slave element is required for each such slave, and it specifies both the worker for
the slave, and the name that will be used to refer to that slave in the proxy worker's
code. It is possible and allowed for the proxy to have multiple slaves based on the
same worker.

3.3.1 Name Attribute of the Slave Element

This optional attribute specifies the name used in the proxy worker's source code to
reference this particular slave. If not specified, it is set to the worker name without the
model suffix and if there is more than one slave using the same worker, a zero-based
ordinal will be added as a suffix, similar to instance names in application XML.

3.3.2 Worker Attribute of the Slave Element

This attribute specifies the worker for this slave. Its syntax is the same as the slave
attribute described above. The attribute's value is the name of the worker to use as a
slave of this proxy and may have a package prefix, denoted with periods, if the slave
worker is not in the same namespace as this proxy worker. The worker name must
include the authoring model suffix.

OpenCPI RCC Development Guide Page 13 of 75

4 The RCC Worker Interface

This section defines the interface between the worker and its container: the API for this
authoring model. The term worker method is used as a shorthand and language-
neutral term for what is a member function in C++ or a worker entry point function in C.
Methods in C++ have an implicit this argument that is hidden by the language. C
language RCC workers have the first argument to all worker methods as an explicit
self argument. This is a pointer to a structure containing context and state information
for the worker as well as C function pointers to container methods

When discussing a worker's runtime behavior, the term worker is sometimes used as a
runtime instance of the worker in contrast to referring to the source code that is written
for the worker as a component implementation.

RCC worker code must avoid the prefixes OCPI and RCC (even without a trailing
underscore) for compile-time constants and types as these are used by the authoring
model. The RCC authoring model also specifies that all generated macros are upper
case, and all generated data types are capitalized and mixed CamelCase. User code is
recommended to follow these conventions, but is not required to do so.

The worker interface consists of control operation methods whose behavior is defined in
the Control Plane Introduction section of the CDG. In addition, there is a required
run method that supports the event-driven execution model defined in the Software
Execution Model section of that same document. The run method is the only required
method and all the other worker methods are optional. All processing of the worker
occurs in the context of these methods. There are two categories of methods:

 Worker methods represent functionality of the worker, to be called by the container,
and which may have default implementations. These include the run method, and
the lifecycle control operation methods: initialize, start, stop, and release.

 Container methods represent functionality of the container, to be called by the
worker, such as changing run conditions, and accessing ports and buffers. All C
language container methods are dispatched through function pointers in the
container member of the RCCWorker structure. C++ container methods are
accessible member functions inherited from the worker's base class.

Default methods are the behaviors that are executed if the user supplies no code for a
worker method. Default methods for C-language workers are indicated by NULL
pointers for those methods in the RCCDispatch structure . For C++, they are simply the
methods in the base class.

Several integral typedefs and constants are defined and used throughout the interface:

 RCCBoolean is aliased to uint8_t, to match the defined size in property space
and message layouts.

 RCCChar is a signed 8 bit type to represent property values of type “Char”.

 RCCOrdinal is used for ordinals for ports, operations, and properties.

OpenCPI RCC Development Guide Page 14 of 75

 RCCPortMask indicates a proper subset of a worker's ports, with ports indicated
using, e.g.: (1 << port1_ordinal) | (1 << port2_ordinal).

 Ordinals for ports are generated as enumeration constants <WORKER>_<PORT>.

 RCC_NO_PORTS is a mask of type RCCPortMask indicating no ports.

 RCC_ALL_PORTS is a mask of type RCCPortMask indicating all ports.

More complex data types used in worker and container methods are described in the
following sections where they are used.

OpenCPI RCC Development Guide Page 15 of 75

4.1 The RCC Execution Model

The CDG describes the fundamentals of software execution models for OpenCPI
software authoring models. RCC workers executing in their containers operate
according to this model, with the details described in the RCC Worker Interface section
below.

The container executes workers such that all execution threads are supplied by the
container. Thus there is no need or possibility for workers to create threads.
Containers may arrange for workers to run concurrently, each in its own thread, or run
one at a time with all workers in the container running in a single thread.

A simple non-preemptive single-threaded container implementation would have a loop,
testing run conditions, and calling workers' run methods. A more complex
environment might run workers in different threads for purposes of time preemption,
prioritization, etc. This worker execution model allows a variety of container execution
models while keeping the worker code simple.

On each execution, the worker sees the status of all I/O ports, and can read from
current input buffers, and write to current output buffers. It must return to get new
buffers, after specifying whether buffers are consumed or filled during the execution.

This simple execution environment can be easily implemented in full function GPP
environments, providing a test environment and a migration path to more minimal
embedded environments such as a single-threaded environment with no real operating
system at all (i.e. “bare metal”). Such a minimal environment is possible, although none
are currently supported.

The execution source code for an RCC worker should be written for a multi-threaded
environment. Since the interfaces between the worker and container are already
implicitly thread-safe, this concern mostly applies to workers calling library functions.
Library functions such as localtime or strtok should be avoided since they are not
thread-safe. Library functions such as setenv or even exit, should never be called
since they modify the environment for other workers. More information about
appropriate library functions is in the RCC Local Services section below.

OpenCPI RCC Development Guide Page 16 of 75

4.2 Worker Methods: Called by the Container, Implemented by the Worker.

This section describes the methods that a worker may implement with only one being
mandatory: run. All others methods are optional and have default behavior. These
other methods are control operations that perform lifecycle state transitions. The
transitions are described in the control plane introduction section of the CDG. All
processing of the worker occurs in the context of these worker methods.

For C++, the code generation tools create a custom base class that the actual worker
class inherits. The derived class that implements the worker is declared by the worker
author directly in their source code. This derived class inherits the custom base class,
but can otherwise contain any other member functions and data members, with the
caveat that they do not shadow certain members in the generated custom base class
(which are specifically mentioned below). All worker methods in C++ are member
functions and this is where all worker processing takes place.

4.2.1 RCCWorker Structure Type – C Language Only

This structure type , a typedef name, represents the visible state of a worker. The
container creates this structure (defined in RCC_Worker.h) with any content or
member ordering as long as the documented members are supported. The structure
members are written by either the container or the worker, but not both. Members
written by the container are declared const to enhance error checking when compiling
worker code. A pointer to this structure is the first argument to all C language worker
methods, called self.

Workers (code in worker methods) access property values via the properties
member of the RCCWorker structure, whose type is void *. Its usage is described in
the Property Access section below.

The defined members of the RCCWorker structure are described in the table below.
Some example code that uses these various members of RCCWorker is:

XyzProperties props = self->properties; // void * needs no cast

MyState *state = self->memory; // void * needs no cast

self->container.setError(“stuff happened”);

if (self->runCondition == &mySearchCondition) …

if (self->connectedPorts & (1 << XYZ_IN)) …

uint32_t *msgdata = self->ports[XYZ_IN].current.data;

OpenCPI RCC Development Guide Page 17 of 75

Table 2: Members of the RCCWorker Structure for C Workers

Member Name Member
Data Type

Written
by

Member
Description

properties void *const container A const pointer to the properties
structure for the worker, whose layout is
implied by the properties declared in the
OCS and OWD. The value is NULL if
there are no such properties.

memories void *const
*const

container An array of const pointers to the
memory resources requested by the
worker in the memSizes member of
the RCCDispatch structure. Any
memories that are not read-only are
initialized to zero before a worker
executes any method.

memory void *const container A pointer to the memory resource as
requested in the memSize member of
the RCCDispatch structure.

container const
RCCContainer

container A dispatch table of container
method/function pointers.

runCondition RCCRunCondition
*

worker Initialized from the RCCDispatch
runCondition member. Checked
by container after calling the start
method.

connectedPorts RCCPortMask container A mask indicating which ports are
connected. A worker can check this to
see if an optional port is connected.

ports RCCPort[] varies by
member

An array of RCCPort structures,
indexed by port ordinals.

4.2.2 The Worker Derived Class – C++ Language Only

All the worker methods are member functions of the worker's derived class. This class
inherits a base class specifically generated for the worker and defined in the
gen/<worker>-worker.hh file. Worker methods that must exist (based on the
OWD), are declared pure virtual in this generated base class. Container methods are
accessible member functions of the base class. There are several accessible data

OpenCPI RCC Development Guide Page 18 of 75

members of the generated base class that can used in worker method code. One is
m_properties, which is a structure containing members for property values. Its
usage is described in the Property Access section below.

There are also data members in the base class for each port. These are described in
the Port Management Data Members and Methods section below.

4.2.3 RCCResult Enumeration Type — C and C++ Languages

The RCCResult type is an enumeration type used as the return value for all worker
methods. It indicates to the container what to do when the worker method returns, as
described in the following table:

Table 3: RCCResult Return Values

Enumeration
Identifier

Description

RCC_OK The worker method succeeded without error.

RCC_ERROR The worker method did not succeed, but the error is not fatal
to worker or container: the method may be retried if defined
to allow this.

RCC_FATAL The worker should never run again and is non-functional.
The container or other workers may be damaged. The
worker is in an unusable state. The container may know
that it, or other workers are protected from damage, but the
worker indicates this condition in case there is no such
protection.

RCC_DONE The worker needs no more execution. This is a normal
completion. The worker is entering the finished state. This
allows the container release resources (such as I/O buffers)
prior to the worker instance being destroyed or reused. Any
messages remaining in input buffers will not be processed
and may be discarded. Properties are still accessible.

RCC_ADVANCE The worker is requesting that all ports that were ready when
the run method was entered be advanced (applies only to
the run method).

RCC_ADVANCE_DONE The worker is requesting that all ports be advanced (run
method only) and declaring that it is also “done”. The worker
is entering the finished state like RCC_DONE.

OpenCPI RCC Development Guide Page 19 of 75

These return values apply to each method as defined in their specific behavior. Some
values are not valid results for all methods. When the result is RCC_ERROR or
RCC_FATAL, the worker may have also set a descriptive error message via the
setError container method described below.

4.2.4 Worker Initializations

A worker may initialize its state in several places, as appropriate. Each is described
below in detail, but here is a summary of the different places it may be done and why:

 C++ Worker Constructor: convenient for one time initializations that do not
depend on initial property values and do not generate error conditions.

 C++ Member Data Initializers: convenient for one time member data initializations
that do not depend on initial property values and do not generate error conditions.

 The initialize control operation: one time initializations that do not depend on
initial property values for C, and those that might generate errors for C++.

 The start control operation: initializations that should happen when the worker is
first started as well as when it is resumed after being suspended.

 The firstRun test in the run method: one-time initializations that depend on initial
property values. See firstRun container method .

Guidance to choose where initialization should take place is, in priority order:

1. In C++, use the constructor if the initializations do not depend on property
values and do not generate errors, otherwise

2. Use the firstRun container method unless it is critical that the first execution of the
run method should not be slower than subsequent executions.

If neither #1 nor #2 is suitable:

3. Use initialize if the initializations do not depend on property values.

4. Use start if the initializations depend on property values or must be repeated
when the worker is resumed after being suspended.

4.2.5 initialize — Worker Method

This worker method implements the initialize control operation as defined in the CDG
and it is optional. It cannot depend on any property settings. A worker should
implement this method under these conditions, for one-time initializations that do not
depend on properties:

 There are initialization errors that can be reported to the container.

 There is significant processing work involved in the initialization.

 There are significant resource allocations performed during initialization.

If none of the above conditions are true, this method can be unimplemented and the
default implementation will be used.

OpenCPI RCC Development Guide Page 20 of 75

Using the initialize method will allow the run or start methods to be more
consistent in execution time. Without an initialize, all one-time initialization must
be done on the first invocation of start, or if start is unimplemented, the first
invocation of run. Sometimes this is unavoidable.

For one-time initializations that depend on property values, the firstRun container
method can be called in the run method to know when it is being called for the first time.

4.2.5.1 Synopsis
static RCCResult initialize(RCCWorker *self); // C language
RCCResult initialize(); // C++ language

4.2.5.2 Returns

This method shall return a RCCResult value.

If the initialization cannot succeed, it shall return RCC_ERROR. If the worker detects an
error that would disable the implementation or its environment, it shall return
RCC_FATAL. Otherwise it shall return RCC_OK if normal worker execution should
proceed.

4.2.6 start — Worker Method

This method implements the start control operation as defined in the CDG and is
optional. Upon successful completion, the worker is in the operating state or the
finished state. This operation is called for the first time after initialization and after
initial property settings are done. It may also be called after a successful stop
operation, to resume execution. Thus any truly one-time initializations must be
protected by some means in the worker implementation to ensure they are executed
only once.

4.2.6.1 Synopsis
static RCCResult start(RCCWorker *self); // C language
RCCResult start(); // C++ language

4.2.6.2 Returns

This method shall return a RCCResult value.

If the start method cannot succeed, it shall return RCC_ERROR. If the worker detects an
error that would disable the implementation or its environment, it shall return
RCC_FATAL. It shall return RCC_DONE if no worker execution should proceed, to
indicate that it is entering the finished state. Otherwise it shall return RCC_OK if normal
worker execution should proceed.

Returning RCC_DONE indicates to the container that the worker will never require further
execution, and provides this advice to the container to allow the container to take
advantage of this fact and possibly release resources (such as I/O buffers) prior to the
worker instance being destroyed or reused.

OpenCPI RCC Development Guide Page 21 of 75

4.2.7 stop — Worker Method

This method implements the stop control operation as described in the CDG. Upon
successful completion, the worker is in the suspended state. It will be also called
before the release method, and before destruction, if the worker is in the operating
state.

4.2.7.1 Synopsis
static RCCResult stop(RCCWorker *self); // C language
RCCResult stop(); // C++ language

4.2.7.2 Returns

This method shall return a RCCResult value.

If the stop method cannot succeed, it shall return RCC_ERROR. If the worker detects an
error that would disable the implementation or its environment, it shall return
RCC_FATAL. Otherwise it shall return RCC_OK.

4.2.8 release — Worker Method

This method implements the release control operation as described in the CDG. After
successful completion, the worker instance is in the exists state. This method is
needed when there are resources allocated by the worker in any other worker methods,
such as heap allocations or file handles.

4.2.8.1 Synopsis
static RCCResult release(RCCWorker *self); // C language
RCCResult release(); // C++ language

4.2.8.2 Returns

This method shall return a RCCResult value.

If the release method cannot succeed, it shall return RCC_ERROR. If the worker detects
an error that would disable the implementation or its environment, or it is unable to
return resources it allocated, it shall return RCC_FATAL. Otherwise it shall return
RCC_OK.

4.2.9 run — Worker Method

The run method requests that the worker perform its normal computation. The
container only calls this method when the worker’s run condition is satisfied.

4.2.9.1 Synopsis
static RCCResult run(RCCWorker *self,
 RCCBoolean timedOut,
 RCCBoolean *newRunCondition); // C language
RCCResult run(bool timedOut); // C++ language

OpenCPI RCC Development Guide Page 22 of 75

4.2.9.2 Behavior

The run method shall perform the worker's computational function and return a result.
This method may use information in its property structure, the state of its ports, and its
requested local and global/persistent member data to decide what to do. When there
are data ports, this typically involves using messages in buffers at input ports to produce
messages in buffers at output ports.

The timedOut boolean input argument indicates when the run method is being
invoked due to time passing (the usecs value of the run condition) and not due to the
ports specified in the run condition being ready.

C Language: The run method may change the run condition by setting a TRUE value
to the location indicated by the newRunCondition output argument, and setting a
pointer to a new run condition in the runCondition member of RCCWorker. The
runCondition member of RCCWorker is initially set to the value in the RCCDispatch
structure (including NULL to indicate the default run condition).

C++ Language: The run method may change the run condition using the
setRunCondition container method and retrieve it using the getRunCondition()
container method .

If the current runCondition is set to NULL, the default run condition is restored. The
run condition for a worker is initially set to this default. Since the worker code is
managing the run conditions (passed by pointer), it can use it as a convenient “state
variable” when its execution modes each have a different run condition.

Code in the run method accesses information about ports and current buffers by
accessing objects/structures that are ports in the Worker object.

See the port management and buffer management sections below for container
methods and port data members used to process input messages and create output
messages.

The firstRun container method may be tested for one-time initializations in the run
method.

4.2.9.3 Returns

This method shall return a RCCResult value. The most common value is
RCC_ADVANCE, which indicates that all ports should be advanced that were ready on
entry to the run method and were not subject to container methods called since then
(e.g. advance, request etc. described below).

It should return RCC_OK or RCC_ADVANCE if normal worker execution should proceed
(the run method will be called again when the run condition is true).

The run method should return RCC_DONE or RCC_ADVANCE_DONE if no further worker
execution should happen.

See RCCResult Enumeration Type for a description of all allowed values.

OpenCPI RCC Development Guide Page 23 of 75

4.3 Container Methods, Called by the Worker.

These methods are what a worker calls to invoke functionality provided by the container.
The container methods are in three categories:

 container scope (this section),

 port scope (next section)

 buffer scope (following section).

The use of all container methods is optional, and typically unneeded for simple workers
that only use run conditions and the run method. When used these provide additional
flexibility and functionality in message handling.

All container methods are non-blocking.

C Language: container methods are usually accessed using function pointer members
in the container structure member of the RCCWorker structure, e.g.:

self->container.setError(...)

C++ Language: container methods exist in an accessible base class for the worker
and are called directly. Container methods relating to ports and buffers are methods of
the worker's member data objects for ports, rather than on the worker (or container)
objects.

4.3.1 firstRun — Container Method

This method is used by the worker to determine when the run worker method is being
called for the first time. It can be used for initializations that must be done once after all
initial property values are established. It can simply be used when it is more convenient
or concise than other methods, e.g. (in C++):

RCCResult run(bool timedOut) {
 if (firstRun())
 do_this_once(); // whatever must be done only once
}

Remember that the start control operation may be called more than once if the worker
is suspended (using the stop control operation) and subsequently resumed using start
a second time. The initialize control operation is also called exactly once, but is called
before initial property values are established.

If the firstRun container method is called from other than the run method, its behavior
is undefined.

4.3.1.1 Synopsis
RCCBoolean self->firstRun; // C Language, using structure member
bool firstRun(); // C++ Language

4.3.1.2 Returns

This method (C++) or structure access (C) returns a boolean which is true when the run
method is being called for the first time.

OpenCPI RCC Development Guide Page 24 of 75

4.3.2 setError — Container Method

This method is used by the worker to convey an error message associated with
returning RCC_ERROR or RCC_FATAL. It has semantics similar to printf.

4.3.2.1 Synopsis
RCCResult (*setError)(const char *fmt, …); // C Language
RCCResult setError(const char *fmt, …); // C++ Language

4.3.2.2 Returns

RCC_ERROR is always returned, allowing a worker to simultaneously set the error and
return the error indication. E.g., a worker method detecting an error could (in C) do:

return self->container.setError(“Failure due to %d”, arg);

Or, in C++:
return setError(“Failure due to %d”, arg);

Workers that must return RCC_FATAL, may call this prior to returning that value.

4.3.3 log — Container Method

This method is used by the worker to make an entry into the OpenCPI system log. After
an initial argument to specify the log level associated with the message, it has
semantics similar to printf. It is currently only supported in C++. A newline is
automatically appended to all log messages so none is required in the message
content.

Log levels are set on the command line of ocpirun or ocpiserve, and may also be
set in the ACI. Using a log level of zero in this method will nearly always show in the
system log. Log levels of 10 and above are used and shown only for detailed
debugging output.

Symbolic constants for log levels are not available in RCC workers (yet).

4.3.3.1 Synopsis
void log(unsigned level, const char *fmt, ...); // C++ Language

4.3.4 willLog — Container Method

This method returns whether a certain level of logging will in fact be put into the system
log. It can be used to conditionalize code that should only be run if certain level of
logging is enabled. It is only available in C++.

4.3.4.1 Synopsis
bool willLog(unsigned level); // C++ Language

4.3.4.2 Returns

This method returns true if the logging level supplied in its argument is enabled for
inclusion in the system in the current environment.

OpenCPI RCC Development Guide Page 25 of 75

4.3.5 time/getTime — Container Method

This method retrieves the time of day as a 64 bit unsigned number that represents GPS
time in units of 2^-32 seconds (~233 ps). The most significant 32 bits hold GPS time in
seconds. The accuracy of this time is dependent on the container implementation.

Note that GPS time is monotonic, as opposed to UTC time (the POSIX standard), which
is subject to leap seconds etc.

4.3.5.1 Synopsis
RCCTime (*time)(); // C Language
RCCTime getTime(); // C++ Language

4.3.5.2 Returns

This function returns GPS time in units of 2^-32 seconds.

4.3.6 The RCC::RunCondition C++ Class and RCCRunCondition C Structure

This class is used by the container to determine when it is appropriate to invoke the run
method. The RCC::RunCondition class has convenience constructors, methods,
and worker-writable data members. In most cases the convenience constructors are
sufficient and no member data or method call is required. The getRunCondition and
setRunCondition container methods described below are used to set and get the
current run condition objects for the worker. This class, and those container methods,
are only needed when the default run condition is not appropriate.

The RCC::PortMask (C++)/RCCPortMask (C) type in run conditions specifies a set of
ports that must be ready at the same time. A mask is considered “true” when all ports
whose bit is set in the mask (i.e. mask & (1 << port_ordinal) != 0) are ready
or are not connected. The RCC_ALL_PORTS constant indicates all a worker's ports.

Table 4: RunCondition Constructors

RunCondition() Specify the default run condition: no timeout, and all
connected ports must be ready. If the worker has no ports,
it will always run. The constructor is equivalent to:
 RunCondition(RCC_ALL_PORTS, RCC_NO_PORTS)

RunCondition
 (RCC::PortMask first,
 …)

Specify a list of port masks as variable arguments that is
terminated by the value RCC_NO_PORTS. No timeouts are
indicated. Each mask indicates a set of ports. The run
condition is considered true when any of the masks is true.
RunCondition(RCC_NO_PORTS) indicates: never run.

RunCondition
 (RCC::PortMask *masks,
 uint32_t usecs = 0,
 bool timeout = false)

Specify a pointer to an array of masks (terminated by
RCC_NO_PORTS) as well as the timeout, with defaults for
timeout arguments. The masks in the array are copied
during construction. The first argument must be pointer
type, and not RCC_NO_PORTS itself.

OpenCPI RCC Development Guide Page 26 of 75

In all cases, a port's readiness is based on a single buffer being available, even if more
than one buffer exists, and even if the MinBufferCount attribute for the port in the
OWD is set to a value greater than 1. Knowing that more than one buffer exists at a
port does not imply that more than one will be available in any given invocation of the
run method.

A worker using RunCondition objects typically declares them as member data that
are configured in member initializers in the worker's constructor. For example, in the
following code a run condition data member is declared, and initialized appropriately.
Then it is used dynamically as conditions warrant.

class XyzWorker : public XyzWorkerBase {
 RunCondition m_aRunCondition;
 XyzWorker() : m_aRunCondition(1 << Xyz_Inport, RCC_NO_PORTS) {
 }
 RCCResult run(bool timedOut) {
 if (need_to_change_run_condition)
 setRunCondition(&m_aRunCondition);
 else if (need_default_run_condition)
 setRunCondition(NULL);
 }
}

The following table describes the accessible methods that can be used when the
convenience constructors above are not sufficient to specify or control RunConditions.
All have no return value (i.e. are void).

Table 5: RunCondition Methods

Method Name and
Arguments

Member
Description

disableTimeout() Disable the timeout aspect of the run conditions. The timeout time
value (usecs) is unchanged.

enableTimeout() Enable the timeout aspect of the run condition, using the previously
specified usecs value.

enableTimeout
(uint32_t usecs)

Enable the timeout aspect of the run condition, supplying a new
usecs value, which will be stored in the object.

setTimeout
(uint32_t usecs)

Set the timeout usecs value of the run condition, which will not
necessarily enable the timeout if not enabled.

setPortMasks
(RCCPortMask *)

Set the port masks for the run condition from the array pointed to by
the argument, which must be terminated by RCC_NO_PORTS. The
array is copied into the run condition.

setPortMasks
(RCCPortMask, …)

Use a variable argument list to set the port masks of the run
condition. The arguments must be terminated by RCC_NO_PORTS.

OpenCPI RCC Development Guide Page 27 of 75

The following table describes the accessible data members of the RunCondition
structure. They apply to the C RCCRunCondition structure as well as the C++
OCPI::RCC::RunCondition class.

Table 6: RunCondition Members — C and C++

Member
Name

Member
Data Type

Member
Description

portMasks RCCPortMask
*

A pointer to an array of port masks, terminated by
RCC_NO_PORTS, each of which indicates a bit-mask of port
readiness. The run condition is considered true when any of
the masks is true. A mask is true when all indicated ports are
ready (logical AND of port readiness). If the pointer itself is
NULL, the run condition is always true. A mask bit set for an
unconnected port is ignored: the default run condition can be
used with unconnected ports.

timeout bool Indicates that the usecs member determines when enough
time has passed to make the run condition true. This value is
used to enable or disable the timeout, without changing usecs.

usecs uint32_t When enabled by the timeout member, if this amount of
time has passed (in microseconds) since the run method was
last entered, the run condition is true.

The overall run condition is the logical OR of the portMasks and the timeout. For C
language workers, if the worker offers no run method in its RCCDispatch structure
(see below), run conditions are ignored. If the portMasks member is NULL, it indicates
that no port readiness check is performed and the run condition is always true. The
default run condition is a single port mask with all ports enabled. Typical combinations
are:

OpenCPI RCC Development Guide Page 28 of 75

Table 7: Run Condition Combinations

Shorthand Port mask Timeout RunCondition Description

Always run portMasks == NULL ignored The worker is always ready, no timeout

Run when
data ports
are ready

portMasks != NULL False Run condition is TRUE when any mask is
true. If there are no masks, i.e.
portMasks[0] == RCC_NO_PORTS,
 then the run condition is FALSE.

Run when
data ports
are ready
or timeout.

portMasks != NULL
and
portMasks[0] !=
RCC_NO_PORTS

True Run condition is TRUE when any mask is
true OR if the timeout expires. The
timeout will take effect if time passes
without any mask being satisfied.

Periodic
execution

portMasks != NULL
and
portMasks[0] ==
RCC_NO_PORTS

True Since
portMasks[0] == RCC_NO_PORTS,
port masks can never be true, thus this
establishes periodic execution
independent of port readiness.

4.3.7 getRunCondition — Container Method — C++ Language Only

This method is used by the worker to retrieve its current run condition. If the current run
condition is specified to be the default, NULL is returned. Otherwise the pointer returned
is the most recent one passed from the worker to the container in the
setRunCondition method. Because the value returned is the pointer that the worker
provided in a previous call to setRunCondition, it can be used as a state variable in the
worker, e.g.:

if (getRunCondition() == &m_myruncond2)
 // do things for state2

4.3.7.1 Synopsis
RCC::RunCondition *getRunCondition();

4.3.7.2 Returns

This function returns a pointer to the run condition most recently set by the worker using
the setRunCondition call, or NULL.

4.3.8 setRunCondition — Container Method — C++ Language Only

This container method is used by the worker to set a new run condition. If the run
condition supplied is NULL, the default run condition becomes active, which is to wait for
all ports to be ready, with no timeout. If the worker needs to start execution with a non-
default run condition, it can call this container method in its constructor, or in its
initialize or start methods.

OpenCPI RCC Development Guide Page 29 of 75

When not NULL, the RCC::RunCondition pointer supplied as the argument is stored
in the container as a pointer and is expected to remain valid until a subsequent call to
this method or until the worker is destroyed. The object referenced by this pointer is not
copied and must not be modified while it is the current run condition.

4.3.8.1 Synopsis
void setRunCondition(RCC::RunCondition *rc);

4.3.8.2 Returns

No return value.

OpenCPI RCC Development Guide Page 30 of 75

4.4 Port Management Data Members and Methods

This section describes port management methods. The current buffer at a port is in
fact part of the port object. This means methods on the current buffer are in fact
methods on the port itself. Otherwise buffer methods are used on specific buffer
objects. Those are described in the next section.

In the C language, port management methods are directly accessed function pointer
members in the RCCWorker data structure, like all container methods. Each has a
RCCPort pointer as an argument.

In C++, each port is a member data object (of the worker object) whose name is the
name of port (from the OCS). Where port management methods are methods on that
object.

As an example, to advance a port in C, and optionally access the data of the now-
current buffer, is below:

RCCPort *inport = &self->ports[MY_IN_PORT];

if (self->container.advance(inport)) {
 void *p = inport->current.data;
 ...
}

In C++ this would be:
if (inport.advance()) {
 void *p = inport.data();
 ...
}

Note that in C++, the current buffer object is inherited by the port object, so the port data
member is the object used to access the current buffer's data() method.

The run method can indicate that all ports should be advanced by the special return
value RCC_ADVANCE. It can also indicate disposition of buffers and ports by using the
release, send, request, take, or advance container methods.

C Language: The run method accesses information about current buffers through
members of each port's RCCPort structure member in the ports array in the
RCCWorker structure (e.g. self->ports[n], where n is the ordinal for the port). The
current.data member is the pointer to the message data for both input and output
ports. For input ports, the input.length structure member of the RCCPort is the
length of bytes of the message in the current buffer, and input.u.operation is the
opcode for the current input message. For output ports, the output.length is the
length of bytes of the message in the current buffer, and output.u.operation is the
opcode for the current output message.

C++ Language: The run method accesses port status and buffer contents using the
worker's object port data member methods.

OpenCPI RCC Development Guide Page 31 of 75

If a port is in the worker’s run condition, then it can assume a current buffer is present at
that port when the run method is entered. If not, the worker can test whether there is a
current buffer; in C, the port's current.data member is non-NULL, in C++, the port's
hasBuffer() returns true. In either case, a port's readiness only depends on a single
buffer being available. Even if multiple buffers exist, the port readiness is only based on
the availability of a single buffer.

In the C language, and in some cases for C++, the message buffers are accessed as a
raw array of bytes, where the worker is responsible for correctly formatting the message
in the buffer. The request, send, setDefaultLength, and take methods in this
section are used only for this raw buffer access.

In C++, there is alternative set of methods that format the message correctly for the
worker, and these methods should be preferred in nearly all cases. These are
described in the Accessing Messages in C++ Language Workers section below.

4.4.1 advance — Release Current Buffer, and Request Another

This method releases the current buffer at a port, and requests that a new buffer be
made available as the current buffer on the port. This is a convenience/efficiency
combination of the release (the current buffer) and request (a new current buffer)
methods described below.

An optional minimum size in bytes may be requested (0 is the default in C++, 0 can be
supplied in C). Zero means no minimum size is requested. The default size is normally
based on the protocol at the port. When there is no protocol this argument allows the
worker to specify a size that must be satisfied, or an exception is thrown.

4.4.1.1 Synopsis
RCCBoolean (*advance)(RCCPort *port, size_t minSize); // C language
bool Port::advance(size_t minSize = 0); // C++

4.4.1.2 Returns

A boolean value is returned indicating whether the request aspect of this method was
immediately satisfied.

4.4.2 hasBuffer — Query a Port for Whether It Has a Current Buffer-to-release

This method returns whether a port has a current buffer. If a port is already part of a
workers's run condition, and it is in every port mask of the run condition, it can be
assumed to have a current buffer whenever the worker is run. This is the case for 90%
of all workers. This method is only needed and used when a port is not in the run
condition, as might be the case for a port that received some exceptional condition
message. No such testing is needed when the port is in the run condition since port
readiness is implicit when the run condition is satisfied.

In C, this is a port structure member access. In C++ it is a port method.

OpenCPI RCC Development Guide Page 32 of 75

4.4.2.1 Synopsis
Port->current.data != NULL // C Language
bool RCCUserPort::hasBuffer(); // C++ Language

4.4.2.2 Returns

For C++, a bool value is returned indicating whether the port has a current buffer.

4.4.3 isConnected — Query a Port for Being Connected

This method returns whether a port is currently connected or not. Component
specifications (OCS) indicate whether each port of a component (and thus all workers)
must be connected before workers are started or run. A port is considered “optional” for
a worker if the worker can tolerate the port not being connected. If a port is not optional,
the worker code can assume it is connected, and this method would not be needed or
used.

In C, this is a Worker (self) structure member access. In C++ it is a port method.

4.4.3.1 Synopsis
self->connectedPorts & (1 << PortOrdinal); // C Language
bool RCCUserPort::isConnected(); // C++ Language

4.4.3.2 Returns

For C++, a bool value is returned indicating whether the port is connected.

4.4.4 ordinal — Obtain an Ordinal for a Port

This method returns the ordinal of a port, which may be used wherever port ordinals are
required such as in port masks for run conditions.

In C, this is simply an enumeration value. In C++ it is a port method.

4.4.4.1 Synopsis
<WORKER>_<PORTNAME>; // C Language
RCCOrdinal RCCUserPort::ordinal() const; // C++ Language

4.4.4.2 Returns

For C++, a bool value is returned indicating whether the port is connected.

4.4.5 request — Request a New Buffer

This method requests that a new buffer be made available as the current buffer on a
port. If the port already has a current buffer, the request is considered satisfied. This
request indicates to the container that it should make a buffer available when possible.
Without an explicit request, the container may not make a buffer available since that
would dedicate resources when they may not be needed. An implicit request is made
for all ports that are part of the current run condition.

An optional minimum size may be requested.

OpenCPI RCC Development Guide Page 33 of 75

Note that this method is not used or needed when ports are advanced, only when
buffers are being explicitly managed (e.g. released, etc.).

4.4.5.1 Synopsis
RCCBoolean (*request)(RCCPort *port, size_t minSize); // C Language
bool Port(size_t minSize = 0); //C++ language

4.4.5.2 Returns

A boolean value is returned indicating whether the request was immediately satisfied.

4.4.6 send — Send an Input Buffer on an Output Port

This method sends an input buffer on an output port. If the buffer is a current buffer for
a port, this buffer will no longer be that port’s current buffer. Buffer ownership passes
back to the container. This method is used to effect zero-copy transfer of a message
from an input port to an output port.

C Language: The operation and message length are supplied as arguments.

C++ Language: The operation and message length are attributes of the buffer object
and can be changed before it is sent using the setOpCode and/or setLength
methods.

The sent buffer is either a current buffer of an input port or a buffer taken from an input
port.

4.4.6.1 Synopsis
void (*send)(RCCPort* port,
 RCCBuffer* buffer,
 RCCOrdinal op,
 uint32_t length); // C Language
void RCCPort::send(RCC::Buffer &buffer); // C++ Language

4.4.6.2 Returns

Nothing is returned.

4.4.7 setDefaultLength — Set Default Message Length at an Output Port — C++
Language Only

This method sets the default message length in bytes for a port. It is useful when
messages produced at a port will always be the same size.

This method is used only when the message content is manipulated as a raw untyped
buffer, rather than using the message content access methods described below.

The initial setting of the default message length is the length of the buffer.

This method is only available in C++.

4.4.7.1 Synopsis
void RCCUserPort::setDefaultLength(size_t length); // C++ Language

OpenCPI RCC Development Guide Page 34 of 75

4.4.7.2 Returns

Nothing.

4.4.8 setDefaultOpCode — Set Default Opcode at Output Port — C++ Language
Only

This method sets the default opCode for an output port. It is useful when messages
produced at a port will typically have the same opcode, among those defined in the
protocol.

The initial setting of the default opcode is zero (indicating the first operation specified in
the associated protocol). Setting the default opCode does not prevent setting the
opCode on a per-message basis at any time during execution.

This method is only available in C++.

4.4.8.1 Synopsis
void RCCUserPort::setDefaultOpCode(RCCOpCode opcode); // C++ only

4.4.8.2 Returns

Nothing.

4.4.9 take — Take a Buffer from an Input Port

This method takes the current buffer from a port, and optionally releases a previously
taken buffer. This method is used when workers need to maintain a history of one or
more previous buffers while still requesting new buffers, e.g. for sliding window
algorithms. This method only applies to input ports.

The optional buffer to be released is provided by a possibly NULL pointer to a buffer.
This buffer-to-release argument is a convenience feature of the API to allow cycling of
buffers in a single call, e.g.:

class XyzWorker {
 RCCUserBuffer *m_prev; // remember buff from previous run
 XyzWorker() : m_prev(NULL) {}
 void process_curr_and_prev(RCCUserBuffer *curr,
 RCCUserBuffer *prev) {}
 run() {
 process_curr_and_prev(&in, m_prev);
 m_prev = &in.take(m_prev);
 }
}

In C, while we logically consider this a port method, it is actually a container method
with three arguments:

 an RCCPort pointer indicating the port from which the buffer is taken

 an RCCBuffer pointer indicating, if not NULL, a buffer to release

OpenCPI RCC Development Guide Page 35 of 75

 an RCCBuffer pointer as an output argument where the taken buffer structure will
be copied (not the data, just the structure).

In C++, take is a port method with a single buffer-to-release argument and the taken
buffer is simply returned via a reference.

Ownership of the taken buffer is passed to the worker. The current buffer now taken is
no longer the current buffer. This method is used when the worker needs access to
more than one buffer at a time from an input port. Take implies a request (to get
another current buffer).

It is an error to call this method when the port does not have a current buffer.

4.4.9.1 Synopsis
void (*take)
 (RCCPort* port, RCCBuffer* releaseBuffer,
 RCCBuffer* takenBuffer); // C language
RCCUserBuffer &Port::take
 (RCCBuffer *release = NULL); // C++ Language

4.4.9.2 Returns

Nothing is returned in C, since the taken buffer object is copied to the location supplied
by the takenBuffer argument. In C++, a reference to the taken buffer is returned.

OpenCPI RCC Development Guide Page 36 of 75

4.5 Buffer Management Data Members and Methods

This section describes methods that apply to buffers separate from ports. As mentioned
above, when a buffer is the current buffer at a port, the port object itself is normally used
with these buffer methods. In C++, the port object inherits the buffer object that is the
current buffer. In C, the current buffer is the current member of the RCCPort
structure.

When methods deal with opCodes, they are dealing with an ordinal for the message in
a buffer. The opCode identifies which type of message is in the buffer, among those
defined by the protocol. OpCode values are zero-origin in the order of how the
operations are defined in the protocol (OPS) XML file. Enumeration constants for the
messages in a protocol are generated and are described in the code generation
section.

In C++ buffer management is via buffer methods — member functions of buffer objects.
In C, buffer management is either via container methods or direct access to structure
members.

In the C language, and in some cases for C++, the message buffers are accessed as a
raw array of bytes, where the worker is responsible for correctly formatting the message
in the buffer. The methods in this section other than setOpCode, are used only for this
raw buffer access.

In C++, there is alternative set of methods that format the message correctly for the
worker, and these methods should be preferred in nearly all cases. These are
described in the Accessing Messages in C++ Language Workers section below.

4.5.1 checkLength — Check Size of the Buffer — C++ Language Only

Check that a message of a given size in bytes will fit into the buffer, usually associated
with an output port. An exception is thrown if the message will not fit. This is useful
when the worker is creating a variable length message and wants to ensure it will fit into
the available buffer. This check results in an error that the worker cannot check, and is
intended to avoid unexpected buffer size mismatches, similar to the “assert” standard
library function.

4.5.1.1 Synopsis
void RCCUserPort::checkLength(size_t neededSize); // C++ Language

4.5.1.2 Returns

Nothing.

4.5.2 data — Access the Raw Contents of the Buffer

This method returns a pointer to the raw data in a buffer. It is analogous to the data
method in C++ STL container classes, although it has no type.

OpenCPI RCC Development Guide Page 37 of 75

4.5.2.1 Synopsis
void *p = buffer->data; // C Language
void *RCCUserBuffer::data(); // C++ Language

4.5.2.2 Returns

The value returned is a void pointer to the contents of the buffer.

4.5.3 length — Retrieve the Length of the Message in a Buffer – C++ Language Only

This method returns the number of bytes of the message in the buffer, which is typically
an input buffer. This is C++ only. When using C, access to the length is via the current
buffer at a port, e.g. port->input.length.

4.5.3.1 Synopsis
size_t RCCUserBuffer::length() const; // C++ Language

4.5.3.2 Returns

The method returns the length in bytes of the message in the buffer.

4.5.4 maxLength — Retrieve the Maximum Available Space in the Buffer.

This method allows the worker to retrieve the actual size of the buffer, typically used on
output buffers.

4.5.4.1 Synopsis
size_t len = buffer->maxLength; // C language
size_t RCCUserBuffer::maxLength() const; // C++ language

4.5.4.2 Returns

The size of the buffer in bytes is returned.

4.5.5 opCode — Retrieve the OpCode of the Message in a Buffer

This method retrieves the opCode of the message in the buffer, typically an input buffer.
This is C++ only. When using C, access to the opCode is via the current buffer at a
port, e.g. port->input.u.operation

4.5.5.1 Synopsis
RCCOpcode op = port->input.u.operation; // C language
RCCOpCode RCCUserBuffer::opCode() const; // C++ Language

4.5.5.2 Returns

This method returns the opCode of the message in the buffer.

OpenCPI RCC Development Guide Page 38 of 75

4.5.6 eof — Retrieve the EOF status of the Buffer

This method retrieves the EOF status of the buffer (and port), for an input buffer. This
is C++ only. In C, access to the EOF status is via the current buffer at a port, e.g.:
port->input.eof

4.5.6.1 Synopsis
RCCBool op = port->input.eof; // C language
bool RCCUserBuffer::eof() const; // C++ Language

4.5.6.2 Returns

This method returns the EOF status as a boolean value.

4.5.7 release — Release a Buffer

This method releases a buffer for reuse. If the buffer is the current buffer for a port, it
will no longer be the current buffer. Buffer ownership passes back to the container.
Buffers for a port must be released in the order obtained, per port. Note that this
method is not used or needed when ports are “advanced”, only when buffers are
obtained from a port using other port management functions such as take.

Releasing a current buffer does not imply requesting a new current buffer: that request
must be explicit. A release without a request might be useful if a worker is entering a
mode where it no longer needs any more data from an input port or it no longer needs
to send any more buffers on an output port.

In C, this is a function with the buffer pointer as an argument, e.g. called using:
self->container.release(buffer);

In C++ it is a buffer method invoked on the buffer object itself.

4.5.7.1 Synopsis
void (*release)(RCCBuffer* buffer); // C Language
void RCCUserBuffer::release(); // C++ Language

4.5.7.2 Returns

Nothing.

4.5.8 setLength — Set the Length of the Message in a Buffer — C++ Language Only

This method sets the length in bytes of the message in a buffer.

This is C++ only. When using C, access to the length of an output buffer is via the
current buffer at a port, e.g. port->output.u.length, or via the send port method.

4.5.8.1 Synopsis
void RCCUserBuffer::setLength(size_t length); // C++ Language

4.5.8.2 Returns

Nothing.

OpenCPI RCC Development Guide Page 39 of 75

4.5.9 setOpCode — Set the OpCode for the Message in a Buffer — C++ Language
Only

This method sets the opCode of the message in a buffer.

This is C++ only. When using C, access to the opCode of an output buffer is via the
current buffer at a port, e.g. port->output.u.operation, or via the send port
method.

4.5.9.1 Synopsis
void RCCUserBuffer::setOpCode(RCCOpCode op); // C++ Language

4.5.9.2 Returns

Nothing.

4.5.10 setInfo — Set the Metadata Associated with a Buffer — C++ Language Only

This method is a convenient combination of setting both the opCode and the length of
the message in a buffer. It is typically used on output buffers, when both opCode and
length are being set at the same time.

4.5.10.1 Synopsis
void RCCUserBuffer::setInfo(RCCOpCode op, size_t length); // C++

4.5.10.2 Returns

Nothing.

4.5.11 setEOF — Set the EOF status of the Buffer

This method sets the EOF status of the buffer (and port), for an output buffer. This is
C++ only. In C, setting the EOF status is via the current buffer at a port, e.g.: port-
>output.eof

4.5.11.1 Synopsis
port->output.eof = true; // C language
void RCCUserBuffer::setEOF() const; // C++ Language

4.5.11.2 Returns

This method sets the EOF status as a boolean value.

4.5.12 topLength — Retrieve the Size of the Single Sequence in a Message — C++
Language Only

Normally, sequence lengths are retrieved using the message/operation access methods
described below in the Accessing the Contents of Messages section. However, when
message contents are accessed as an untyped raw buffer, this method allows the
worker to retrieve the number of elements of a given size in the message without the
container knowing the data type of the message. It performs the size conversion and
error check in one API.

OpenCPI RCC Development Guide Page 40 of 75

Untyped raw buffers are used when no protocol is defined for the port, e.g. when a
worker needs to process any protocol or when it has some private mechanism for
determining the contents of a message.

This method only applies to input buffers that contain messages consisting of a single
sequence argument. It retrieves the length, in elements, of that sequence. The
elemSize argument to topLength is the size in bytes of the elements of the
sequence in the buffer. An error check is made to ensure that the size of the message
in bytes is divisible by the elemSize value provided.

The message must consist of exactly one sequence for this method to be valid.
Sequences can have zero elements.

This method is only available in C++.

4.5.12.1 Synopsis
size_t RCCUserBuffer::topLength(size_t elemSize); // C++ Language

4.5.12.2 Returns

For C++, this method returns a size_t value indicating the number of sequence
elements in the message, given the size of elements known by the worker.

OpenCPI RCC Development Guide Page 41 of 75

4.6 Accessing the Contents of Messages

The sections above described methods used to access the raw content and metadata
(length and opCode) of messages in buffers. Those methods operate independent of
the actual types of the data in the messages, and put the burden of accessing typed
data on the worker code. I.e. the worker code would have to cast the pointer types and
manually deal with the multiple data types for the arguments in a message.

Accessing the individual arguments (fields) in the payload for an input message (or
setting the fields of an output message) is facilitated differently in C vs. C++.

4.6.1 Accessing Messages in C Language Workers

In C, data structures are generated that can be overlaid on buffers to access fields of a
message up to and including the first variable length field (sequence or string). Each
port has a set of data structures defined for the messages that may be in its buffers.
These structures are described in the code generation section, but the basic pattern,
for worker WXY, port PXY, with protocol PRXY, with operations Op1 and Op2, is:

typedef struct {
 ... fields in the message for Op1 messages ...
} WxyPxyOp1;
typedef struct {
 ... fields in the message for Op2 messages ...
} WxyPxyOp2;

Note that the structure typedefs are CamelCase, the opcode enumeration values are
upper case, and the structure members are the case of the argument names in the
protocol. In C, messages are accessed based on opCode like this:

switch (port->input.u.operation) {
case PRXY_OP1:
 {
 WxyPxyOp1 *p = port->current.data;
 // use p-> to access the message structure
 break;
 }
case PRXY_OP2:
 {
 WxyPxyOp2 *p = port->current.data;
 // use p-> to access the message structure
 break;
 }
}

If the messages are simply a sequence or array of one basic type (e.g. float), directly
assigning the buffer pointer to that pointer type is sensible, e.g.:

OpenCPI RCC Development Guide Page 42 of 75

switch (port->input.u.operation) {
case PRXY_OP1:
 {
 float *p = port->current.data;
 // use p-> to access the message data
 break;
 }
...

The major limitation of this scheme is that the structures only cover the fields of
messages up to and including the first variable length field. After that, the worker must
manually access the remaining fields using pointer arithmetic and casting. This covers
most protocols used in simple systems, but is painful when the limitation is exceeded.

A second limitation for C language workers is that there is no error checking that the
correct message structure is being used with its corresponding opCode.

4.6.2 Accessing Messages in C++ Language Workers

C++ workers have data members for each port whose name is the port's name in the
OCS. Each such port data member has an accessor for the information for each
possible message in the port's protocol. Each field of the payload for each operation
also has an accessor. Accessing the arg1 field of the op1 operation message on the
protocol for port in, would simply be:

in.op1().arg1()

These C++ message argument access methods return a const reference to the field
for input ports, and return a non-const reference for output ports. They will generate
an exception if used when the message in the buffer has the wrong opCode for the
operation accessor used. E.g., if in.op1() is used when the current opcode is not
op1, an exception occurs. If the argument type was float, then the accessors defined
for in.op1() would be:

const float &arg1() const; // for arguments in an input buffer
float &arg1(); // for arguments in an output buffer

When the argument type is a sequence or array, the field accessor returns a reference
to an object that has the following methods, which act like the same-named methods
defined in the ISO C++ STL container types (assuming the data type is float):

const float *data() const; // pointer to access the floats on input
size_t size() const; // number of floats available on input
float *data(); // pointer to access the floats on output
size_t resize(size_t n); // to set the number of floats on output
size_t capacity() const; // to get the available space on output

For arrays or sequences in output buffers, the resize method must be called for each
message.

If arg1 in the above example was a sequence of unsigned shorts, access to this field is:

uint16_t *vals = in.op1().arg1().data(); // pointer to data
size_t nvals = in.op1().arg1().size(); // number of elements

OpenCPI RCC Development Guide Page 43 of 75

4.7 How a Worker Accesses its Properties

4.7.1 The Worker Property Structure

A structure type (e.g. XyzProperties) is generated for the worker, and placed in the
gen/XYZ_Worker.h (for C) or gen/xyz-worker.hh (for C++) file, and contains
members for each property that is not a parameter. Structure members for properties
are declared const, unless the property is defined as either:

 volatile — meaning the worker can change it at any time, or

 none of initial, writable or parameter — meaning the worker can set it
during initialization only and not after start.

Thus setting the value of a property that is neither of the above will result in a
compilation error.

The name of the structure type (typedef name in C) is XyzProperties where “Xyz”
is the capitalized worker name.

Properties that are scalar values (not sequences, arrays, structures or strings), are
simple scalar structure members with the property's name. Properties that are arrays
are declared as such in this structure, including multi-dimensional arrays. The structure
member for properties that are sequences are themselves structures, with two
members: a uint32_t length member indicating the number of valid elements
present, and a data member which is an array of the maximum number of elements
declared for the property in the sequenceLength attribute that defines the property (its
maximum number of elements). Similarly, structure members for properties that are of
type string, are arrays of type char of dimension stringLength+1, with the +1 to
leave room for the terminating zero.

Remember that for properties (as opposed to protocols), sequences and strings always
have a maximum size (i.e. are bounded).

All property values are initialized to zero when the worker is created at runtime and the
worker's code can always assume this. This initialization is in effect prior to the
initialize control operation (and prior to the C++ constructor). After the initialize
operation, but before the start operation (or the first invocation of the run method if
there is no start method) any application-supplied initial values are set by control
software.

For volatile properties or those that are not declared as writable or initial (and thus are
read-only for control software), the worker is expected to set any non-zero initial value
before the worker is started. It may do this initialization either in the initialize method,
in the C++ constructor, or perhaps by a notification that some other property has been
written. Note that control software may cache the non-volatile property values since
they are not expected to change after the worker is started (i.e. they are not volatile).

4.7.2 The Accessing Worker Properties in C

The properties member of the RCCWorker structure (which is supplied as the *self
argument to all worker methods), points to the memory that holds the worker's

OpenCPI RCC Development Guide Page 44 of 75

properties, with type void *. When needed by the worker to access property values, it
is first converted to the structure pointer type that defines the layout of the worker's
properties, and then used to access individual properties, e.g.:

XyzProperties *p = self->properties; // implicit cast from void*
p->myprop1; // scalar property
p->myprop2.length; // number of elements in sequence for myprop2
p->myprop2.data[n]; // the nth element of the myprop2 sequence
p->myprop2.data; // the address of the elements in myprop2
p->myprop3[a][b][c]; // an element of a 3d array property
p->myprop4[0]; // the first character of the myprop4 string
strlen(p->myprop4) // the length of the myprop4 string.

4.7.3 Accessing Worker Properties in C++

The worker object has a member function, properties(), that returns a reference to
the XyzProperty structure. Worker code accesses properties that are not parameters by
simply using this member function. The accesses similar to the C example above is:

XyzProperties &p = properties();
p.myprop1; // scalar property
p.myprop2.length; // number of elements in sequence for myprop2
p.myprop2.data[n]; // the nth element of the myprop2 sequence
p.myprop2.data; // the address of the elements in myprop2
p.myprop3[a][b][c]; // an element of a 3d array property
p.myprop4[0]; // the first character of the myprop4 string
strlen(p.myprop4) // the length of the myprop4 string.

4.7.4 Property Access Notifications in C++

Workers sometimes need dynamic notifications when properties are written or read by
control software. E.g. the worker would like to run some code just before a property
read returns to potentially create the correct value to read, or run some code after a
property write to cause some other side affect of the new written value. For written
values, this eliminates the need for polling by the worker to determine when the value
has changed.

These capabilities are enabled when the property in the OWD has the readSync or
writeSync attributes set to true. The readSync attribute being true indicates that the
worker would like to run some code before the value of the property is passed back to
the control software reading the property. The writeSync attribute being true indicates
that the worker would like to run some code after a new value is written, in order to
implement some side effect when the property value is changed.

An example of using readSync is when the value is computed based on some dynamic
condition, e.g. reading a real-time or physical sensor value. An example of writeSync
is when writing a new value should atomically affect some other state of the worker.

Using the C language, there is no notification mechanism at this time.

In C++, when these attributes are set, the skeleton includes empty implementations of
notification methods for each such property that the worker author can fill out. For
readSync properties, a worker member function called <property>_read must be

OpenCPI RCC Development Guide Page 45 of 75

present. For writeSync properties, a member function named
<property>_written must be present. Both notification member functions take no
arguments and return RCCResult, which allows these functions to indicate errors. A
readSync notification function can set the property value locally and then return, and
that value will then be conveyed back to control software.

A writeSync notification is called after the new value has been written, so the function
can locally access the new value when it is called. The previous value is no longer
available. If a worker needs to access the previous value it could declare a data
member and assign it at the end of the notification method, and perhaps initialize this
“previous value” data member using firstRun or start. E.g. assuming predicate
is a boolean writable property with the writeSync attribute set to true:

class XyzWorker {
 bool m_prevPredicate; // remember previous value
 RCCResult predicate_written() {
 // use both properties().predicate and m_prevPredicate
 m_prevPredicate = properties().predicate;
 }
 run() {
 // we know that as of firstRun, initial setting is valid
 if (firstRun()) m_prevPredicate = properties().predicate;
 ...
 }
}

4.7.5 Accessing the Values of Parameter Properties

Properties which are indicated as parameters by setting the parameter attribute to
true in the OCS or OWD are accessed differently than other properties. They are
defined as static const values whose name is a fully capitalized
<WORKERNAME>_<PROPERTYNAME>. Thus for worker wxyz and parameter property
pqr, of type float, the value is:

static const float WXYZ_PQR;

These values are initialized at compile time and can be used accordingly.

OpenCPI RCC Development Guide Page 46 of 75

4.8 Controlling Slave Workers from Proxies — C++ Language Only

When the RCC OWD indicates that a worker is a proxy for another worker as one of its
slaves, it gives the proxy worker convenient access to the slave's control operations and
property accesses. Proxy workers typically have no data ports and no code in their
run method. This allows proxy workers to standardize and/or simplify the control of the
slave worker. The slave worker is usually device-specific, with device-level properties
or configuration requirements that applications should not be concerned with.

An example would be a device worker that controls an RF front-end device. This device
typically exposes the native functionality of the device in a high performance and/or
resource-conservative fashion. However, most applications would only want a subset of
those options that are uniform across all RF front-ends they might use.

Delegating normalization of the control/configuration interface to the RCC proxy worker
provides users with a higher level standardized configuration interface. This relieves
this burden from the embedded device worker which may be in an environment (e.g. on
a small FPGA) that makes this normalization difficult or expensive. This also enables
the device worker to faithfully and simply implement the device's native control interface.
This enables applications to exploit lower level device-specific features. Such a low
level device worker might be controlled in different ways using different proxies.

A proxy worker, acting as the software module that encapsulates specialized
configuration and control sequencing of the device, can eliminate the need for control
applications to use special non-component APIs: the proxy is just another component in
the application's XML.

For each slave worker mentioned in a slave attribute or element, there is a member
data object in the (proxy) worker that is used to control the slave. Each slave is
controlled using the slaves.<slave-name> data member, which is a class
specifically generated per slave. The first or only slave can also be accessed using a
data member whose name is simply slave.

These slave objects have methods to perform control actions or property accesses on
the slave workers. The control methods have fixed method names, while the property
access methods have names based on the property names of the slave's properties.
The property access methods are the roughly the same as the property access methods
at the application level in the ACI except that properties are specified by the method
name rather than a string name argument. As in the ACI, there are methods for
accessing properties using text values in strings or using the underlying binary values.

These are all methods on the slave or slaves.<slave> member objects.

4.8.1 start — Slave Method

This method performs the start control operation on the slave worker, which may start it
after initialization or resume it after suspension (after it has been stopped). If the proxy
does not call this method in its own start method, then the slave will be started after
all proxies have been started in any case. Thus use of this method is optional.

OpenCPI RCC Development Guide Page 47 of 75

4.8.1.1 Synopsis
void start(); // C++ Language

4.8.2 stop — Slave Method

This method performs the stop control operation on the slave worker. If the proxy does
not call this method in its own stop method, then the slave will be stopped after all
proxies have been stopped in any case. Thus use of this method is optional. Aproxy
may stop (suspend) or start (resume) its slaves during its own execution, independent
of its own start or stop methods.

4.8.2.1 Synopsis
void stop(); // C++ Language

4.8.3 isOperating — Slave Method

This method queries the slave and returns whether it is currently in the operating
control state. It can be used to determine whether the slave has been started or not.
Slaves are not started before their proxies, and if a proxy does not start a slave in its
own start method, then the slave will be started after all proxies are started.

4.8.3.1 Synopsis
bool isOperating(); // C++ Language

4.8.3.2 Returns

This method returns a boolean which is true when the slave is in the operating control
state, and thus has been started.

4.8.4 getProperty_<property> — Slave Method

This method retrieves the value of a property in text format in a string passed as an
argument by reference. It has three optional arguments for controlling which part of the
property to retrieve (if it is an array/sequence/struct) as well as other options. See the
similar method in the ACI for the explanation of those optional arguments.

4.8.4.1 Synopsis
const char *
getProperty_<property>(std::string &val,
 OA::AccessList &list = <none>,
 OA::PropertyOptionList &options = <none>,
 OA::PropertyAttributes *attrs = NULL);

4.8.4.2 Returns

This method returns a pointer to the c_str() contents of the first argument allowing
the return value as a convenience to be used both in typical C++ output using <<, as
well as C-style formating operations (e.g. %s in printf).

OpenCPI RCC Development Guide Page 48 of 75

4.8.5 setProperty_<property> — Slave Method

This method sets the value of a property in text format from a const char * or
std::string & passed as an argument. It has an optional arguments for controlling
which part of the property to retrieve (if it is an array/sequence/struct etc.). See the
similar method in the ACI for the explanation of the optional arguments.

4.8.5.1 Synopsis
void
setProperty_<property>(const std::string &val,
 OA::AccessList &list = <none>);
void
setProperty_<property>(const char *val,
 OA::AccessList &list = <none>);

4.8.6 get_<property> — Slave Method

This method retrieves a scalar value of the property and returns it as its native binary
type. It is only available for properties that are scalar types or arrays of scalar types. If
the type is an array, there are arguments for indices of each array dimension.

It the scalar type is string, there are extra arguments (after index arguments for
arrays), that either reference a std::string to fill or a const char * pointer and
size_t length to use as a buffer for the string's value. In both these cases the return
value is a const char * which simply points to the provided buffer. As with the
getProperty_<property> method, this return value is for convenient use for C++
<< output or C formatted output.

4.8.6.1 Synopsis
// E.g. for a scalar boolean property
bool get_<property>();
// For a float property with 2 dimensions
float get_<property>(unsigned idx0, unsigned idx1);
// For a string property
const char *get_<property>(char *buf, size_t length);
const char *get_<property>(std::string &buf);
// For a string property that is a single-dimension array
const char *get_<property>(unsigned idx0, char *buf, size_t length);
const char *get_<property>(unsigned idx0, std::string &buf);

4.8.6.2 Returns

This method returns a scalar value from the property value in its native binary type,
except for string properties which return a pointer to the provided buffer.

4.8.7 set_<property> — Slave Method

This method set a scalar value in the property. It is only available for properties that are
scalar types or arrays of scalar types. If the type is an array, there are arguments for
indices of each array dimension. After any index arguments, there is an argument for
the value in its native binary type.

OpenCPI RCC Development Guide Page 49 of 75

It the scalar type is string, the value is either a const char * argument or a const
std::string & argument.

4.8.7.1 Synopsis
// E.g. for a scalar boolean property
void get_<property>(bool value);
// For a float property with 2 dimensions
void set_<property>(unsigned idx0, unsigned idx1, float value);
// For a string property
void set_<property>(const char *value);
void set_<property>(const std::string &value);
// For a string property that is a single-dimension array
void set_<property>(unsigned idx0, const char *value);
void set_<property>(unsigned idx0, const std::string &buf);

4.8.8 getLength_<property> — Slave Method

This method retrieves the maximum allowable length for a string property (which could
be an array).

4.8.8.1 Synopsis
size_t getLength_<property>();

4.8.8.2 Returns

This method returns a the maximum length of a string for this property.

4.8.9 Examples

Here are the some examples when one or more slaves is specified using the slave
element:

uint8_t x = slaves.mydev.get_byteregA();
slaves.otherslave.set_byteregA(3);
x = slaves.specialslave.get_arrayprop(2);
slaves.mydev.set_arrayprop(3, x);
x = slaves.mydev.get_array2d(1, 2);
slaves.mydev.set_array2d(1, 2, x);
slaves.mydev.stop();
slaves.mydev.start();

OpenCPI RCC Development Guide Page 50 of 75

4.9 Worker Dispatch Structures — C Language Only

When workers are loaded for execution by the container, the container finds the worker
by getting access to its RCCDispatch structure. The only external symbol the worker
code needs to define is the symbol that holds this structure.

The code generator generates this initialization in the skeleton file, and it can be further
customized by the worker author.

4.9.1 RCCDispatch Structure Type

This type is the dispatch table for the operations of the C-language worker interface. It
represents the functionality a worker provides to a container when it is loaded. The
container must gain access to this structure when the worker is loaded and executed.
All members are statically initialized by the worker source code. This structure also
contains other descriptive information required by the container to use the worker.

The RCC C-language skeleton will contain a default initialization for this structure based
on what is in the OWD, which looks like (for worker xyz.rcc):

XYZ_METHOD_DECLARATIONS;
RCCDispatch bias = {
 /* insert any custom initializations here */
 XYZ_DISPATCH
};

Any non-default member initializations must be placed after the XYZ_DISPATCH line,
and be specified using the named member syntax, e.g.:

RCCDispatch bias = {
 /* insert any custom initializations here */
 XYZ_DISPATCH
 .memSize = 16*sizeof(MyData),
 .runCondition = &myRunCondition
};

OpenCPI RCC Development Guide Page 51 of 75

The members of this structure that may be set this way are defined in the following
table:

Table 8: Members of the RCCDispatch Structure — C Language Only

RCCDispatch
Member

Member Data Type Member Description

memSizes uint32_t* This zero-terminated array of memory sizes
indicates allocations required by the worker.
Multiple allocations allow the worker to avoid
aggregating its requirements in a single allocation.
May be NULL, when no allocations are required.
Use memSize below when there is only one
allocation required.

Result will be in self->memories.

runCondition RCCRunCondition* The initial run condition used. If this pointer is
NULL it implies a run condition of all connected
ports being ready and no timeout. If there are no
ports, the default is no port masks to check,
indicating always ready to run.

optionalPorts RCCPortMask A mask indicating ports that may be unconnected.
The default, 0, means all ports must be connected
before the worker is started.

memSize size_t This size indicates a required static memory
allocation. May be zero, indicating no allocation is
required. Result will be in self->memory.

OpenCPI RCC Development Guide Page 52 of 75

5 Code Generation for RCC Workers

In the descriptions below, italicized names in angle brackets are names specific to the
worker, as found in the worker’s OCS and OWD XML files.

The worker's OCS and OWD are used to generate two code files, the header and the
skeleton. The header file, which should not be edited, and is deleted by “make
clean”, contains type definitions and declarations customized for the worker. This file
is named <workername>_Worker.h in the C language or <workername>-
worker.hh in the C++ language, with the worker name is its original case from the
OWD. It is placed in the gen subdirectory of the worker's directory.

The skeleton file is a small file that is generated as the basis for writing the worker's
execution code (e.g. the run method implementation). It relies heavily on the
generated header file and is as small as possible to avoid requiring code changes when
the OCS or OWD is changed. The skeleton is generated in the gen subdirectory, with
the name <workername>-skel.c (C language) or <workername>-skel.cc (C++
language). It is also copied into the worker's directory as the worker's primary source
file: <workername>.c or <workername>.cc. This copy is what should be edited to
add the worker's functional code. This copy is only made if the worker's code file does
not exist or has not been edited since it was previously copied from gen/.

When the OCS, OPS or OWD XML files are changed, the header and skeleton are
regenerated, but this does not affect the primary source file. Because most of the code
is generated in the header, and only a little in the skeleton, it is rare that significant code
changes are required in the primary source file based on XML changes.

The gen/<workername>-skel.{c,cc} skeleton file should not be edited, but left for
reference to see exactly what the code generator produced.

OpenCPI RCC Development Guide Page 53 of 75

5.1 Namespace Management

To avoid name space collisions, some rules are used by the code generator when
creating the header and skeleton files.

In the C++ language, generated data types in the header are placed in a namespace
whose name is: <Worker>WorkerTypes. In the actual worker source file, this
namespace is normally imported, via the “using namespace” directive. The actual
worker derived class is a class in the global namespace whose name is
<Worker>Worker. In both cases, <Worker> is a capitalized version of the worker's
name. The dispatch entry point, which is necessarily a C external symbol, has the
worker's name as its external symbol, with the prefix ocpi_.

In the C language, the worker's dispatch table is given the external symbol name of the
worker, and all methods are declared static. All data types use the capitalized worker
name as a prefix and all constants and macros use the upper cased worker name
followed by an underscore as a prefix.

A summary of the RCC authoring model name space management is:

 The C++ namespace OCPI is reserved.

 The prefix ocpi_ is reserved in the C external linkage namespace.

 C workers use their name as an external symbol.

 C++ workers use two global namespaces that use the <Worker> prefix.

 C and C++ workers use the PARAM_ and OCPI_ prefixes for preprocessor
symbols.

 C workers use the <Worker> prefix for type names and <WORKER>_ for
constants.

OpenCPI RCC Development Guide Page 54 of 75

5.1 Generated Data Types

Various data types are generated in the header file for the worker. They are :

 Port name enumeration

 Property data structure

 Opcode enumeration for each protocol used

 Opcode enumeration for each port (C only)

 Message structures (C only)

 Worker base class (C++ only)

5.1.1 The Enumeration Constants for the Worker’s Ports

An enumeration type is generated in the header file defining constants for the ordinal of
each port, in the form <WORKER>_<PORT>, in all upper case. These ordinals can be
used when creating port masks for run conditions, or, for C workers, indexing into the
port array in the RCCWorker structure.

5.1.2 The Properties Structure Type

This is the generated structure definition that reflects the properties declared for the
worker in its OCS and OWD XML files. Each member of this structure has the data type
corresponding to the property’s description in the OWD and OCS XML files. Members
for properties that are not declared volatile in XML are const in this structure,
indicating that the worker is not expected to change their values.

The standard name of the struct type (typedef name in C) is XyzProperties where
“Xyz” is the capitalized worker implementation name.

Properties which are sequences are generated as a structure containing a uint32_t
member whose name is length, holding the number of elements in the sequence.
Padding may be added before and after the length member to achieve the required
alignment of this length field as well as the sequence data following it. The member
name of the structure is the property name. The members of the structure are length
and data. The data member is a C array whose length is the SequenceLength
attribute from the Property element in the XML. Remember that for properties (as
opposed to protocols), sequences and strings always have a maximum size (i.e. be
bounded).

Struct properties have structure tags with the same name as the property name,
preceded by the worker name.

The correspondence between property types in OCS and OWD files and the C/C++
language data types are in the following table:

OpenCPI RCC Development Guide Page 55 of 75

Table 9: Property Data Types in C and C++

OCS/OWD
Property Type

C/C++
Data Type

Comments

bool RCCBool Must be 8 bits, consistent across languages.

char RCCChar Must be signed type, and basis for string

uchar uint8_t

short int16_t

ushort uint16_t

long int32_t

ulong uint32_t

longlong int64_t

ulonglong uint64_t

string RCCChar[] Null terminated string

enum uint32_t

float RCCFloat Must be IEEE 32 bit float

double RCCDouble Must be IEEE 64 bit double

The names of the non-integer types for scalar properties are the OCS-defined type
names capitalized and prefixed with RCC, specifically:

 RCCBoolean, RCCChar, RCCFloat, RCCDouble

Properties that are string properties are RCCChar arrays whose size is one more than
the declared StringLength attribute of that string property in the Property element,
and the values are null terminated strings.

5.1.3 Structures for Message Payloads — C Language Only

For each port a union type is defined for all possible messages at that port. Members of
the union type are generated structures for each possible message in that protocol.
The name of the union type is <Port>Operations, with port name capitalized.

For each of the message types specified in the protocol, a structure is defined. The
structure's type name is the capitalized name of the operation in the protocol, and
whose member name is the lower cased name. Arguments to the operation in the
protocol are structure members of that per-operation structure. The structure layout is
as defined above for the property structure, with the exception that variable size
elements (strings and sequences) are allowed, and are sized as [1], with no further
members generated after the first variable sized member.

The structure generated is padded and packed, such that padding members are
explicitly inserted to ensure all types are aligned on their own boundaries. As part of the

OpenCPI RCC Development Guide Page 56 of 75

packing, the compiler is told to pack the structure. Given the insertion of padding, the
packing simply means that there is no padding at the end of the structure to achieve any
alignment. The struct definition should not be used in any other context where this lack
of overall size alignment is required (e.g. an array of such structures).

There is one special exception for messages that consist entirely of one sequence of
fixed length elements: the length of the sequence is implied by the overall message
length as specified by the length value of buffers at input and output ports, and not
represented by inserting a uint32_t value in the message buffer/structure. In all other
cases (not-fixed sequence elements, or more than one top level data argument in the
message), sequences in messages are represented by a struct containing length and
data members.

For example, for a port named in, with a protocol whose first operation was
sampledata, and whose first argument was sample - a sequence of Ulonglong
values, the worker’s custom port union would look like:

union InOperations {
 // Structure for the 'sampledata' operation on port 'in'
 struct __attribute__ ((__packed__)) Sampledata {
 uint64_t sample[1];
 } sampledata;
};

5.1.4 Worker Base Class — C++ Language Only

For C++ workers, a base class is generated in the header file that is inherited by a
derived class in the skeleton. The base class is generated to maximize the code
generated in the header file and minimize the code generated in the skeleton.

The worker base class is generated to support all the documented features described
above, including access to properties, and contains pure virtual member function
declarations for all the member functions required to be implemented in the derived
class generated in the skeleton. While the documented interfaces used by the worker
author in the derived class are stable and not subject to change, the details of the code
generation and the contents of header files (generated or not) are implementation
defined and subject to change.

OpenCPI RCC Development Guide Page 57 of 75

6 RCC Local Services

Local services APIs are standard library functions available to RCC workers running in a
container. Containers are required to supply them, and portable workers are
constrained to use only them, in addition to the worker-to-container methods defined
above. The RCC local services are defined as a small subset of the POSIX and ISO-C
runtime libraries.

The subset avoids functions that require significant operating system support while
providing the author with common, convenient and standard library functions. All I/O is
excluded since portable RCC workers should be performing all I/O via the OpenCPI
data plane ports (except printf).

These local services APIs represent a minimal environment required of embedded
systems. Since RCC workers may execute in a multi-threaded environment, non-
reentrant (or thread-unsafe) functions are excluded (e.g. localtime). Similarly,
functions that affect the global (process) environment are excluded since they could
damage the execution of other workers in the same process (e.g. setenv).

If other APIs are used, there is no guarantee they will be available in all containers.
Some containers in fact allow many more functions to be called from a worker, but that
makes such workers non-portable. In the future there may be optional explicit error
checking for using library functions not in the list below.

In other standards documents, a list of available, standard, functions is sometimes
called an Application Environment Profile (AEP).

The actual list of standard functions and global variables usable in portable RCC
workers is, in alphabetical order:

abs(), asctime_r(), atof(), atoi(), atol(), atoll(), bsearch(),
calloc(), confstr(), ctime_r(), difftime(), div(), errno,
feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(),
feholdexcept(), feraiseexcept(), fesetenv(), fesetexceptflag(),
fesetround(), fetestexcept(), feupdateenv(), free(), getenv(),
gmtime_r(), imaxabs(), imaxdiv(), isalnum(), isalpha(), isblank(),
iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), labs(), ldiv(), llabs(), lldiv(),
localeconv(), localtime_r(), longjmp(), malloc(), memchr(),
memcmp(), memcpy(), memmove(), memset(), mktime(), printf(),
qsort(), rand(), rand_r(), realloc(), setjmp(), snprintf(),
sprintf(), srand(), sscanf(), strcat(), strchr(), strcmp(),
strcoll(), strcpy(), strcspn(), strerror(), strerror_r(),
strftime(), strlen(), strncat(), strncmp(), strncpy(), strpbrk(),
strrchr(), strspn(), strstr(), strtod(), strtof(), strtoimax(),
strtok_r(), strtol(), strtold(), strtoll(), strtoul(), strtoull(),
strtoumax(), strxfrm(), sysconf(), time(), tolower(), toupper(),
tzname, tzset(), uname(), va_arg(), va_copy(), va_end(), va_start(),
vsnprintf(), vsprintf(), vsscanf()

OpenCPI RCC Development Guide Page 58 of 75

The C++ standard library, especially in later versions, has not been analyzed for
appropriate restrictions to ensure one worker does not damage the environment for
other workers in the same process/container.

Using heap allocation functions (e.g. malloc, calloc, realloc) requires that the
worker release any allocated memory in its release method when the allocations
persist across methods.

OpenCPI RCC Development Guide Page 59 of 75

6.1 RCC Local Services AEP as a Small Subset of POSIX and ISO-C.

This section explains the rationale for the RCC AEP and its connection to POSIX
standards. The POSIX Minimal Realtime System Profile (PSE51) from the
IEEE Std 1003.13™-2003 standard is used as the superset of functionality that is
reduced (with subtractions) to the RCC local services available functions. It can be
found at https://standards.ieee.org/findstds/standard/1003.13-2003.html.

This subset is defined to require setting the _POSIX_AEP_RT_MINIMAL_C_SOURCE
feature test macro to the value 200312L, before including any standard header files.
This is not necessary in RCC workers. The PSE51 profile defines POSIX.1 units of
functionality in table 6-1 of the IEEE Std 1003.13™-2003 document. The RCC Local
Services AEP removes these units of functionality from that table:

 POSIX_DEVICE_IO

 POSIX_FILE_LOCKING

 POSIX_SIGNALS

 XSI_THREAD_MUTEX_EXT

 XSI_THREADS_EXT

 POSIX_THREADS_BASE

The retained units of functionality, and their defined symbols and functions are:
POSIX_C_LANG_JUMP: longjmp(), setjmp();
POSIX_C_LANG_SUPPORT: abs(), asctime_r(), atof(), atoi(), atol(),
atoll(), bsearch(), calloc(), ctime_r(), difftime(), div(),
feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(),
feholdexcept(), feraiseexcept(), fesetenv(), fesetexceptflag(),
fesetround(), fetestexcept(), feupdateenv(), free(), gmtime_r(),
imaxabs(), imaxdiv(), isalnum(), isalpha(), isblank(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), labs(), ldiv(), llabs(), lldiv(),
localeconv(), localtime_r(), malloc(), memchr(), memcmp(), memcpy(),
memmove(), memset(), mktime(), qsort(), rand(), rand_r(), realloc(),
setlocale(), snprintf(), sprintf(), srand(), sscanf(), strcat(),
strchr(), strcmp(), strcoll(), strcpy(), strcspn(), strerror(),
strerror_r(), strftime(), strlen(), strncat(), strncmp(), strncpy(),
strpbrk(), strrchr(), strspn(), strstr(), strtod(), strtof(),
strtoimax(), strtok(), strtok_r(), strtol(), strtold(), strtoll(),
strtoul(), strtoull(), strtoumax(), strxfrm(), time(), tolower(),
toupper(), tzname, tzset(), va_arg(), va_copy(), va_end(),
va_start(), vsnprintf(), vsprintf(), vsscanf();
POSIX_SINGLE_PROCESS: confstr(), environ, errno, getenv(),
sysconf(), uname();

The philosophy of the base RCC profile AEP subset is to allow functions that are simply
libraries (rather than OS services), but remove services that could conflict with the lean
container execution model in that profile. This basically leaves the typical ANSI-C (or

OpenCPI RCC Development Guide Page 60 of 75

https://standards.ieee.org/findstds/standard/1003.13-2003.html

ISO C99) runtime library (without I/O) – most DSPs have this available, even those
environments without multithreading.

OpenCPI RCC Development Guide Page 61 of 75

7 Summary of OpenCPI RCC Authoring Model

 RCC workers are written to implement worker methods, called by the container,
and optionally use the container methods, called by the worker.

 RCC workers may call the local services functions defined in section 6 above.

 RCC workers use symbols, data types and ordinals defined in the generated
header file, which is based on the OCS, OPS, and OWD files, including

• Implementation name

• Which control operations are implemented

• Which properties require notification

• Static memory allocation requirements of the implementation code

• Minimum number of buffers required at each port

 The information in the OCS/OPS/OWD files is used to drive the code generation
and build process.

 The worker uses the software execution model as described in the CDG.

OpenCPI RCC Development Guide Page 62 of 75

8 Building RCC Workers

The CDG explains how all workers are built, and this also applies to RCC workers.
There are some Makefile variables that apply only to RCC workers. They can be set:

 in the worker's Makefile

 on the command line when invoking make

 in a project's Project.mk file

If they are specific to the worker, they should only be in the worker's Makefile.

8.1 RCC Compiler and Linking Options

For most RCC workers, the built-in compiler options are suitable and no extra variables
are needed. In special cases, it may be useful to control these options for a given
worker, library or project.

Compiler and link option variables exist in several variants, with suffixes to indicate how
narrowly to apply them. For each such option variable mentioned in the table below,
there are actually 6 potential variables with different suffixes. In the suffixes:
<language> is C or CC for C or C++, <os> is the operating system of target (e.g.
linux or macos), and <platform> is the specific RCC target platform. A typical
example of the fully specific target is linux-c7-x86_64, indicating the CentOS7
distribution of linux, compiled for the x86_64 architecture. E.g., for the
RccCompileWarnings variable (in the table below) the variations are:

RccCompileWarnings
RccCompileWarnings<language>
RccCompileWarnings_<os>
RccCompileWarnings<language>_<os>
RccCompileWarnings_<platform>
RccCompileWarnings<language>_<platform>

The most specific one overrides all the less specific ones above it. For example,
specifying:

RccCompileWarnings_linux=-Wabi

would indicate that you want -Wabi to be the only warning option when building RCC
workers for the linux OS. If you also set:

RccCompileWarnings=-Wall

then for all OSs other than linux, the warnings would be -Wall. If you wanted the
default for all targets to be -Wall, but to add -Wabi for linux, you would specify:

RccCompileWarnings=-Wall
RccCompileWarnings_linux=$(RccCompilerWarnings) -Wabi

For each variable, like the RccCompileWarnings example above, there are actually 2
variables that each use the suffixes scheme:

 RccCompileWarnings – which OpenCPI controls and sets as appropriate

OpenCPI RCC Development Guide Page 63 of 75

 RccExtraCompileWarnings – which OpenCPI never sets and whose contents
is placed on the compile or link command line after the one without “Extra”.

Thus it is strongly recommended to use the Extra variants when possible. Specifying
incorrect options for compilation and linking can easily result in errors. There is no
guarantee that any additional options will be compatible with OpenCPI or result in
functional worker binary artifacts. When changing these options, it is recommended to
first run with default settings and use the showvars make target on the make command
line to see how the options are used, before and after modifying these variables.

OpenCPI RCC Development Guide Page 64 of 75

Table 10: RCC make variables for inside RCC worker Makefiles

Makefile Variable Description

RccIncludeDirs
IncludeDirs Directories to search for C/C++ header files outside OpenCPI.

Either IncludeDirs or RccIncludeDirs can be used in the
worker Makefile, but RccIncludeDirs is specific to RCC
workers when specified at the library or project level. Can be
relative or absolute pathnames. No Extra or suffixes are used.

RccCompileWarnings For controlling compile warnings. Uses option suffixes and Extra.

RccCompileOptions For controlling compile options (not warnings). Uses option suffixes
and Extra.

RccLinkOptions Options applied when creating the RCC worker shared object file.
Uses option suffixes and Extra.

RccCustomLibs Library options to specify libraries unknown to OpenCPI. Uses
option suffixes but not Extra. OpenCPI never sets this.

RccStaticPrereqLibs Names of libraries installed as OpenCPI prerequisite libraries that
this worker should link against, statically, which will incorporate
(copy) any referenced objects in that library into the worker's binary
artifact. This automatically puts the library's include directory in the
search path for headers.

RccDynamicPrereqLibs Names of libraries installed as OpenCPI prerequisite libraries to
link against, dynamically, which requires that the library be
available at runtime. This automatically puts the library's include
directory in the search path for headers.

RccPlatform(s)
OnlyPlatforms
ExcludePlatforms

Which platform(s) should the RCC worker be built for? Only one of
RccPlatform or RccPlatforms should be specified. If none
are specified, the development host running make is assumed to
be the target. In a worker Makefile, OnlyPlatforms and
ExcludePlatforms can be used to restrict which platforms the
worker is built for, even when RccPlatforms is set on the
command line for many platforms.

RccHdlPlatform(s) This option indirectly specifies the RccPlatform(s) in terms of
its association with an HDL platform. E.g. setting
RccHdlPlatform=zed would specify the RccPlatform
currently associated with the zed HDL platform, which may or may
not be the same as used on other HDL Xilinx Zynq-based
platforms.

OpenCPI RCC Development Guide Page 65 of 75

9 Worker Code Examples

9.1 C Language Examples

Here is a simple example of a C-language “Xyz” worker whose:

 Initial run condition was the default (condition == NULL, usecs == 0, run when all
ports are ready, no timeout),

 start and release methods are not needed or implemented.

 One input port (0) with interface XyzIn, and one output port (1) XyzOut

 One interface operation Op1 on input (i.e. can ignore “operation”), which is an
array of 100 “shorts”.

 One interface operation Op2 on output

 One simple property, called center_frequency, of type float.

The worker would have automatically generated types and structures like this (based on
OCS and OWD), and put in a file called “xyz_Worker.h”:

#include “RCC_Worker.h”
typedef struct { /* structure for defined properties /

RCCFloat center_frequency;
} XyzProperties;
typedef struct { // structure for message for operation

int16_t ishorts[100];
} XyzInOp1;

typedef struct { // structure for message for operation
int16_t oshorts[100];

} XyzOutOp2;

typedef enum { // port ordinals
XYZ_IN,
XYZ_OUT

} XyzPort;

typedef enum { // operation ordinals
XYZ_OUT_OP2

} XyzOutOperation;

typedef enum { // operation ordinals
XYZ_IN_OP1

} XyzInOperation;

The actual code for the worker is below.

9.1.1 Worker Using the Default Run Condition

This C language worker uses the default run condition and thus has no checking for port
readiness, but does set a default operation for output messages. It always produces an
output message for every input message, so the run method can simply return
RCC_ADVANCE.

OpenCPI RCC Development Guide Page 66 of 75

#include “Xyz_Worker.h”

/* Define the initialize method, setting output operation to be a */
/* constant, since it is the only one.*/
static RCCResult
initialize(RCCWorker *w) {

w->ports[XYZ_OUT].output.u.operation = XYZ_OUT_OP2;
return RCC_OK;

}

/* Define run method to call the “compute” function, reading from */
/* input buffer, writing to output, applying current value of the */
/* “center frequency” property.*/
static RCCResult
run(RCCWorker *w, RCCBoolean timedout, RCCBoolean *newRunCondition)
{

XyzProperties *p = w->properties;
XyzInOp1 *in = w->ports[XYZ_IN].current.data;
XyzOutOp2 *out = w->ports[XYZ_OUT].current.data;

/* Do computation based in ishorts, and frequency put results */
/* in oshorts. Extern is here simply for readability. */
extern void compute(int16_t *, int16_t *, float);

compute(in->ishorts, out->oshorts, p->center_frequency);
/* Ask container to get new input and output buffers */
return RCC_ADVANCE;

}

/* Initialize dispatch table for container, in a global symbol /
RCCDispatch Xyz = {

/* Consistency checking attributes */
RCC_VERSION, 1, 1, sizeof(XyzProperties), RCC_NULL, RCC_FALSE,
/* Methods */
initialize, RCC_NULL, RCC_NULL, RCC_NULL, RCC_NULL, RCC_NULL,
RCC_NULL, run,
/* Default run condition */
RCC_NULL

};

Other than the compute function, the above example compiles to use less than 120
bytes on an ARM processor.

9.1.2 Worker Using the State-machine Style

This illustrates a finite state machine coding style in a worker that maintains an internal
state to simulate blocking on a two-way remote call until the response is received and
processing can continue.

OpenCPI RCC Development Guide Page 67 of 75

#include "Xyz_Worker.h"
/* Define two different run conditions to represent two states */
static uint32_t
 state1Ports[] = {1 << XYZ_IN, RCC_NO_PORTS},
 state2Ports[] = {1 << XYZ_COMPUTE_REPLY_IN, RCC_NO_PORTS};
static RCCRunCondition
 awaitingInput = {state1Ports},
 awaitingResponse = {state2Ports};

/* Define start method, set run condition, which is also state. /
static RCCResult
initialize(RCCWorker *this)
{

this->runCondition = &awaitingInput;
return RCC_OK;

}
/* Define run method to call the local "compute" function
 * reading from input buffer, applying current value of the
 * “center frequency” property, followed by remote two way
 * “process” operation, finally writing result to output. */
static RCCResult
run(RCCWorker *this, RCCBoolean timedout, RCCBoolean *newRunCondition)
{

RCCContainer *c = &this->container;

/* Use run condition as state indicator */
if (this->runCondition == &awaitingInput) {

RCCPort
*inPort = &this->ports[XYZ_IN],
*computeOut = &this->ports[XYZ_COMPUTE_REQUEST_OUT];

XyzInOp1 *in = inPort->current.data;
XyzProperties *p = this->properties;

/* do some computation based in ishorts, and frequency;
 * put results back in same buffer (in-place) */
extern void compute(int16_t *, int16_t *, float);
compute(in->ishorts, in->ishorts, p->center_frequency);

/* Call Process op on user port - buffer ownership passes back
 * to container. Input port is advanced by taking buffer away
 * from it. */
c->send(computeOut, &inPort->current, XYZ_COMPUTE_PROCESS,
 inPort->input.length); /* length of message */
this->runCondition = &awaitingResponse; /* update state */

} else {
RCCPort *computeIn = &this->ports[XYZ_COMPUTE_REPLY_IN];
RCCPort *otherOut = &this->ports[XYZ_OUT];

if (computeIn->input.u.exception == 0)
c->send(otherOut, &computeIn->current, XYZ_OUT_OP2,
 computeIn->input.length);

else
c->advance(computeIn, 0);

this->runCondition = &awaitingInput; /* update state */
}
newRunCondition = RCC_TRUE; / to container: new runcondition /

OpenCPI RCC Development Guide Page 68 of 75

return RCC_OK;
}

/* continued on next page */

OpenCPI RCC Development Guide Page 69 of 75

/* Initialize dispatch table provided to container. We only need the
 * initialize method to register the callback. No run method needed */
RCCDispatch Xyz = {

/* Consistency checking attributes */
RCC_VERSION, 1, 1, sizeof(XyzProperties), RCC_NULL, RCC_FALSE,
/* Methods */
initialize, RCC_NULL, RCC_NULL, RCC_NULL, RCC_NULL, RCC_NULL,
RCC_NULL, run,
/* all remaining members zero/NULL */

};

Other than the compute function, the above example compiles to use less than 330
bytes on a Pentium processor.

OpenCPI RCC Development Guide Page 70 of 75

9.2 C++ Language Examples

Here is a simple example of a C++ language “xyz” worker whose:

 Initial run condition was the default (condition == NULL, usecs == 0, run when all
ports are ready, no timeout),

 initialize, start and release methods are not needed or implemented.

 One input port (in), and one output port (out)

 One interface operation Op1 on input, which is an array of 100 “shorts”.

 One interface operation Op2 on output, a sequence of shorts.

 One simple property, called center_frequency, of type float.

The OPS for the in port would be (in the shortarray-prot.xml file):
<protocol>
 <operation name='op1'>
 <argument name='shorts' type='short' arraylength='100'/>
 </operation>
</protocol>

The OPS for the output port would be (in the shortseq-prot.xml file)
<protocol>
 <operation name='op2'>
 <argument name='shorts' type='short' sequencelength='0'/>
 </operation>
</protocol>

The OCS for the component would be (in the xyz-spec.xml file):
<componentSpec>
 <property name='center_frequency' type='float' writable='true'/>
 <port name='in' protocol='shortarray'/>
 <port name='out' protocol='shortseq'/>
</componentSpec>

The OWD would be (in the file xyz.xml):
<RccWorker spec=”xyz-spec” language='c++'/>

The worker would have automatically generated types and structures like this (based on
OCS and OWD), and put in a file called xyz-worker.hh:

#include <RCC_Worker.h>
namespace XyzWorkerTypes {
 struct Properties { // structure for properties
 // internal stuff here
 const RCCFloat center_frequency; // const since not volatile
 };
 class XyzWorkerBase { // base class inherited by worker
 // internal stuff here, including port members
 };
}

OpenCPI RCC Development Guide Page 71 of 75

The actual code for the C++worker would look like this (in the file xyz.cc):
#include "xyz-worker.hh" // include generated declarations

using namespace OCPI::RCC; // for access to RCC data types and constants
using namespace XyzWorkerTypes; // for generated types

struct XyzWorker : public XyzWorkerBase { // use struct to avoid "public"
 // In constructor, set output operation to be a constant,
 // since it is the only one used, but not the default (0)
 XyzWorker() {
 out.setDefaultOpCode(ProtOp2_OPERATION);
 }
 void
 compute(int16_t *in, int16_t *out, size_t n, float freq) { ... }
 // Define run method to call the “compute” function, reading from
 // input buffer, writing to output, applying current value of the
 // centerFrequency” property
 RCCResult
 run(RCCBoolean /* timedout */) {
 // Do computation from in.op0.shorts(), using frequency, put results
 // in out.op2.shorts().
 out.op2().shorts().resize(in.op0().shorts().size());
 compute(in.op0().shorts().data(), out.op2().shorts().data(),
 in.op0().shorts().size(), properties().center_frequency);
 // Ask container to send output and get new input/output buffers */
 return RCC_ADVANCE;
 }
};

OpenCPI RCC Development Guide Page 72 of 75

9.2.1 Worker Using the State-machine Style

This illustrates a finite state machine coding style in a C++ worker that maintains an
internal state to simulate blocking on a two-way remote call until the response is
received and processing can continue. It accepts data on its in port, performs
computation in-place (in the input buffer), then sends this buffer to an out port, and
starts awaiting a response from a response input port. When the response arrives, it
sends the response to an other output port, and reverts to its original condition, waiting
for input.

#include "xyz-worker.hh" // include generated declarations

using namespace OCPI::RCC; // for access to RCC data types and constants
using namespace XyzWorkerTypes; // for this worker's generated types

struct XyzWorker : public XyzWorkerBase { // use struct to avoid "public"
 // Define two different run conditions to represent two states
 // These could be static and initialized outside the class too.
 RCCRunCondition m_awaitingInput, m_awaitingResponse;
 XyzWorker()
 : m_awaitingInput(1 << XYZ_IN, RCC_NO_PORTS),
 m_waitingResponse(1 << XYZ_RESPONSE, RCC_NO_PORTS) {
 setRunCondition(&m_awaitingInput);
 }
 RCCResult
 run(RCCBoolean /* timedout */) {
 // Use run condition as state indicator
 if (getRunCondition() == &m_awaitingInput) {
 // do some computation based in in.op0().shorts(), and frequency;
 // put results back in same buffer (in-place)
 compute(in.op0().shorts().data(), in.op0().shorts().data(),
 in.op0().shorts().size(), properties().center_frequency);
 // Input port is advanced by taking buffer away from it.
 out.send(in); // send input buffer to output, same op and length,
 setRunCondition(&m_awaitingResponse); // await response
 } else {
 other.send(response); // got response, send to other
 setRunCondition(&awaitingInput); // change state to await input
 }
 return RCC_OK;
 }
};

OpenCPI RCC Development Guide Page 73 of 75

10 Glossary

Configuration Properties – Named values associated with a worker that may be read
or written by the control application and/or the worker. Their values indicate or control
aspects of the worker’s operation. Reading and writing these property values may or
may not have side effects on the operation of the worker. Configuration properties with
side effects can be used for custom worker control. Each worker may have its own,
possibly unique, set of configuration properties. Some properties come from the OCS;
they are common to all implementations that implement that OCS. Other properties can
be added in the OWD that are specific to that particular worker implementation.

Container – An OpenCPI infrastructure element that “contains”, manages and executes
a set of application workers. Logically, the container “surrounds” the workers, mediating
all interactions between the worker and the rest of the system.

Worker Attribute – An attribute related to a particular implementation (design) of a
worker. I.e. one that is not necessarily common across a set of implementations of the
same high level component definition (OCS).

Worker – A concrete implementation of a component. Also, a runtime instance of a
worker source code implementation, generally existing within a container. A worker is
implemented consistent with its authoring model and its OWD.

OpenCPI RCC Development Guide Page 74 of 75

11 List of Abbreviations and Acronyms

ACI Application Control Interface

API Application Programming Interface

CDG OpenCPI Component Development Guide

CDK Component Developer’s Kit

OCS OpenCPI Component Specification

OpenCPI Open-Source Component Portability Infrastructure

OWD OpenCPI Worker Description

RCC Resource Constrained C/C++ Language

XML Extensible Markup Language

OpenCPI RCC Development Guide Page 75 of 75

	1 Introduction
	1.1 References

	2 Overview
	3 XML Description Files (OWD) for RCC Workers.
	3.1 Attributes of a Top-level RCCWorker Element
	3.1.1 Name Attribute — See the CDG
	3.1.2 Spec Attribute — See the CDG
	3.1.3 ControlOperations Attribute — See the CDG
	3.1.4 Language Attribute
	3.1.5 Slave Attribute — C++ Language Only
	3.1.6 ExternMethods Attribute — C Language Only
	3.1.7 StaticMethods Attribute — C Language Only
	3.1.8 StaticPrereqLibs Attribute
	3.1.9 DynamicPrereqLibs Attribute

	3.2 Attributes of Port Elements in the OWD
	3.2.1 Name Attribute
	3.2.2 MinBufferCount Attribute

	3.3 Attributes of Slave Elements in the OWD
	3.3.1 Name Attribute of the Slave Element
	3.3.2 Worker Attribute of the Slave Element

	4 The RCC Worker Interface
	4.1 The RCC Execution Model
	4.2 Worker Methods: Called by the Container, Implemented by the Worker.
	4.2.1 RCCWorker Structure Type – C Language Only
	4.2.2 The Worker Derived Class – C++ Language Only
	4.2.3 RCCResult Enumeration Type — C and C++ Languages
	4.2.4 Worker Initializations
	4.2.5 initialize — Worker Method
	4.2.5.1 Synopsis
	4.2.5.2 Returns

	4.2.6 start — Worker Method
	4.2.6.1 Synopsis
	4.2.6.2 Returns

	4.2.7 stop — Worker Method
	4.2.7.1 Synopsis
	4.2.7.2 Returns

	4.2.8 release — Worker Method
	4.2.8.1 Synopsis
	4.2.8.2 Returns

	4.2.9 run — Worker Method
	4.2.9.1 Synopsis
	4.2.9.2 Behavior
	4.2.9.3 Returns

	4.3 Container Methods, Called by the Worker.
	4.3.1 firstRun — Container Method
	4.3.1.1 Synopsis
	4.3.1.2 Returns

	4.3.2 setError — Container Method
	4.3.2.1 Synopsis
	4.3.2.2 Returns

	4.3.3 log — Container Method
	4.3.3.1 Synopsis

	4.3.4 willLog — Container Method
	4.3.4.1 Synopsis
	4.3.4.2 Returns

	4.3.5 time/getTime — Container Method
	4.3.5.1 Synopsis
	4.3.5.2 Returns

	4.3.6 The RCC::RunCondition C++ Class and RCCRunCondition C Structure
	4.3.7 getRunCondition — Container Method — C++ Language Only
	4.3.7.1 Synopsis
	4.3.7.2 Returns

	4.3.8 setRunCondition — Container Method — C++ Language Only
	4.3.8.1 Synopsis
	4.3.8.2 Returns

	4.4 Port Management Data Members and Methods
	4.4.1 advance — Release Current Buffer, and Request Another
	4.4.1.1 Synopsis
	4.4.1.2 Returns

	4.4.2 hasBuffer — Query a Port for Whether It Has a Current Buffer-to-release
	4.4.2.1 Synopsis
	4.4.2.2 Returns

	4.4.3 isConnected — Query a Port for Being Connected
	4.4.3.1 Synopsis
	4.4.3.2 Returns

	4.4.4 ordinal — Obtain an Ordinal for a Port
	4.4.4.1 Synopsis
	4.4.4.2 Returns

	4.4.5 request — Request a New Buffer
	4.4.5.1 Synopsis
	4.4.5.2 Returns

	4.4.6 send — Send an Input Buffer on an Output Port
	4.4.6.1 Synopsis
	4.4.6.2 Returns

	4.4.7 setDefaultLength — Set Default Message Length at an Output Port — C++ Language Only
	4.4.7.1 Synopsis
	4.4.7.2 Returns

	4.4.8 setDefaultOpCode — Set Default Opcode at Output Port — C++ Language Only
	4.4.8.1 Synopsis
	4.4.8.2 Returns

	4.4.9 take — Take a Buffer from an Input Port
	4.4.9.1 Synopsis
	4.4.9.2 Returns

	4.5 Buffer Management Data Members and Methods
	4.5.1 checkLength — Check Size of the Buffer — C++ Language Only
	4.5.1.1 Synopsis
	4.5.1.2 Returns

	4.5.2 data — Access the Raw Contents of the Buffer
	4.5.2.1 Synopsis
	4.5.2.2 Returns

	4.5.3 length — Retrieve the Length of the Message in a Buffer – C++ Language Only
	4.5.3.1 Synopsis
	4.5.3.2 Returns

	4.5.4 maxLength — Retrieve the Maximum Available Space in the Buffer.
	4.5.4.1 Synopsis
	4.5.4.2 Returns

	4.5.5 opCode — Retrieve the OpCode of the Message in a Buffer
	4.5.5.1 Synopsis
	4.5.5.2 Returns

	4.5.6 eof — Retrieve the EOF status of the Buffer
	4.5.6.1 Synopsis
	4.5.6.2 Returns

	4.5.7 release — Release a Buffer
	4.5.7.1 Synopsis
	4.5.7.2 Returns

	4.5.8 setLength — Set the Length of the Message in a Buffer — C++ Language Only
	4.5.8.1 Synopsis
	4.5.8.2 Returns

	4.5.9 setOpCode — Set the OpCode for the Message in a Buffer — C++ Language Only
	4.5.9.1 Synopsis
	4.5.9.2 Returns

	4.5.10 setInfo — Set the Metadata Associated with a Buffer — C++ Language Only
	4.5.10.1 Synopsis
	4.5.10.2 Returns

	4.5.11 setEOF — Set the EOF status of the Buffer
	4.5.11.1 Synopsis
	4.5.11.2 Returns

	4.5.12 topLength — Retrieve the Size of the Single Sequence in a Message — C++ Language Only
	4.5.12.1 Synopsis
	4.5.12.2 Returns

	4.6 Accessing the Contents of Messages
	4.6.1 Accessing Messages in C Language Workers
	4.6.2 Accessing Messages in C++ Language Workers

	4.7 How a Worker Accesses its Properties
	4.7.1 The Worker Property Structure
	4.7.2 The Accessing Worker Properties in C
	4.7.3 Accessing Worker Properties in C++
	4.7.4 Property Access Notifications in C++
	4.7.5 Accessing the Values of Parameter Properties

	4.8 Controlling Slave Workers from Proxies — C++ Language Only
	4.8.1 start — Slave Method
	4.8.1.1 Synopsis

	4.8.2 stop — Slave Method
	4.8.2.1 Synopsis

	4.8.3 isOperating — Slave Method
	4.8.3.1 Synopsis
	4.8.3.2 Returns

	4.8.4 getProperty_<property> — Slave Method
	4.8.4.1 Synopsis
	4.8.4.2 Returns

	4.8.5 setProperty_<property> — Slave Method
	4.8.5.1 Synopsis

	4.8.6 get_<property> — Slave Method
	4.8.6.1 Synopsis
	4.8.6.2 Returns

	4.8.7 set_<property> — Slave Method
	4.8.7.1 Synopsis

	4.8.8 getLength_<property> — Slave Method
	4.8.8.1 Synopsis
	4.8.8.2 Returns

	4.8.9 Examples

	4.9 Worker Dispatch Structures — C Language Only
	4.9.1 RCCDispatch Structure Type

	5 Code Generation for RCC Workers
	5.1 Namespace Management
	5.1 Generated Data Types
	5.1.1 The Enumeration Constants for the Worker’s Ports
	5.1.2 The Properties Structure Type
	5.1.3 Structures for Message Payloads — C Language Only
	5.1.4 Worker Base Class — C++ Language Only

	6 RCC Local Services
	6.1 RCC Local Services AEP as a Small Subset of POSIX and ISO-C.

	7 Summary of OpenCPI RCC Authoring Model
	8 Building RCC Workers
	8.1 RCC Compiler and Linking Options

	9 Worker Code Examples
	9.1 C Language Examples
	9.1.1 Worker Using the Default Run Condition
	9.1.2 Worker Using the State-machine Style

	9.2 C++ Language Examples
	9.2.1 Worker Using the State-machine Style

	10 Glossary
	11 List of Abbreviations and Acronyms

