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1 Introduction

This document describes how to enable new platforms for OpenCPI, which will support 
the execution of component-based applications.  It assumes a basic knowledge of 
OpenCPI as described in the OpenCPI Overview and OpenCPI Component 
Development Guide.  Platform development is the third class of OpenCPI 
development, beyond application development and component development.  It 
involves configuring, adapting and wrapping various aspects of hardware platforms, 
operating systems, system libraries, and development tools.  It applies to general 
purpose computing platforms, FPGA platforms and GPU platforms.  It applies to self-
hosted development as well as cross development.

The questions this document tries to answer are:

 What are suitable platforms?

 What is involved in making a platform ready?

 What are the actual steps and processes for making a platform ready?

These questions are answered separately for development vs. execution.

These questions are answered separately for GPP, FPGA, and GPU platforms.

After introducing all these topics, this document has sections for each aspect in the 
following table:

Table 1:  Categories of Platform Development

Examples

Development
Tools

Execution
Environment

I/O and Interconnect
Device Support

General-
Purpose 
Processors
(GPPs)

X86
(Intel/AMD),

ARM
(Xilinx/Altera/TI)

Compiler
tool chains,
make
python

Operating System,

Libraries,

Drivers

FPGAs Xilinx
(Virtex,
Zynq-7000)

Intel/Altera
(Stratix, Cyclone)

Mentor/Modelsim

Synthesis

Place&route

Simulation

Bitstream loading

Control Plane Drivers

Data Plane Drivers

Directly attached I/O devices

Graphics 
Processors

Nvidia Tesla

AMD FirePro

Compilers,
Profilers

Execution Management

Drivers

Data Plane Drivers
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1.1 References

This document requires information from several others.  To actually perform platform 
development it is generally useful to understand OpenCPI component and application 
development, as well as the installation process for previously enabled platforms.  To 
simply get a flavor for what is involved in platform development, only the OpenCPI 
Introduction is required.

Table 1 - Table of Reference Documents

Title
Published

By
Link

OpenCPI Overview OpenCPI
https://opencpi.github.io/releases/1.5.0.rc/doc/

/OpenCPI_Overview.pdf

OpenCPI Installation Guide OpenCPI
https://opencpi.github.io/releases/1.5.0.rc/doc/

OpenCPI_Installation.pdf

OpenCPI Component 
Development Guide

OpenCPI
https://opencpi.github.io/releases/1.5.0.rc/doc/

OpenCPI_Component_Development.pdf

OpenCPI Application 
Development Guide

OpenCPI
https://opencpi.github.io/releases/1.5.0.rc/doc/

/OpenCPI_Application_Development.pdf
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2 OpenCPI Systems and Platforms

OpenCPI provides a consistent model and framework for component-based application 
development and execution on various combinations of (“heterogeneous”) processing 
technologies, focusing mostly on embedded systems.

An OpenCPI system is a collection of processing elements that can be used together 
as resources for running component-based applications.  OpenCPI considers each 
processor part of some hardware subsystem.  These subsystems are wired together 
using some interconnect technologies (e.g. networks, buses, fabrics, cables).

We call each available processor and its surrounding directly-connected hardware a 
platform.  Most commonly, a platform is a “card” or “motherboard” housing a processor 
and associated memory and I/O devices.  The data paths that allow platforms to 
communicate with each other are called interconnects.  The most common 
interconnects for OpenCPI systems are PCI Express or Ethernet, although others are 
also supported and used for some platforms (e.g. the AXI system interconnects on 
Xilinx Zynq-based systems).

The scope of a system can be a small embedded system that fits in a pocket, or racks 
full of network-connected hardware that act as a “system of systems”.  Since this 
“system” definition is somewhat broad, the focus is on efforts to enable running 
OpenCPI at each platform and interconnect within a system.  Hence platform 
development is enabling a platform, and enabling a system is enabling whatever 
platforms and interconnects are in the system.

Our most common and simple example system is the ZedBoard from Digilent 
(zedboard.org), which is based on the Xilinx Zynq chip.  This chip is called a “system on
chip” or SoC, and indeed has two processing elements connected with an interconnect, 
all on one chip:  1) a dual-core ARM general-purpose processor, and 2) an FPGA.  They
are connected via an on-chip fabric based on the AXI standard, and each is connected 
to some I/O devices.  Thus the ZedBoard system consists of two platforms that 
happen to reside in the same chip, with an AXI interconnect between them.

Another common example system is a typical PC, which has a multicore (1-12) Intel or 
AMD x86 processor on a motherboard.  If cards are plugged into slots on the PC's 
motherboard, and those cards have processors (e.g. GPP, FPGA, GPU) on them, then 
those cards can act as additional platforms in that system.

We consider multi-core GPPs as single “processors” since they generally run a single 
operating system and act as a single resource that can run multiple threads 
concurrently.

The final defined element of an OpenCPI system is devices, which are locally attached 
to some platform to act as source or sink of data to enter or exit the system.  Thus 
devices are distinct from interconnects.

A system consists of platforms connected by interconnects, and platforms can have 
local devices, either permanently attached (e.g. on the motherboard) or on optional 
cards in the platform's slots.
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2.1 Inside an OpenCPI Platform

As mentioned above, a platform consists of a processor (GPP, FPGA, GPU, etc.) 
attached to interconnects allowing it to communicate with other platforms.  The 
processor may have multiple cores, and may even consist of multiple processor chips 
(such as a dual-socket motherboard where two Intel X86 processors act together).  
There are two other elements that make up a platform:  devices and slots.

Devices are hardware elements that are locally attached to the processor of the 
platform.  They are controlled by special workers called device workers (analogous to 
“device drivers”), and usually act as sources or sinks for data into or out of the system, 
and thus can be used for inputs and outputs for a component-based application running 
on that system.

When a device is hard-wired to the platform, it is defined as part of the platform.  It is 
also common for platforms to be optionally configured with add-on cards that provide 
additional devices for the platform.  To allow for this, platforms can have slots, which 
are an intrinsic part of the platform, and enable cards to be plugged in that make 
devices accessible to the platform.  Such cards may be plugged in to any platforms that 
have compatible slots.

An example system is the ZedBoard, which has a Xilinx Zynq SoC part on its 
motherboard that has a dual-core ARM processor as well as an FPGA inside.  This 
board thus has two platforms, an ARM-based platform attached to a variety of external 
peripherals (Ethernet, USB, etc.) as well as an FPGA-based platform attached to some
external peripherals (devices) as well as an attached external FMC slot into which 
different cards may be plugged.

Thus the devices available on a platform are either a permanent part of the platform, or 
are available on defined cards when they are plugged into one of the platform's slots.

Platforms can have any number of devices, and may have multiple devices of the same 
type.  When cards are plugged into a platform's slots, they make additional devices 
available to the platform.

 Systems have platforms and interconnects.

 Platforms have slots and devices, and are attached to interconnects.

 Cards plug into slots and have devices.
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2.2 Development and Execution

Every platform must be enabled for:

 development – to create executables for it on a some development system

 execution – to provide the runtime infrastructure to execute applications on it.

Development is the process of producing “executable binaries”, and execution is the 
process of running those binaries on the platform, as part of the execution of a 
component-based application on a system.  Enabling for development involves enabling
compilation/build on some development system that may be different than the platform 
being enabled.  I.e. if an embedded platform is being enabled for development, that 
typically means installing a cross-compilation tool chain on some other development 
host that can produce binaries for the targeted embedded platform.

Development activities are typically said to be done at build-time; execution activities 
are typically said to be done at run-time

OpenCPI uses the term “binary artifact” as a technology-neutral term for the binary file 
that executes on various processing technologies.  On GPPs, they are typically “shared 
object files” or “dynamic libraries”.  On FPGAs, they are sometimes called “bitstreams”.  
On GPUs, they are sometimes called “graphics kernels”.

Enabling development is procuring, installing, configuring and integrating the various 
tools necessary to enable the developer to design and create binary artifacts from 
source code, for a given target platform.  Some adaptations, scripts or wrappers are 
typically required to enable such tools to operate in the OpenCPI development context.  
OpenCPI does not contain, preclude or require GUI-based IDEs in the component or 
application development process.  There is a GUI-based IDE for OpenCPI called the 
AngryViper IDE that is available on github.

For most embedded systems, the development tools do not run on the system itself, but
run on a separate “development host”, typically a (possibly virtual) PC.  The unusual, 
but still possible, case where the tools run on the targeted embedded system itself, is 
termed “self-hosted development”.  When the target platform is embedded and 
development tools run on a “development host”, that is termed “cross development”, 
using “cross-tools” (e.g. cross-compilers).

All development hosts also act as execution platforms since any host capable of running
development tools can act as an OpenCPI execution platform for the GPP/processor of 
that system.  OpenCPI contains tools that must be compiled on the development host 
and will always run on the development host.  Thus a development host is established 
to execute tools used to create binaries for itself and for other target platforms (cross 
development).  These tools include both OpenCPI's own tools as well as target-specific 
tools from third parties.
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2.3 Enabling New Systems for OpenCPI

Enabling systems for OpenCPI implies enabling the platforms and interconnects in the 
system for OpenCPI, as well as enabling the processors and devices on the platforms 
and the devices on any cards used in the system.  The first step in the enabling process
is to establish the inventory of these elements in the system.

Since specific interconnects, processors, and devices are frequently found in many 
different systems, it is possible that support for some of them is already available in 
OpenCPI.  So the enabling process is reduced to only dealing with the elements that do 
not already have OpenCPI support.  Furthermore, there may be devices in the system 
that do not require OpenCPI support, either because they are not going to be used, or 
there is no benefit given the scope of what OpenCPI does.

The system inventory for OpenCPI consists of:

 Processors (attached to interconnects and devices)

 Interconnects (among processors)

 Devices (attached to processors)

For each, if there is no existing support in OpenCPI, support modules must be 
developed.  For some, there may be partial support that must be extended for the 
intended usage.  For new classes of processor (beyond GPP, FPGA, GPU) or new 
interconnects, the core framework of OpenCPI must be enhanced.  Otherwise individual
support modules can be developed without modifying the core infrastructure layers of 
OpenCPI.  Later sections of this document describe the requirements and process of 
enabling each type of element in the system.  Processors must be supported for both 
development (e.g. compilation) and runtime.  Devices and interconnects are enabled for
runtime only.

Since OpenCPI is open source software, it is very desirable to contribute new or 
extended support modules back to the community since most such modules will likely 
be used in other systems.

A key aspect of supporting new system elements is obtaining the necessary technical 
information and tools, and in some cases performing a variety of experiments to assess 
feasibility and derive otherwise unavailable information.  When the information is not 
available from public sources (such as data sheets for device ICs), NDAs or other 
confidentiality agreements may be required.  Vendors may refuse to supply the 
necessary information, leaving reverse engineering the only option.

Since OpenCPI, especially on FPGAs, operates directly on the FPGA devices and 
usually interacts directly with attached devices, either the vendor must supply the 
required device workers or supply the information required to develop them.  Preexisting
FPGA drivers for attached devices that were not written with OpenCPI in mind are 
usually unsuitable as is, and must be either modified or replaced.  In some cases they 
can be “wrapped”, although this may result in the addition of undesired overhead.
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2.4 Process Template for Enabling OpenCPI on a New System

Here is a list of steps normally required to enable a new system for OpenCPI.  The first 
four steps are used to establish a clear base of information to estimate and plan the 
effort.  This section may be useful for managers planning the effort, and includes non-
technical aspects of the process.

2.4.1 System Inventory

Collect information to determine the rough scope of the effort.

This is the basic inventory of the relevant parts of the system, each of which needs to 
be considered in planning to enable the system.

Develop the list of processors, interconnects, and devices in the system that are 
relevant to OpenCPI applications, establishing the system breakdown.  This is usually a 
“block diagram” and “data sheet” exercise.

The time required for this activity depends to a large extent on whether complete 
information about the target system is unavailable or unduly restricted.

2.4.2 Processor, Interconnect and Device Assessment

Evaluate the state of support currently within OpenCPI and identify additional technical 
efforts likely to be required.  These assessments establish a rough level of effort, 
without necessarily establishing feasibility.  A ROM (rough order or magnitude) LOE 
(level of effort) can be established.

This effort requires matching technical support requirements with the current state of 
support in OpenCPI, and thus would require either gaining some familiarity with the 
OpenCPI supported hardware universe, or engaging with a group that is already familiar
with it.

2.4.2.1 For each processor, determine the level of support within OpenCPI:

 Currently supported (e.g. Zynq ARM processor, Intel AMD x86 processor)

 Variant supported (e.g. Virtex6 vs. Virtex 7 FPGA)

 New processor of existing type (e.g. PPC CPU vs. ARM CPU)

 New class of processor (e.g. Adapteva Multicore).  This requires new work usually 
outside the scope of “enabling a new system”.

2.4.2.2 For each processor,  determine the level of tool chain support within 
OpenCPI:

 Currently supported by OpenCPI

 Requires a version upgrade/downgrade/variant of what is currently supported.

 Not currently supported by OpenCPI.
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2.4.2.3 For each interconnect, determine level of support required for each 
processor type that is attached to it:

 Currently supported

 Requires updating or enhancements (e.g. PCI-E gen3x8, vs. PCI-E gen2x4).

 Not currently supported for processor type (e.g. Ethernet L2 on FPGAs).

2.4.2.4 For each device attached to a processor or on a required card, determine 
the level of support within OpenCPI and identify the additional technical 
efforts likely to be required the each device.

 Currently supported

 Requires updating or enhancement.

 Not currently supported, but similar devices are supported as a model.

 Not supported and different from any existing supported devices.

2.4.3 Assemble the Technical Data Package

For all elements requiring updated or new support, collect information necessary to 
perform the enabling technical development, and to establish more detailed work 
estimates.  The information required here is more comprehensive than the basic 
information required above:  it must be sufficient to perform the needed development.  
This effort will establish the availability of appropriate information to perform the 
technical developments.  It will also find any roadblocks to obtaining the information 
(vendor unwillingness, legacy unavailability).

In the particular case of device support, some vendors may not expose sufficient 
information to support their devices in the absence of their own “drivers” that embed 
their ICD (interface control document), information they consider a trade secret.  Such 
positioning by vendors may make optimal support for OpenCPI challenging or 
impossible..

Required information for processors/FPGAs include:

 Tool requirements (which tools, which settings, cost)

 Connectivity technical details (e.g. how interconnects, devices and slots are 
connected, including pin-outs etc.)

Require information for devices include:

 Device data sheets or equivalent functional and interface documentation.

 Programming/application guides.

 Appropriate/relevant existing support modules in OpenCPI's

 How the devices are attached to the processors. (e.g. ICD)

As part of this effort, any additional required feasibility experiments or reverse 
engineering tasks are identified.  These are tasks to fill in the information gaps in order 
to have a high confidence work estimates and plans.
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2.4.4 Experiments to Establish Feasibility and Missing Information

There are typically uncertainties and gaps in technical documentation, and in some 
cases the information is unavailable due to proprietary restrictions,  In any case, as a 
final step to enable accurate work breakdowns and time/cost estimates, there are 
usually a set of tasks involving hands-on experience with the target system prior to the 
actual technical developments.  Such experiments are derived from the process of the 
above tasks (i.e. discovering knowledge gaps), and may include:

 Verify and/or establish functional or performance capabilities of the system that are
missing or questionable from the information obtained earlier.

 Reverse-engineer missing ICD aspects (assuming no legal impediments).

These hands-on efforts establish the final information to plan and budget for the effort of
enabling a new system for OpenCPI.  This activity depends on access to a real system. 
When the vendor is performing the work for there own hardware, this task may be 
unnecessary.

2.4.5 Planning and Specification

This phase of enabling a system is specifying the technical capabilities to be achieved 
for OpenCPI on the target system, and planning the tasks to develop and verify each 
functionality.  The specifications are mostly based on achieving functionality that already
exists on other systems, so the specifications are mostly references to other existing 
documents, with particular options, exceptions, or limitations highlighted.

Every system element not currently supported requires a development task, while all 
system elements, including those supposedly already supported, should still have a 
verification task planned.

In some cases, supporting a new system may in fact introduce new classes of support 
for OpenCPI, in which case the specifications will need to define functionality more fully.
If such specifications are made available to the OpenCPI community, they can end up 
being a common template for such support on other systems.  Otherwise the 
functionality would be described as the existing baseline for similar devices, with any 
core enhancements clearly specified.

The tasks defined here will be of types described more fully in other sections of this 
document, where the various types of platform development are described in detail.

2.4.6 Technical Development

The various technical development tasks are of the types corresponding to specific 
sections of this document.  Each type in the following list may or may not be required to 
enable a given system.  Small updates or enhancements to existing modules are 
common.

 Enabling a new development system (including native development and 
execution)

 New GPP development tools

 New FPGA tools

OpenCPI Platform Development Guide Page 13 of 80



 New GPP platform

 New interconnect for GPP platforms

 New interconnect for FPGA platforms

 New FPGA platform

 New FPGA device

 New FPGA cards

2.4.7 Verification

Verification requirements may be very project-specific, but for each system element, a 
baseline verification should be defined, including specific characterization, both manual 
and automated.

2.4.8 Contribution

To reduce all efforts at system enablement for OpenCPI, it is strongly encouraged (or in 
some cases required by licensing), that enhancements to existing support modules, and
new support modules for widely available processors, interconnects and devices be 
contributed back to the appropriate repositories.
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3 Enabling the Development Host

Before any platform-specific tools are installed on the development host, the basic 
development configuration for the host must be established for OpenCPI.  This process 
is based on a source distribution of OpenCPI.  A binary/packaged/RPM-based 
distribution of OpenCPI is not appropriate for enabling a new development host.

The OpenCPI Installation Guide describes the installation process for source 
distributions on supported development hosts, but for new hosts the basic steps are:

 Installation of the OS with suitable options and packages.

 Installation of native development tools to drive OpenCPI's build system on the 
development host.

 Retrieving current source code for OpenCPI

 Establish a build environment with appropriate options

 Building the core OpenCPI software, targeting the development host

 Building and testing the OpenCPI installation.

Building the framework software for the development host includes building OpenCPI 
tool executables, as well as runtime libraries that support both tool execution as well as 
application/component execution on the development host.

This section addresses issues specific to development hosts, while following sections 
address issues for any target software platform for execution, which includes 
development hosts.

For a new development host, the operating system installation/configuration should be 
defined and documented, frequently requiring some manual steps.  Sometimes it is as 
simple as “make sure you have git, and enable some users for sudo”.
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3.1 Operating System Installation

While an existing development system with various software installed can certainly be 
used as a development host, it is valuable to make a clean installation from scratch to 
avoid configuration conflicts and problems that simply arise from a mis-match or mis-
configuration of the environment.  While most OS installations have a number of manual
steps, they should still be written down so they can be reliably repeated on new 
systems.  Scripts should be written when a number of steps can be automated, being 
careful to avoid dependencies on other software this early in the installation process.

See the installation guide for instructions on OS installation for the typical development 
hosts.  Ideally, a new development host should have a new section written about it in 
the installation guide document so others can benefit, including:

 How to get the OS (DVD, download, etc.).

 How to perform the installation, with options at least appropriate for OpenCPI 
development.

 How to update the OS to the most recent patch level.How to obtain/download the 
OpenCPI code base.

This (normally manual) new procedure should be included in the README file in the 
platform's directory (see below for software platform directories in projects).  The last 
step, retrieving the OpenCPI source distribution, could consist of network download or 
downloading to another system and burning CDs/DVDs, or even installing additional 
tools in order to accomplish the download.  Typically, for network attached systems, it is 
simply accomplished by using:

% git clone https://github.com/opencpi/opencpi.git

Thus the configuration of the OS would need to include “install git”.  Once the OpenCPI 
source distribution is present, and a tag is explicitly checked out, scripts to finish the 
installation can be run out of that tree.  The remaining instructions assume you are in 
the directory created by the git clone command, i.e. you must then do:

% cd opencpi

In summary, the task to enable this first aspect of the development host installation is to 
make some basic installation and configuration choices for the development OS, and 
then follow the instructions below for enabling any software platform.  The OS 
installation and configuration issues should be in the README file in the new platform's 
directory.
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4 Enabling GPP Platforms

To execute on GPP platforms, new additions or modifications to the OpenCPI 
framework software may be required.  The framework software is highly portable and is 
supported on a number of platforms and environments.  However, it is possible for a 
new compiler, toolchain, or system libraries to require adjustments to the OpenCPI 
framework software.  Here are a few reasons that may require modifications to 
framework software:

 New compilers have new correct warnings that should be addressed.

 System headers conform better to standards, requiring new correct header 
inclusion.

 Some compilers are “dumber” that others, requiring code to be “dumbed down” to 
avoid language or library features that are not universally supported.

 Some compilers are stricter than others, requiring code that was previously 
accepted to be “tightened up” to be strictly compliant and accepted.

These reasons may result in modifications to the OpenCPI framework software, but they
should not and cannot make that software stop working on existing supported platforms.
Any such modifications should be done with care, and whenever possible, the 
modifications should be rebuilt and retested on a number of existing supported 
platforms.

The process of enabling a GPP platform is based on a source distribution of OpenCPI.  
A binary/packaged/RPM-based distribution of OpenCPI is not appropriate for enabling a
new development host.
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4.1 Enabling Development for New GPP Platforms

GPP (software) platforms are established by creating a new directory under the 
rcc/platforms/ directory in any OpenCPI project..  In a future release this will be 
done using the command:

ocpidev create rcc platform <new-platform>

The name of the directory (the platform's name) should be a lower case name that 
usually includes a OS major version after the name of the OS.  In particular, different 
versions of Linux should be named by their distribution name or organization providing 
the OS.  Examples for software platforms are:  rhel5, centos6, centos7, ubuntu14,
xilinx13_4,  macos10_13.  The naming concept is that each software platform has 
binary compatibility within its minor versioning, but not necessarily with major 
versioning.  The currently supported software platforms can be found in the 
rcc/platforms/ directory of the projects that are part of the OpenCPI source tree.  
Anyone can add support for new software platforms in their own OpenCPI projects.

The required and optional files in the platform's directory are defined in the Software 
Platform Files section below, but a discussion of why and how they are used occurs 
first.

Whether a software platform is the development host itself, or an embedded GPP using 
cross-development, the tool chain must be established on a development host.  For 
enabling development hosts, there is typically a default tool chain that is installed 
globally in the system for any development task on that system.  For embedded cross-
developed platforms, a specific cross-development package must typically be installed 
using one of several methods described below.

Satisfying the OpenCPI software dependencies for any platform uses two classes of 
underlying software installations:

 Prebuilt, globally-installed software packages that are a (usually optional) standard
part of an operating system installation.

 Externally sourced software packages that require a separate combination of 
downloading, building and installation.

We use the term standard packaged software to indicate the first category.  E.g, a 
package of development tools is commonly a standard installation option on many 
systems.  Since they are standard packages for a given operating system installation, 
they are prebuilt and installed globally on the (usually a development) system.  
Installation of such software is usually accomplished using commands like yum or apt.

The second category is essentially ad hoc extra required software that must be installed
using specific scripts unique to that software.  We use the term prerequisites for such 
software, and expect individual scripts to be written to download/build/install them.  
Software packages required by OpenCPI at runtime are normally prerequisites since 
they must be cross-compiled for all embedded platforms, whereas those required only 
for development may be supplied in either category.
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So for any given platform, OpenCPI is enabled by a combination of standard packaged 
software and prerequisite software.

OpenCPI uses the following process steps when building itself for a software platform, 
based on the open source tree from github.com.  Enabling all these steps is 
described below.

1. Install the standard software packages required for OpenCPI from the 
appropriate network software package repository (usually associated with the
Linux distribution), e.g. development tools for the development host.1

2. Download and build any prerequisite software packages that are specific to 
the platform, but are not available as standard packaged software.2

3. Build the standard (always or frequently used) OpenCPI prerequisite 
software packages.

4. Build the OpenCPI framework libraries and executables

5. Build all the software assets in the built-in projects that are part of OpenCPI, 
in the same github repository (RCC workers and ACI applications).

6. Run a number of tests to verify OpenCPI operation (software only).

These 6 steps are all done in a master installation script called:

./scripts/install-opencpi.sh

These steps, and how to enable them for a software platform, will be described in detail 
in the following sections.  A summary of the files required in a platform's directory to 
enable these steps for each software platform is here:

1. A software platform definition file, named <platform>.mk, which sets 
variables that describe the platform.  Between 3 and 20 variables might be 
required.

2. For development hosts only, a script to check that the currently running 
system is in fact the given software platform, e.g. answering the question:  is 
this system running <platform>?  The script is typically 5-10 lines of shell 
script code, and is called <platform>-check.sh.

3. If needed, a script to install various standard packaged software from 
software package repositories to support OpenCPI for this platform, called 
<platform>-packages.sh.

4. If platform-specific prerequisite packages are indicated in the software 
platform definition file, then there should be a prerequisite script for each 
one, named install-<prerequisite>.sh.

1  Software package repositories are sometimes captured locally when internet access is not always 
available.  Some standard software packages are individually captured/downloaded so they can be 
(re)installed offline.

2  Similarly, prerequisite software is sometimes downloaded and stored locally/offline and the “download” 
step simply uses the locally available downloads.
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4.1.1 The OpenCPI Build Process for Software Platforms

The OpenCPI build process is designed to support a variety of platforms all built in the 
same source tree.  I.e. all the built results for all platforms coexist in a directory 
structure, in per-platform directories.  This allows:

 Multiple development hosts to share the same file system and same copy of the 
source tree

 Multiple cross-compiled/embedded platforms all built in the same source tree, 
even when cross-compiled using different development hosts.

 Multiple disparate runtime systems to share the same OpenCPI installation via 
network mounts.

This structure allows for rapid and productive development, debugging and testing 
across a range of platforms simultaneously.  The process of building for a given platform
thus can coexist with others and can mostly proceed in parallel, independently, from one
or more development hosts.

4.1.1.1 Self-identification of Development Platforms

When building for development platforms, the first step in the build process is to decide 
which platform we are actually running on and where its directory of platform-specific 
files is.  After this, the various scripts and tools associated with that platform are used.

Typing ./scripts/install-opencpi.sh (or individual scripts called by that) at the 
top level of the OpenCPI source tree does this self-identification step almost 
immediately.  The algorithm for this is:

 For each project indicated in the project registry and each project indicated in the 
OCPI_PROJECT_PATH environment variable, look for software platforms defined 
in the rcc/platforms directory, and invoke the <platform>-check.sh script 
found there.  If that script succeeds, that platform and its directory are now used 
as the platform we are running on.

The exact definition and operation of this script, and examples, are described in the 
Softare Platform Check Scripts section.  Even when targeting cross-development 
platforms, the development host platform must still be identifiable this way.  When 
building OpenCPI for cross-developed platforms, the target platform name is specified 
explicitly, but the same project search algorithm is used to find a 
rcc/platform/<platform> directory for the specified platform.  No <platform>-
check.sh script is needed for cross-developed platforms.

4.1.1.2 Installation of Pre-packaged Software from a Package Repository

The tools required to support OpenCPI development on a development host are usually 
obtained from standard packed software in repositories accessible on the internet.  
Different Linux distributions use different repositories, and different commands, to 
retrieve and install software packages from those repositories.  If a platform requires 
any such packages to be installed, there must be a script file <platform>-
packages.sh in the platform's directory.
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Note that when installing a prepackaged OpenCPI binary distribution (e.g. from 
RPMs using the yum command on CentOS platforms), the required packages 
are usually installed automatically as part of installing that OpenCPI package.  
Such an installation is not appropriate when enabling new software platforms.

This script is run first (after self-identification), to install the software that enables 
building other software:  prerequisites, the OpenCPI framework, and the built-in projects
in the OpenCPI github repo.  The software package repository used may in fact be local
on the system or on the local network rather than being internet-based.

These packages are generally globally installed on the system, and not in any “sand 
box” only for use by OpenCPI.  Thus they are considered default installations of 
standard software for the platform.  If a software package should not be globally 
installed (not be seen or used by other users or other software), we consider that a 
prerequisite package, which requires its own installation script, described next.

Thus if a package requires non-standard/customized patches in order to be used for 
OpenCPI, it must be installed as a prerequisite, not as standard packages software.

Embedded and cross-developed platforms do not usually install software from a 
software package repository into a global location on the system, but if that is desired or
required, such platforms may also have a <platform>-packages.sh script.

4.1.1.3 Installation of Prerequisite Software Packages in the OpenCPI Sand Box.

After the installation of pre-built standard packaged software from repositories is done (if
there are any), the next step is to build and install prerequisite software packages in a 
directory soley used by OpenCPI (and thus not seen or used by other users or 
software).  Each prerequisite software package has its own installation script, as defined
in the Prerequisite Installation Scripts section.

The term prerequisite here implies software package that is independently 
downloaded, possibly built-from-source, and installed in the OpenCPI sand box.  This is 
in contrast to the previously discussed packages, installed prebuilt from software 
package repositories and installed globally, visible and usable by all users and unrelated
software.

There are two types of prerequisites, each installed using the same type of script:

1. Platform-specific scripts that support the development requirements of 
OpenCPI (e.g. compilers, or other required utilities) for a particular platform.

2. OpenCPI-standard prerequisites required by some or all platforms, both 
development and cross-compiled.

The first type requires installation scripts be supplied in the platform's directory, while 
the second type has installation scripts that are part of OpenCPI.  A platform indicates, 
in its platform definition file (<platform>.mk) whether it has any such platform-specific
prerequisites, and if so, its scripts are run before building any of the second type of 
prerequisites.  This allows the first type (perhaps cross compilers) to enable building the
second type (the standard required prerequisites for OpenCPI).  All prerequisite 
installation scripts have the name:
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install-<package>.sh

Each such script can build its package in whatever way is needed, which can vary 
widely, but can rely on previously installed packages.

When installing a prepackaged OpenCPI binary distribution (e.g. from RPMs 
using the yum command on CentOS platforms), the prerequisite packages are 
also installed as part of that RPM installation.

4.1.1.4 Building the OpenCPI Framework Libraries and Executables

After the standard packaged software is installed, and the platform-specific and 
OpenCPI standard prerequisite packages are built and installed, the OpenCPI 
framework can built.  This is done either as part of the ./scripts/install-
opencpi.sh script or simply by issuing the make command in the top level of the 
OpenCPI source tree.

Building the framework depends on a tool chain declared in the platform definition file, 
as well as any platform-specific (if any) and OpenCPI standard prerequisites.

The results of this step are made available in the exports/ directory of the source 
tree, in a subdirectory whose name is the platform.  Executables are in 
exports/<platform>/bin/, and libraries are in exports/<platform>/lib.

4.1.1.5 Building the Assets in the Built-in Projects in the OpenCPI git Repository.

The final step of building OpenCPI is building all the software assets in the projects that 
are present in the OpenCPI source tree in its github repository (currently core, 
assets, and inactive).  This occurs as the last part of the 
./scripts/install-opencpi.sh script or issuing the make projects command 
in the top level of the OpenCPI source tree.

This builds all software workers and ACI applications in these projects.  It is equivalent 
to using the ocpidev build command in each project.

When a new softare platform is defined correctly, this step represents a successful 
software platform definition, for building.

4.1.1.6 Testing the OpenCPI Installation for a Software Platform

The last step in ./scripts/install-opencpi.sh is running the final tests of a 
development software platform.  This also tests aspects of OpenCPI that are not all 
related to software platforms, but if it succeeds completely, it is a good indication of 
success.  This script includes some asset unit tests in the built-in projects.

For embedded platforms, this test function is executed on the embedded platform after 
it has been prepared for OpenCPI (using ocpitest), which normally occurs after 
preparing a bootable media (e.g. SD card) for the platform.  For these platforms, 
./scripts/install-opencpi.sh skips the testing phase.
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4.1.2 Software Platform Files in the Platform's Directory

Defining a software platform for OpenCPI involves 4 types of files in its directory, 
rcc/platforms/<platform>, in some project:

 The platform definition file <platform>.mk

 The platform self identification file for development systems only:  
<platform>-check.sh

 The optional package installation file:  <platform>-packages.sh

 The optional platform exports file:  <platform>.exports

 Optional platform-specific prerequisite installation scripts:  
install-<prerequisite>.sh

Each type of file is described in the following sections.

4.1.2.1 Platform Definition File:  <platform>.mk

This required file is processed by make, and thus use make syntax.  It contains a set of 
variable assignments to override default values as required by the platform.  The list of 
valid variables, their default values, and the descriptions, are in the file:

tools/[cdk/]include/platform-defaults.mk

Three variables are required, and the rest are only used to override default values.  All 
variables are in “camel case”, with the prefix Ocpi.  The required variables are:

OcpiPlatformOs — the operating system name in lower case, e.g. linux or 
macos.

OcpiPlatformOsVersion — the major version, usually a short name with a 
numeric major version.  For Linux, it is a prefix before the major version, 
indicating the distribution, e.g. c for CentOS, u for Ubuntu, m for Mint etc.  For 
macos, the major/minor version, e.g. 10_13.

OcpiPlatformArch — the CPU architecture, usually as returned by the
uname -m command, e.g. x86_64.

Two other important variables are:

OcpiPlatformPrerequisites — a list of required software prerequisite names 
for platform-specific prerequisite packages for which the platform will supply 
installation scripts.

OcpiCrossCompile — an absolute pathname and prefix of the compilation 
toolchain tools for the platform, assuming packages and prerequisites are 
installed.

The presence of the OcpiCrossCompile variable setting indicates a cross-compiled 
platform.  If the cross compiler used is in fact a declared prerequisite for the platform, 
this make variable definition indicates where its executables are:

$(OCPI_PREREQUISITES_DIR)/<prerequisite>/$(OCPI_TOOL_PLATFORM)/bin
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When this <platform>.mk file is processed, it is checked for variable assignments 
that are not in the list of valid variables, which results in a warning if a variables 
assigned are not in the list of valid variables.  All the default values are as needed for 
CentOS6 Linux, and thus all assignments (except for the three required ones) are only 
needed to override those defaults.  All variables are initially defined with a default value 
as “simply expanded” or “immediately expanded” make variables using the := 
assignment syntax.

A simple example of this file is the current definition for CentOS7.  Since the defaults 
defined in the platform-defaults.mk are basically for CentOS6, there are not many
variables:

OcpiPlatformOs=linux
OcpiPlatformOsVersion=c7
OcpiPlatformArch=x86_64

For the cross-compiled Xilinx Zynq-7000 Linux platform (xilinx13_3), from the 
version 13_3 (2013, the 3rd quarter) the platform has a different compiler, and relies on 
the compiler that is embedded in the Xilinx tools package already installed separately.  
Its definition file looks like this (with some abbreviations):

include $(OCPI_CDK_DIR)/include/hdl/xilinx.mk
tooldir:=$(OcpiXilinxEdkDir)/gnu/arm/lin/bin
OcpiCrossCompile=$(tooldir)/arm-xilinx-linux-gnueabi-
OcpiCFlags+=-mfpu=neon-fp16 -mfloat-abi=softfp -march=armv7-a
cpiCxxFlags+=-mfpu=neon-fp16 -mfloat-abi=softfp -march=armv7-a
OcpiStaticProgramFlags=-rdynamic
OcpiKernelDir=release/kernel-headers
OcpiPlatformOs=linux
OcpiPlatformOsVersion=x13_3
OcpiPlatformArch=arm

There is no package or prerequisite installation script for this platform since its tool 
chain is available as a side effect of a separate, global, installation of Xilinx FPGA tools.

4.1.2.2 Platform Self-Identification/Check Script for Development Platforms

This script is named <platform>-check.sh and is required only for development 
platforms, and is executed with the bash shell.  It returns success (an exit status of 
zero) if the running system is indeed this platform.  If it is does not determine that the 
running system is this platform, it should return a non-zero exit status.

Normally each Linux distribution or other operating system has some files that indicate 
its native distribution or release type, as well as which major version is running.  So the 
task of this script is to check for those files as well as the major version number.

These scripts are usually quite simple, and so several are listed here verbatim as 
examples:

For CentOS Linux platforms, where the /etc/centos-release file contains 
something like:

CentOS release 6.9 (Final)
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 the entire script file can be:
f=/etc/centos-release
[ -r $f ] && read c r v x < $f &&
  [[ “$c”  == CentOS && “$v” == 6.* ]]

For Mint Linux (e.g. version 18), the file is:
grep -sq “RELEASE=18” /etc/linuxmint/info

For MacOS (any recent version), the file is:
[ "$(uname -s)" = Darwin ] && which -s sw_vers &&
  vers=`sw_vers -productVersion |
        sed 's/^\([0-9][0-9]*\.[0-9][0-9]*\).*/\1/' | tr . _` &&
        [ macos$vers = $(basename $(dirname $0)) ]

For Red Hat 5 Linux (not currently supported due to old C++ compilers) the following 
script works, which is careful to avoid the symbolic links to /etc/redhat-release 
that exist on CentOS systems:

f=/etc/redhat-release
[ -r $f -a ! -L $f ] && read r x v y < $f &&
  [[ "$c" == R* && "$v" == 5.* ]]

Since all scripts are invoked explicitly using the bash shell, no execute permission or 
initial #!/bin/bash line is necessary.  OpenCPI has an explicit requirement for the 
bash shell on all development platforms.

4.1.2.3 Platform Package Installation Script

The <platform>-packages.sh script, invoked using bash, is required for platforms 
that use or require standard packaged software, prebuilt and globally installed from a 
(usually network-based) software package repository.  It has two functions:

 install the required software packages from the repository
—or—

 list the required software packages on standard output

When this script is called with no arguments, it simply uses the appropriate commands 
to install the required software.  Since these packages are installed globally, the 
installation commands usually require administrative permissions (e.g. using sudo in 
the script).

If the single argument to this script is list, then the second, listing function is 
requested.  In the list mode, it must list on stdout the names of required packages on 
4 lines:

1. The packages necessary for runtime packages/RPMs

2. The packages necessary for development packages/RPMs

3. The packages necessary for an OpenCPI source environment (e.g. for 
building the framework) beyond what is needed for #1 and #2.

4. The packages that are for development (#2), but which must be installed in a 
second phase after those on the second line.
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In list mode packages are package names suitable for RPM creation.  Note that for 
RPMs, if a required package is not the same architecture as the platform (e.g. when a 
32-bit package is required on a 64-bit platform), a pathname of a file supplied by the 
package must be listed rather than the name of the package.

It the first argument to this script is yumlist, the same output is required except that it 
is not limited by the RPM constraint above, and only lists packages to be installed.

The existing scripts for CentOS, Ubuntu, Mint or MacOS platforms are good examples.  
In general the script is roughly:

RPKGS=”a b c d” # required packages for runtime
DPKGS=”a1 b2 c3 d4” # required packages for development
OPKGS=”a5 b6 c7 d8” # required packages for framework development
EPKGS=”a9 b10 c11 d12” # Second phase development packages
[ “$1” = list ] && echo $RPKGS && echo $DPKGS && echo $OPKGS &&
                   echo $EPKGS&& exit 0
<install-command> $RPKGS $DPKGS $OPKGS
<install-command> $EPKGS

For CentOS and RedHat systems, the <install-command> is:
sudo yum -y install

On Debian or Ubuntu or Mint Linux systems, the <install-command> is:
sudo apt install -y

On MacOS using the macports package management system, the command would be:
sudo port install

Any platform-specific software required for OpenCPI must either be installed by this 
script (for globally installed prebuilt packages from a repository), or using what OpenCPI
calls prerequisite installations, which are described next.

Since these scripts are invoked explicitly using the bash shell, no execute permission or
initial #!/bin/bash line is necessary (but not precluded).  OpenCPI has an explicit 
requirement for the bash shell on all development platforms.

4.1.2.4 Platform Exports File

This optional file, <platform>.exports, is meant to provide a platform-specific 
extension to the Project.exports file in the root of the OpenCPI source tree.  Its 
syntax is the same (with + for development files and = for runtime files), with an 
additional prefix, @, for exports that are intended for the deployment package (e.g. 
bootable media, SD card).  When a file to be exported is in the platform's own directory, 
the literal string <platform_dir> is replaced with the actual platform's directory 
pathname.  As with the top-level Project.exports file, the literal string <target> is 
replaced with the platform name itself.  One example line in this file:

=platforms/zynq/zynq_system.xml <target>/system.xml

means that the default zynq_system.xml file shared by all Zynq platforms should be 
placed in this platform's exported directory in runtime packages, as system.xml.
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This example:
=<platform_dir>/README* <target>/

means that all README files in the platform's directory should be exported in the 
platform's exported directory in runtime packages.

4.1.2.5 Prerequisite Installation Script

If the OcpiPlatformPrerequisites variable is set (not empty) in the platform 
definition file, an installation script for each listed prerequisite is required to be present 
in the platform's directory, with the name install-<prerequisite>.sh.  E.g., if the 
variable assignment is:

OcpiPlatformPrerequisites=preqx preqy preqz

then scripts named:
install-preqx.sh install-preqy.sh install-preqz.sh

must all be present.

Prerequisites are installed in an OpenCPI directory so that they do not interfere with 
other global software installations and are thus considered part of the OpenCPI 
installation (or “sand box”).  Both runtime library prerequisites (for any platform) and tool
prerequisites (for executing on development platforms) are installed there.

 This directory's default location in the prerequisites/ subdirectory of the 
source tree.  This may be overriden by setting the 
OCPI_PREREQUISITES_INSTALL_DIR if the default is unacceptable.

 In an RPM OpenCPI distribution (prebuilt, installed globally) it 
is /opt/opencpi/prerequisites.

In a source code installation, prerequisites are built and installed in the source tree 
itself, in the respective prerequisites-build/ and prerequisites/ 
subdirectories.  Thus these packages do not interfere with other global software 
installations or other OpenCPI installations/versions.  Both runtime library prerequisites 
and tool prerequisites are typically installed here.

When a prerequisite has libraries, the libraries are installed in the directory for 
framework libraries, e.g. exports/<platform>/lib in a source build or 
/opt/opencpi/cdk/<platform>/lib in an RPM installation.

This script should follow the pattern of other install scripts in the 
build/prerequisties/ directory of the OpenCPI framework (e.g. install-
gmp.sh), in particular:

 Ensure that the OCPI_CDK_DIR environment variable is set.

 Source the $OCPI_CDK_DIR/scripts/setup-prerequisite.sh script with 
appropriate arguments.

 Install any resulting platform-independent header files in $OcpiInstallDir.
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 Install platform-specific files in the include, lib and bin subdirectories of:
$OcpiInstallExecDir.

 Build both dynamic and static versions of runtime libraries, and build the static 
libraries with PIC options enabled.

 If cross-building, use the $OcpiCrossHost variable as the prefix for tool 
executabled (e.g. as the --host option to ../configure)

The $OCPI_CDK_DIR/scripts/setup-prerequisite.sh script, supplied by 
OpenCPI, which is sourced, takes these arguments:

1. The target platform (the platform on which execution takes place).  This is passed 
in from the first argument of the install script, e.g. "$1" (quoted to allow empty).

2. The name of the prerequisite, e.g. gmp.

3. A short “pretty” description string, e.g. "Extended Precision Library".

4. The URL (or absolute pathname) to download the file from, without the filename, 
e.g.:  https://ftp.gnu.org/gnu/gmp
If the URL ends in .git, it will be cloned rather than downloaded and unpacked.

5. The downloaded file name (if a downloaded file), e.g. gmp-6.1.2.tar.xz, or, if 
cloning a git repository, the tag or branch to check out.

6. The top-level directory created when the download file is unpacked, e.g.:
 gmp-6.1.2 or the git repository top level directory.  Use a single period (.) if the 
download is a single file, with no implied directory.

7. An indication as to whether the prerequisite should be cross-compiled, or 
only used on development hosts.  A value of 1 indicates runtime and cross 
compiled for non-development platforms.  0 means only build for 
development platforms since it is not needed at runtime.

This setup script performs downloading (or git cloning), caching downloads, creating the
necessary directories, accessing the tool chain for the platform, and defining 
convenience functions and variables for use later in the script.

After the setup script is sourced the environment is:

 the current working directory is a platform-specific build subdirectory created under
the directory created by the download/unpack, or git clone

 the OcpiInstallDir and OcpiInstallExecDir variables are set to where the
results of the build shoulld be installed

 the relative_link function is defined to create appropriate relative symbolic 
links from this build directory and the installation directory.

 the shell option to terminate on any error (set -e) is set.

 variables for explicit (non-autotools) compilation are set compatibly for cross 
compilation:  CC, CXX, LD, AR.

 the OcpiCrossHost variable is set appropriately for the autotools --host option.
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 the cross-compilation tools are in the execution PATH environment variable.

At this point the prerequisite installation script can perform an appropriate build in this 
directory.  When the build is complete, the results must be installed (usually using 
relative_link) in the directory:  $OcpiInstallDir and $OcpiInstallExecDir.

This installation happens one of two ways.  If the build uses the typical autotools 
paradigm of:

../configure; make; make install

then the --prefix and --exec-prefix arguments are provided to the configure 
script as. e.g.

../configure
  --prefix=$OcpiInstallDir
  --exec-prefix=$OcpiInstallExecDir

This will cause the resulting files to be installed in the correct locations (e.g. 
$OcpiInstallDir/include for portable headers, and
$OcpiInstallExecDir/(lib|bin|include) for platform-specific files).

An example script for a prerequisite needed only on most development platforms, is the 
patchelf tool.  The entire install script is:

version=0.9
dir=patchelf-$version
[ -z "$OCPI_CDK_DIR" ] && 
  echo Environment variable OCPI_CDK_DIR not set && exit 1
source $OCPI_CDK_DIR/scripts/setup-install.sh \
       "$1" \
       patchelf \
       "ELF file patching utility" \
       http://nixos.org/releases/patchelf/$dir \
       $dir.tar.gz \
       $dir \
       0
../configure --prefix=$OcpiInstallDir \
             --exec-prefix=$OcpiInstallExecDir \
             CFLAGS=-g CXXFLAGS=-g
make && make install

For prerequisite packages that are not set up for autotools building, the results of the 
build can be simply installed using the relative_link function which operates as a 
smarter symbolic link command analogous to the ln -s command.  Here is an excerpt 
from a prerequisite installation where the software package being installed consists of a 
single source file:
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[ -z "$OCPI_CDK_DIR" ] && echo Environment variable OCPI_CDK_DIR not
set && exit 1
source $OCPI_CDK_DIR/scripts/setup-prerequisite.sh \
       "$1" \
       inode64 \
       "fix for 32 bit binaries running on 64-bit file systems" \
       https://www.tcm.phy.cam.ac.uk/sw \
       inode64.c \
       . \
       0
...
gcc -c -fPIC -m32 ../inode64.c
ld -shared -melf_i386 -o inode64.so inode64.o
relative_link inode64.so $OcpiInstallExecDir/lib

For runtime prerequisite packages that need to be cross compiled, the 
OcpiCrossHost variable is used in the ../configure command, e.g.:

../configure --prefix=$OcpiInstallDir --exec-prefix=$OcpiInstallExecDir\
             ${OcpiCrossHost:+--host=$OcpiCrossHost}

With prerequisites that are not set up for autotools, the compilation commands can be 
used directly, e.g.:

$CXX -c *.c; $AR -rs foo.a *.o

[ Here we can open up the platform-definition variables universe for more advanced 
cases.]

4.1.3 Summary for Enabling Development for a New GPP Platform

 Create the platform's directory in a project.

 Create the platform definition file.

 For development hosts, create the <platform>-check.sh script.

 If needed, create the <platform>-packages.sh script.

 If needed, create the package-specific prerequisite installation scripts.

 Build the OpenCPI prerequisites to ensure all the scripts are functional.

 Build the OpenCPI framework and make adjustments to the code for issues that 
arise.

 Successfully run ./install-opencpi.sh on the development host.

 Successfully run ./install-opencpi.sh <platform> for cross-developed 
hosts.

 Successfully run ocpitest on embedded hosts

OpenCPI Platform Development Guide Page 30 of 80



4.2 Enabling Execution for GPP Platforms

The OpenCPI framework libraries and command-line tools are built using the 
appropriate compiler as installed above.  Once the development host has been enabled,
and the OpenCPI core and example components have been built, a few additional steps
are required to enable execution on the platform.

Several OpenCPI runtime libraries have aspects that use conditional compilation 
depending on the system or CPU being targeted.  The current OpenCPI core libraries 
have significant Linux dependencies and in several files there is conditional code 
between Linux and MacOS (such as low level networking details).  There are a few 
areas that have conditional code depending on the CPU being used, such as realtime 
high resolution timing registers in the CPU.  These customizations are not well defined.  
For new CPU architectures and new operating systems not based on Linux, the code 
must be examined for these issues, which will typically cause compilation errors.

Setting up a development system for execution is nearly automatic once the build 
environment is set up and any required code changes in the OpenCPI runtime libraries. 
For execution on development systems, loading the kernel driver (using the 
ocpidriver command), and setting the PATH environment variable correctly, and 
setting the OCPI_CDK_DIR environment variable is usually sufficient.  These are 
normal installation steps.

The kernel driver is in fact only necessary when accessing other platforms via the 
system bus.  If the GPP platform has no such bus/fabric, the kernel driver is not 
necessary.

For embedded systems, the setup is more customized.

4.2.1 Creating a Deployment Package (Bootable Image or SD card) for an Embedded 
Platform

A “runtime” package for an embedded platform is a set of files installed on a network file
server (usually the development host), which can be accessed with the embedded 
system acting as a file client.  The next step to achieving runtime is to install some 
appropriate files on the embedded system itself.  We call this set of files a “deployment 
package”.

Currently OpenCPI only supports deployment packages on systems with FPGAs, and 
the deployment package is named according to the HDL platform in that system, even 
though it is mostly defined by the software platform that is running the system.

Deployment packages are created by asking the HDL platform to use the runtime 
package for its associated software platform and add the necessary files for the 
“system” that combines that software platform with the HDL platform.

The files for a deployment package are of two types:

 Files that are useful to install on an associated development host or file server

 Files that are installed on the (usually bootable) media installed in the embedded 
system.
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A deployment package usually has a directory containing the second type of file that 
can be directly copied to a (e.g. SD card) medium that will enable the embedded system
to boot and run OpenCPI applications.

The files on the bootable image also fall into two categories:

 The minimum set of files necessary to run OpenCPI assuming it has access to a 
runtime package on a network server.

 The additional files necessary to run OpenCPI standalone, i.e. with no network.

A deployment package, based on an HDL platform and an associated software platform,
is defined by an exports file in the HDL platform's directory.  It has the same syntax as 
the other exports files, with a new leading character @, indicating that the export is only 
for the deployment package.

Thus for HDL platform exports, the + lines indicate platform-specific exports for the 
development package, = indicates platform-specific exports for the runtime package, 
and @ indicates platform-specific exports for a deployment package.

In the top-level OpenCPI Makefile, there is a “deploy” goal which will populate the 
exports tree with the deployment package for the platforms specified in the Platforms 
variable.  The platforms in this list are either HDL platforms, or of the form <hdl-
platform>:<sw-platform>.  In the former case the associated software platform is 
inferred from what has been declared by the HDL platform's <platform>.mk file in its 
directory.  An example of everything needed to make a deployment package for 
zedboard with xilxinx13_3 as it’s software platform is listed below.  First, in the normal 
course of building OpenCPI for the targeted platform, the software platform would be 
already be built by doing:

$ ./scripts/install-opencpi.sh xilinx13_3

and then the project containing the HDL platform would be built with:
$ ocpidev build hdl platform zed

So the particular command to create the deployment package would simply be:
$ make deploy Platform=zed:xilinx13_3

When make deploy is run, the bootable media directory tree is placed in this directory:

exports/<hdl-platform>/<hdl-platform>-deploy/sdcard-<sw-platform>/

This directory can then be copied to an SD card for use on the platform.
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5 Enabling FPGA Platforms

Whereas GPP platforms have operating systems that OpenCPI uses to interface with 
the hardware surrounding the processor, FPGA platforms do not.  OpenCPI provides an
infrastructure on FPGAs, which requires FPGA logic that is specific to the platform, 
analogous to a “board support package” that adapts an embedded operating system to 
a given hardware “board” and associated devices.

Consistent with the definition of platform given earlier, here we more narrowly define an
FPGA platform as a particular, single FPGA on some hardware (board).  If a board has 
multiple OpenCPI-usable FPGAs, each is a platform and each may host a container in 
which components (actually: worker instances) execute.  An OpenCPI-usable FPGA is 
one that can host user-written workers executing in an OpenCPI HDL container.

An FPGA simulator may also be an FPGA platform, which is also a place where 
OpenCPI HDL workers may execute, with the same infrastructure as physical FPGA 
platforms.  

When an SoC, like the Xilinx Zynq-7000 chip, contains a section of FPGA logic as well 
as processor cores, the FPGA part is an FPGA platform and the GPP processor core(s) 
are a GPP software platform.  Thus the SoC is indeed a “system on chip”:  a system 
with two platforms and an interconnect between them.

Analogous to preparing the support for a GPP platform, enabling an FPGA platform 
involves steps to enable the development environment, and steps to enable the run-
time/execution environment.

Enabling development for a platform involves:

 Installing and integrating a development tool chain that can target the FPGA 
device on the platform (when one is not already installed that applies to the new 
platform).

 Verifying that the integrated tool chain can process and build all the core OpenCPI 
FPGA code and portable components when targeting the FPGA platform's part 
and part family.

Enabling runtime execution for a non-simulation platform involves:

 Writing specific new VHDL code that supports the particulars of the hardware 
attached to the FPGA on the platform.

 Updating software drivers to load/unload configuration bitstreams.

 Verifying that the various platform-independent FPGA test applications execute on 
the platform.
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5.1 Physical FPGA Platforms

Platforms are specific FPGAs on a board connected locally to:

 Local I/O devices: ADC, DAC, DRAM, Flash, GbE, etc. 

 Interconnects: PCIe, Ethernet, etc. used to talk to other OpenCPI platforms 

 Slots: FMC, HSMC, mezzanine card slots. 

For example, a Xilinx ML605 has PCI Express interconnect, DRAM, and 2 FMC slots 
(and other minor devices).

For each device on a platform, specific development may be required (described in the 
Device Development section below).  In many cases existing device support may be 
reused, since OpenCPI FPGA device support is typically done in a way that is sharable 
across platforms.

Ideally, new device support is developed such that it can be reused across platforms.

Physical FPGA platforms are based on a particular type of FPGA chip:  e.g., a Xilinx 
ML605 development board has a Virtex6 FPGA (xc6vlx240t), with a speed grade and a 
package.

Examples of physical FPGA platforms are:

 Table 6:  Example FPGA/HDL Platforms

Board Part Interconnect(s) Description

ML605 Virtex6 PCIe Xilinx PCIe-based Virtex6 development board, with 2 
FMC slots

ZedBoard Zynq-
7000/PL

AXI internal Digilent Zynq-7000 Development Board
HDL Platform is the “PL” side of the Zynq SoC, with 
the PL-attached devices and one FMC slot

ALST4 Stratix4 PCIe Intel/Altera PCIe-based Stratix4 development board 
with 2 HSMC slots.

ZC706 Zynq-
7000/PL

AXI Internal
PCIe external

Xilinx PCIe-based Zynq development board with 2 
FMC slots.

HDL Platform is the “PL” side of the Zynq SoC, with 
the PL-attached devices, two FMC slots, and an 
attachment to the PCIe interconnect.
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5.2 Simulator FPGA Platforms

OpenCPI provides a software runtime infrastructure to make execution on simulators as
similar as possible to execution on physical FPGAs, without simulating any external 
device-related logic.  The simulation execution environment makes execution on 
different simulators also similar to each other.  Multiple simulator instances may execute
simultaneously subject to any license restrictions allowing only a certain number of 
simulator instances to run at the same time.

At the time of this writing, only mixed-language simulators (VHDL and Verilog) may be 
enabled and used with OpenCPI.

Examples of supported FPGA simulators include:

 Xilinx Isim from ISE 14.7

 Mentor Modelsim DE 10.2

 Xilinx Vivado Xsim 2017.1

Other simulators that may be supported include:

 Aldec

 Cadence

Under OpenCPI, simulators perform co-simulation:  the workers inside the simulator (in 
the HDL container being simulated), can communicate with RCC workers executing 
outside the simulator.  This communication path (from inside to outside of the simulator) 
is supported on all these HDL simulators.
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5.3 Enabling Development for FPGA Platforms

5.3.1 Installing the Tool Chain

For tools not currently supported by OpenCPI, document the basic process of obtaining 
and installing the tools, highlighting any options or configurations that must be 
specialized, customized, or simply required for using OpenCPI.  Licensing is also an 
issue for many FPGA tools.

Note that OpenCPI executes FPGA tools in “wrapper scripts” that perform any 
necessary initialization or setup, including license setup.  Thus, for OpenCPI, there is no
need for login-time startup scripts.  In fact, such scripts can actually cause problems in 
many cases since OpenCPI frequently invokes multiple alternative tool sets under a 
single build command.  Polluting your environment with settings from multiple tools and 
vendors is frequently a source of problems.

For OpenCPI development it is recommended to remove any such “automatic setup at 
login” items that the tools installation process inserts into your login script(s), and put 
them in an a separate script that is used as needed.

Some FPGA tool chain installations include a software tool chain for embedded cores 
on SoCs.  This means that one tool installation supports both the FPGA platform and 
the GPP platform.  E.g. a Xilinx ISE installation may include the EDK sub-package that 
supports cross-compilation for the ARM cores on the Zynq SoC.

5.3.2 Integrating the Tool Chain into the OpenCPI HDL Build Process

[This is a large topic that is not fully documented].

This process includes enabling the OpenCPI FPGA build process to use the right tools 
to target the “part family” of the FPGA device on the platform.  For example, on the 
“zed” platform, the family of the FPGA part is “zynq”.  On the “ml605” platform, the 
family of the FPGA part is “virtex6”.  The required tools for a platform's FPGA may 
already be installed and integrated, and may already support the particular part family of
the platform's FPGA.  If not, that support must be added to the integration of those tools.

So the integration process is:

8. If the required tools are not currently integrated with OpenCPI, they must be 
integrated (not a small job).

9. If the required tools are currently integrated with OpenCPI, but do not yet 
support the part family, that support must be added.

The database of part families, and their relationships to tools and vendors, is in the file:
tools/cdk/include/hdl/hdl-targets.mk

The scripts that wrap and execute FPGA tools are found in the directory:
tools/cdk/include/hdl
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5.3.3 Building All the Existing Vendor-independent HDL Code

Nearly all HDL code (mostly VHDL) in OpenCPI is portable and can be built (compiled 
and synthesized) for all part families and vendors and simulators.  This portable HDL 
code can be built using the “make hdlportable” command in the top level directory of 
OpenCPI, supplying the targets (part families) is required.

Here is a command that builds all the portable code in OpenCPI for currently supported 
part families (known as “HdlTargets” in the OpenCPI FPGA build process):

make hdlportable \
  HdlTargets='isim modelsim virtex6 virtex5 \
              stratix4 stratix5 zynq spartan3adsp'

This build command builds all primitive libraries and cores as well as all HDL workers in 
the OpenCPI core tree.  It stops short of building anything specific to an HDL platform.

Some of the code built using the above command is explicitly labeled to only build for 
certain targets or to not build for some targets, but most is truly portable and will build 
for all targets.  Once this build command succeeds for the target (part family) of the 
platform, you can proceed with the steps below to write the HDL code necessary to 
enable execution on the platform.

5.3.4 Scripts for HDL Platforms

For physical platforms (not simulation), there are two scripts that must be also placed in 
the platform's directory, if they apply to the platform:

 A JTAG support script to enable JTAG-based bitstream loading, whose name is:
jtagSupport_<platform>  (only for platforms with JTAG bitstream loading)

 A boot-flash loading script to enable scripted loading of bitstreams to the boot 
flash, whose name is:  loadFlash_<platform> (for platforms with boot-flash 
loading capabilities)

In some cases the appropriate script might be already be written for a different platform,
in which case one platform's script can be a symbolic link to the other.  In other cases 
there might be a vendor script (e.g. for all Xilinx or all Intel/Altera) which may live in the 
hdl/vendors/<vendor> directory.

For simulation platforms there must be a script to invoke the simulator from the 
OpenCPI runtime framework.  This script must be called:  runSimExec.<platform> 
and live in the platform's hdl/platforms/<platform> directory.
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5.4 Enabling Execution for FPGA platforms

This section assumes the reader is familiar with component and application 
development with OpenCPI, including developing HDL application workers and 
assemblies as described in the OpenCPI HDL Development Guide.

An OpenCPI HDL hardware platform is an FPGA with associated devices and slots 
attached to its pins.  Supporting a platform requires determining whether the types of 
devices and slots attached to the FPGA are already supported by OpenCPI.

If the devices attached to the FPGA are not yet supported in OpenCPI, that support 
must also be added.  Device support in OpenCPI is generally portable (i.e. the device 
support code can be used to support the same device on different platforms and cards).
This type of device support is done separate from a platform or card so it is naturally 
reused on other platforms or cards.  Some device support is very platform-specific and 
is associated with a particular platform.  The device support process is described in the 
Device Support for FPGA Platforms section below.

If a platform has slot types that are not yet supported, that support must be added.  Slot 
types are defined by specific physical connectors, electrical signaling and direction, and 
pin and signal name assignments.  See the section Slots — How Cards Plug into 
Platforms below.

The term card is used in OpenCPI to mean a card with additional devices that may be 
plugged into a compatible slot on various platforms.  Thus devices may be directly 
attached to the pins of the platform FPGA, or they may exist on a plug-in card that, 
when plugged into a slot, become attached to the platform FPGA.  In this latter case 
such devices are not considered part of the platform, but part of the card, which might 
be plugged into a certain type of slot on any platform.  See the section Defining Cards 
Containing Devices that Plug into Slots of Platforms

The asset types in a project that support HDL platforms are:

HDL Device Worker —  a specific type of HDL worker that supports external 
devices attached to FPGAs

HDL Platform Worker — a specific type of HDL worker providing infrastructure for 
implementing control/data interfaces to devices and interconnects external to 
the FPGA or simulator (e.g. PCI Express, Clocks)

HDL Slot Type Definition — a specification of the pins and signals that are present 
in a type of slot that may be present on platforms, into which compatible cards 
may be plugged.

HDL Card Definition — a specification that includes the slot type of a card, the 
devices present, and how they are wired to the slot.

HDL Platform Configuration —  a prebuilt (presynthesized) assembly of device-
level HDL workers that represent a particular configuration of device support 
modules for a given HDL platform.  The HDL code is automatically generated 
from a brief description in XML

All these asset types are initially created using the ocpidev tool.

OpenCPI Platform Development Guide Page 38 of 80



The directories (in any project) where platform support files are placed (by ocpidev) 
are:

hdl/devices — a component library for portable device workers and proxies

hdl/cards — a component library for card-specific device workers

hdl/cards/specs — a directory where cards and slot types are defined

hdl/platforms — a directory where platform workers and associated platform 
configurations are placed

hdl/platforms/<platform> — a platform worker's directory that also contains 
its platform configuration

hdl/platforms/<platform>/devices — a component library for platform-
specific device workers and proxies for <platform>, which are generally not 
visible outside the project or from other libraries (including specs)

HDL platform support starts with deciding on a name for the platform (usually a lower-
cased version of the name used by the vendor of the platform), and using ocpidev 
create hdl platform to create a directory and associated files using the ocpidev 
tool.  In that directory there will be an initial Makefile, an initial platform description 
XML file and an initial source code skeleton for the platform worker.

In summary, the steps to enabling an HDL platform for execution are, (assuming the 
development tools are enabled):

 Take inventory of the platform by identifying its interconnects, method of 
reprogramming, devices, and slots

 Define the platform worker, with associated hardware-related metadata and files.

 Address/configure interconnect issues of the platform worker

 Build the platform worker (perhaps a skeleton) and a simple complete bitstream

 Implement reprogramming (a.k.a. bitstream loading) of the FPGA

 Implement the platform worker and perform basic tests, with no devices enabled.

 Define any new slot types and add them to OpenCPI.

 Define and establish “skeletons” for all new devices on the platform.

 Define the platform with all devices and slots, build and do basic tests.

 Implement any new devices for the platform, and test the platform with devices 
(both pre-existing and new).

 Test slots using supported cards.

The assets created for new platforms are usually done in a separate OpenCPI project, 
usually called a “BSP project”.  But assets that are shareable by multiple platforms 
should result in pull requests for the projects that are part of OpenCPI.

The next two sections (signals and slots), define XML elements required by platforms.  
Following that, the specifics of platform worker XML files are detailed.
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5.4.1 Signal Declaration XML Elements for Devices, Platforms, Slots and Cards

Signal declaration XML elements are used in a number of contexts in supporting HDL 
platforms, cards and devices.  They declare name, direction, width and other 
characteristics.  Any specific rules or constraints for each context are specified in the 
respective sections, but the common aspects of signal declarations are described here.

An example of a signal declaration element is:
<signal name='data' direction='out' width='16'/>

which defines an output signal array 16 wide named data.  The attributes to a signal 
element are: direction, differential, width and pin.  Depending on the direction of
the signal, there are other attributes that determine the actual signal names.

5.4.1.1 Name attribute of Signal Element

The name string attribute provides the signal name and should comply with typical 
identifier syntax (leading alphabetic, then alphanumeric or underscore).  Signal names 
are case insensitive.

5.4.1.2 Direction Attribute of Signal Element

The signal direction attribute is an enumeraterd type with the following choices:

in — identifies a signal as an input

out — identifies a signal as an output

inout — identifies a signal as a tristate signal

bidirectional — identifies a signal as usable in either direction

unused — identifies a signal as unused in the current context

The direction is relative to the asset being defined in the XML file (device, platform or 
card).  When defining slot types, the direction is relative to the platform FPGA.  In a 
platform definition, input means input to the platform worker.  For a device, it is input 
to the device.

The direction attribute for device and platform signals may be an expression based 
on the worker's parameter properties.  This allows a signal to take on different directions
based on other configuration information.  In this context, the expression may determine
that the signal is unused for some configuration parameter values.  For example:

<signal name='data' width='16' direction='mode==2 ? out : unused'/>

This indicates that when the worker's mode property has the value 2, the data signal is 
an output, otherwise it is unused.

For a slot signal, declaring bidirectional means that its direction is determined by 
the direction of the card's device worker signal which uses it.  Consequently, different 
cards may implement unique directionality for a bidirectional slot signal.  Note that slot 
signal directions in, out, or inout impose a requirement for all possible cards/device 
workers which use that signal.
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For a device signal, declaring the direction to be bidirectional merely defines an 
HDL inout port on the device worker, and it is expected that the device worker will 
instance an I/O buffer itself, from which the tools will determine the direction.

For a device or platform signal, the direction unused indicates that

Declaring the direction of a device signal to be inout defines the 3 tristate signal ports  
on the device worker.  An inout signal inside an FPGA implies a bundle of three 
signals (in, out, output-enable) which, when attached to a pin/pad of the FPGA may 
result in a single tristate signal external to the FPGA.  The names of the three 
associated signals is determined by adding the suffixes: _i, _o, _oe respectively.    
These default suffixes can be overridden for a signal using the in, out, oe attributes, 
where %s in these attributes represents the name in the inout attribute.  For example, 
this declaration:

<signal name='mySig' direction='inout' oe='The%sEnable' in='%s_in'
        out='%sDriven'/>

would imply the three signal names:  mySig_in, mySigDriven, and 
ThemySigEnable, rather than the default:  mySig_i, mySig_o, and mySig_oe.  
These suffixes will be converted to upper case when the signal name is entirely upper 
case.

Whether this bundle of three signals is implied for inout signals depends on the 
context of the signal element.  When HDL containers are generated by OpenCPI, a 
tristate I/O pin is generated with the single external signal and the three internal signals.

These direction and signal type attributes allow OpenCPI to perform error checking for 
connections and implement the correct tie-offs and I/O primitives for top-level signals in 
a design.

5.4.1.3 Width Attribute of Signal Elements

This attribute specifies that the signal is an array of signals with the width specified in 
the value of the attribute.   Each element of the array is an individual signal with a zero-
origin index enclosed in parentheses.  When VHDL or Verilog code is being generated, 
the array is defined and used appropriate for the language.  This if the signal is defined 
as:

<signal input='data' width='3'/>

The signals are data(0), data(1), data(2).

5.4.1.4 Differential Attribute of Signal Elements

This boolean attribute specifies, when true, that the signal is differential and represents 
a pair of signals with the suffixes p and n representing the positive and negative of the 
pair respectively.  These default suffixes can be overridden using the pos and neg 
attributes, where %s in the value of those attributes represent the name defined in the 
direction attribute.

  For example, this declaration:
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<signal name='mySig' direction='in' differential='1' pos='P_%s'
        neg='%sN'/>

would imply the two signal names:  P_mySig and mySigN rather than the default:  
mySigp, and mySign.

These suffixes will be converted to upper case when the signal name is entirely upper 
case.  It is invalid to specify an inout signal as differential.

5.4.1.5 Pin Attribute of Signal Elements

This boolean attribute specifies, when true, that the signal is a pin signal, which implies 
that it is truly a signal on the pin of an FPGA.  This distinction has to do with IO buffers 
on FPGAs.  Most device worker signals are not pin signals since the IO buffers built in 
to the FPGA are only instanced when the final FPGA synthesis is performed, and thus 
such signals are on the inside of the IO buffers rather than outside.  If a device worker 
specifically instanced IO buffers in the device worker code, then the device worker's 
signals would be declared as pin signals since they were on the outside of the IO 
buffers (and thus directly attached to the pins of the FPGA).

The OpenCPI code generator for containers and cards and devices needs to know this 
distinction to do its job correctly.

5.4.2 Slots — How Cards Plug into Platforms

As mentioned earlier, platforms can have slots, which are an intrinsic part of the 
platform, and enable cards to be plugged in that add devices to the platform.  Such 
cards may be plugged in to any platform that has compatible slots.  Slot types are 
defined independently and then used when describing platforms and cards.  A platform 
has slots of defined types, and cards which are designed for the same slot type may be 
plugged into the defined slots on that platform.  A common slot type is the FMC (FPGA 
Mezzanine Card), which is defined by the VITA standards organization as VITA-57.1.  In
fact this standard defines two slot types:  FMC-LPC (Low Pin Count using a connector 
with 160 pins), and FMC-HPC (High Pin Count using a connector with 400 pins).  These
slot types are already defined in OpenCPI.

So before platforms or cards are defined, slot types must be defined.  Then a platform 
or card definition refers to slot types of known predefined types.  Defining new slot types
generally does not involve writing HDL code; just writing descriptive metadata in XML.

A slot type is defined in an XML file placed in the hdl/cards/specs directory of an 
OpenCPI project by ocpidev.  The name of the file is <slot-type>.xml, where the 
<slot-type> must be a name that can be used is programming languages (i.e. use 
underscores rather than hyphens), but is otherwise case insensitive.  The name should 
normally be the exact name used in whatever standard document defines the slot type.

The slot definition file contains a top-level XML element SlotType, with an optional  
name attribute that must match the name of the file without the .xml suffix.  This top-
level element contains signal child elements as defined above in Signal Declaration 
XML Elements for Devices, Platforms, Slots and Cards.  When a pin in a slot is defined 
to be used in either direction, it should be declared bidirectional.

OpenCPI Platform Development Guide Page 42 of 80



A slot type is associated with one or more connectors, and the pins of the connectors 
are numbered.  When a slot type is standardized, each pin of each connector is given 
both a physical pin identifier as well as a signal name.  OpenCPI uses only the signal 
names, although it is useful to put the pin identifiers in a comment next to each signal 
definition.

The direction of signals in a slot are specified relative to the platform side of the slot 
(sometimes called the carrier side or the motherboard side).  Thus if the signal is 
sourced on the card (output from the card), it is input to the platform.  Thus such a slot 
signal is defined as an input signal for the slot type.

Signals defined as inout in a slot type do not imply the three signals that are implied 
for such signals when inside an FPGA.  The signal is singular and associated with a 
single pin.

An example small slot type XML file would contain:
<SlotType name='myslottype'>
  <signal name='present' direction='in'/>          <!-- Pin K1 -->
  <signal name='util0' direction='bidirectional'>  <!-- Pin K4 -->
  <signal name='data' direction='data' width='4'/> <!-- Pin K5 -->
</SlotType>

The name of a slot type is used in the XML description files of platforms (that have slots)
and cards.

5.4.3 Creating the XML Metadata Definition for the Platform

A platform is created using the ocpidev create platform command, which 
establishes the platform's directory under hdl/platforms and creates an initial 
Makefile, the XML file <platform>.xml describing the platform, and an initial VHDL
source file <platform>.vhd for the platform worker.

The XML file that defines an HDL platform is named the same as the platform name  
with an “.xml” suffix.  It describes both the hardware aspects of the platform as well as 
the OWD for the HDL worker that controls the platform, which is called the “platform 
worker”.  Thus the platform XML is an OWD for the platform worker, with additional 
information.  The platform worker is a special type of “device worker”, with extra 
requirements for the platform.  Developing device workers in general is the subject of 
the next major section below, but information specific to platform workers is described 
here.

The platform XML is an OWD with these special aspects, all described in detail below:

 The top level XML element is “HdlPlatform”

 The spec being implemented is “platform-spec”.

 The slots present on the platform are indicated by slot elements

 The devices physically present on the platform are indicated by device elements.

 The external signals (to pins) required by the platform worker (as for any device 
worker) are indicated by signal elements.
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 Special platform port types for platform workers: metadata, timebase, 
cpmaster, sdp, and  unoc.

So as a minimum, an example of the XML for myplat would be:

<HdlPlatform Language='vhdl' spec='platform-spec'>
  <specproperty name='platform' value='myplat'/>
</HdlPlatform>

Other requirements are described below.

5.4.3.1 Properties of Platform Workers

Several platform properties are parameters (constants) that must be set in the platform 
worker OWD using the specproperty element with a value attribute:

platform — required string attribute must be set to the name of the platform

sdp_width — uchar attribute, must be set in platforms using the SDP (see 
Interconnect Support below)

nSwitches — attribute is set the number of general purpose switches available, 
default is zero

nLEDs — set to the number of general purpose LEDs available, default is zero

nSlots — set to the number of slots on the platform, default is zero

An example setting these constants is:
<HdlPlatform Language='vhdl' spec='platform-spec'>
  <specproperty name='platform' value='myplat'/>
  <specproperty name='nLEDS' value='4'/>
</HdlPlatform>

Some properties must be supported by the HDL code in the platform worker:

switches — volatile ulong property returning the state of the switches; switch 0 is 
the LSB, driven by the platform worker as props_out.switches.

LEDs — a writable ulong property to control the LEDs of the platform; LED 0 is the 
LSB, driven into the platform worker's props_in.LEDs.

slotCardIsPresent — a volatile bool array indicating whether a card is present 
is each slot.

Since the platform worker is like any other worker, it can define any of its own properties
using the property element in its OWD.

There are several properties defined in platform-spec.xml that must be connected 
to specific platform ports in the platform worker code as described next.

5.4.3.2 Platform Ports in a Platform XML File

Platform workers have ports that are different than ports of application and normal 
device workers.  They allow the platform worker to provide required services to the rest 
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of the HDL infrastructure.  How they are used or referenced in the platform worker's 
source code is described in Writing the Platform Worker Source Code.

A metadata access port must be present in all platform workers.  The following line 
must be present and enables access to bitstream metadata via the platform worker's 
properties.

<metadata master='true'/>

A timebase output port must be present in all platform workers.  The following line 
must be present and enables the platform worker to provide timekeeping signals to the 
rest of the infrastructure.

<timebase master='true'/>

The platform worker must arrange for control plane access which provides off-chip 
access to the on-chip control plane.  This can be accomplished in two ways, direct and 
indirect.

To directly support a control plane master port, the platform XML declares:
<cpmaster master='true'/>

This indicates that the platform worker will provide an addressable path from the 
controlling processor's software into the FPGA, using the cpmaster port signal 
protocol.  This usually involves adapting an address window on a software addressable 
bus that the FPGA is connected to, to the protocol and signals of the cpmaster port.  
This implies that the external pathways (interconnects) for control and data are 
separate.

A platform can indirectly support a control plane by providing an interconnect port that 
serves both as a control and data plane access path.  This is common when there is a 
single connection between the system bus and this FPGA and the FPGA is both a slave
on this bus (for control and possibly data) as well as a master (for DMA data).  The 
absence of a cpmaster element in the platform XML implies that the interconnect port 
will support both control and data and no XML elements are required in the platform 
XML and no source code in the platform worker is required for the control plane.

The platform worker must declare a system interconnect port to support data flow 
between workers in this HDL platform and workers in other platforms connected to this 
platform via the system's interconnect, such as PCI Express.  As just mentioned, if this 
interconnect port will also serve as the path for the control plane, then no cpmaster 
port need be declared.

There is a legacy interconnect port type which is found in some existing HDL platforms, 
called unoc.  It is no longer recommended and not described further here.  For new 
platforms, the interconnect port type is sdp (for Scalable Data Plane).  When this line is 
included in the platform XML:

<sdp name="mybus" master='true'/>

it indicates that the platform worker will adapt and connect the system's bus to the 
protocol defined for on-chip sdp ports.  This sdp element has an optional count 
attribute which can specify that this port supplies multiple concurrent channels between 
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the system's bus/memory and the on-chip infrastructure.  Data flow connections 
between the platform's on-chip HDL application workers and off-chip workers (on other 
platforms) will be allocated to the channels in round robin fashion.  When the sdp is 
declared, the sdp_width parameter of the platform worker indicates the width of the 
sdp port, in DWORDS (32 bit words).

5.4.3.3 Device Elements in a Platform XML File

Device elements here indicate devices that are part of the platform and are directly 
attached to the platform FPGA's pins.  These device elements declare which devices 
are physically present and may be used (and thus instanced) in platform configurations 
and containers.  These declarations here, by themselves, do not cause the device 
workers to be instanced in any bitstreams.  Devices are used and instanced by being 
referenced in platform configurations, containers and assemblies.

Device elements indicate:

 The HDL device worker supporting this device (like a device driver) (required 
worker attribute)

 The name of the device (optional name attribute).  If no name is provided, the 
worker name is used, and if there are multiple devices using the same worker, a 
zero-based ordinal is appended.

 Which parameter settings should be used for the device worker for this device 
(optional property elements)

 Any mapping between the device worker's external signals and the names that the
platform uses for those same device signals (e.g. in its constraints file) (optional 
signal child elements)

In most cases a device element simply indicates that a device exists and which device 
worker should be used to support it.  E.g.:  if a platform had a flash device that was 
supported by the device worker named “flash.hdl”, this might be the device element:

<device worker='flash'/>

Like normal application workers, device workers can have parameter or initial property 
settings.  To make device workers reusable on multiple platforms, different values may 
be needed for different platforms.  E.g., if a device worker has several clocking modes 
depending on how its hardware is configured, these property values indicate to the 
device worker how it should operate on this particular platform.  Such property values 
are supplied using property elements (with “name=” and “value=” attributes), much like 
the property values for application components in an OpenCPI application.

In the following example, the device element says there is a “lime_adc” device 
present, and on this platform, its “use_ctl_clk” property should be set to true.:

<device worker='lime_adc'>
  <property name='use_ctl_clk' value='true'/>
</device>
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There is one required device on every platform: the time server.   It must be specified 
including the lines:

<device worker='time_server'>
   <property name='frequency' value='100e6'/>
</device>

The frequency of the clock supplied on the timebase port must be specified as the 
frequency parameter to this device worker.

Devices can have signal elements to indicate that the standard signal naming should 
be overridden to match up with the constraints file of the platform (so that the 
constraints file can remain untouched).  These signal elements use the name 
attribute to indicate the signal name as declared by the device worker, and the 
platform attribute to indicate the name used for the platform.  If not mapped, the 
platform signal for this device's signal is the device's name, followed by underscore, 
followed by the device worker's declared external signal name.

If the platform attribute is the empty string, it indicates that this device signal is not 
connected to the device on this platform.  The following example indicates the presence
of a lime_dac device, but that on this platform the tx_clk signal is not connected:

<device worker='lime_dac'>
  <signal name='tx_clk' platform=''/>
</device>

These signal elements for signal name mapping under the device elements here do 
not use the same syntax as the signal elements used to declare signals under the 
top-level elements of platform workers, device workers or slot type definition XML files.

5.4.3.4 Signal Elements in a Platform XML File

In order to provide the required services at its declared cpmaster, sdp, or timebase 
platform ports, the platform worker normally requires direct access to some external 
signals that are not associated with any other device.  These are signals such as clocks,
interconnects, LEDs, and switches.  These ad-hoc signals are declared using the signal 
elements defined in Signal Declaration XML Elements.  The signal names should 
generally match those in the platform's constraints file, including case.

Signals implied by the presence of devices do not need to be specified.

If a platform worker wants access to slot signals, it must declare those signals using the 
signal element, even though the signal's existence is already implied by the existence
of the slot element.   An example of this is the “presence” signal in FMC slots.  They 
are not related to any device on a card, but are used by the platform worker to know 
when a card is plugged in (is present).  So, in the ml605 platform worker these signal 
elements are present:

<!-- These "card-is-present-in-slot" signals are from each slot-->
<signal name='fmc_lpc_prsnt_m2c_l' direction='in'/>
<signal name='fmc_hpc_prsnt_m2c_l' direction='in'/>
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The slot names are fmc_lpc and fmc_hpc, and the standard name for this signal is 
prsnt_m2c_l.  When the signal is an output (from the FPGA to the slot), the signal 
must not be used as an output by any device worker for a device on a plugged-in card. 

5.4.3.5 Slot Elements in a Platform XML File

When a platform has slots, it includes a slot element to declare the existence of a slot.
The required type attribute must match the name of a defined slot type.  The slot type 
definition files are normally in the hdl/cards/specs directory in the ocpi.core 
project, which is automatically searched whenever a platform XML file is processed.  
Examples of slot types are:

 fmc_lpc:  “low pin count” variant of the “FPGA Mezzanine Card” from VITA57

 fmc_hpc:  “high pin count” variant of the FMC cards from VITA57

 hsmc:  High Speed Mezzanine Card from Intel/Altera

The optional name attribute of the slot element may assign a name to the slot.  If it is not
present, the slot's name becomes the slot type.  If name is unspecified and if more than 
one slot of the same type is present, a zero-origin ordinal is appended to the slot-type 
as the name.  E.g. if there were two slots of type hsmc and they were not given names, 
their names would be hsmc0 and hsmc1.  Slot names are needed for two purposes:

1. When a card is plugged into a slot, that slot is identified by its name.  Slot 
names are case insensitive for this purpose (when mentioning slot names in 
HDL container XML).

2. The default name for signals between the platform FPGA and a slot is the 
slot name as a prefix, followed by underscore, followed by the signal name 
as defined in the slot type definition file.

These fully prefixed slot signal names do not appear in source code or XML, but they do
usually correspond to the names found in a platform's constraints file, which is typically 
supplied separately by the board vendor and only modified for OpenCPI for other 
reasons (e.g. not for signal name changes).  I.e., the signal names associated with pins 
of the FPGA attached to slot pins are predetermined by the vendor or board designer 
and not changed or redefined by the platform worker.

E.g. for a slot signal named PRSNT_M2C_L, the name of the signal from the platform 
FPGA to the slot, for the second of two fmc_lpc slots that did not have assigned 
names, would be “fmc_lpc1_PRSNT_M2C_L”.  Slot names (and slot type signals) are 
case sensitive for this purpose (prefixing global net names) since there are some tools 
and systems where the case of such signals matters in the constraints file.  For a given 
slot, there is also a prefix attribute which can override the default <slot_name>_ 
prefix.  This is useful when there is only one slot of that type, and the platform uses the 
slot signal names directly without any prefix.

There is one other aspect to slot elements in the platform XML file:  slot signal mapping.
Most slot signal names are based on the specification of the slot types.  E.g., the FMC 
slot signal names are defined by VITA57.  If a platform's constraints file (and 
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documentation) do not use the standard names from the slot type specification, then 
extra child elements are added to the platform worker's slot XML element, to map the 
standard (e.g. VITA57) signal names to the signal names used by this platform's 
constraints file and documentation.

As an example, the ZedBoard platform has a single FMC LPC slot.  It uses the VITA57 
signal names for almost all these signals.  However, it changes signal names when they
are differential and use the CC suffix.  Whereas VITA57 always puts the CC suffix last, 
the ZedBoard puts the differential suffix last (i.e. _N and _P).  Here is the slot element 
for the ZedBoard platform XML that forces the slot name to be upper case FMC, and 
remaps the offending signals so OpenCPI knows how to route signals to the slot's 
connector on this platform that does not follow the VITA57 conventions:

<slot name='FMC' type='fmc_lpc'>
  <!-- These signals don't use VITA57 signal names-->→
  <signal slot='LA00_P_CC' platform='LA00_CC_P'/>
  <signal slot='LA00_N_CC' platform='LA00_CC_N'/>
  <signal slot='LA01_P_CC' platform='LA01_CC_P'/>
  <signal slot='LA01_N_CC' platform='LA01_CC_N'/>
  <signal slot='LA17_P_CC' platform='LA17_CC_P'/>
  <signal slot='LA17_N_CC' platform='LA17_CC_N'/>
  <signal slot='LA18_P_CC' platform='LA18_CC_P'/>
  <signal slot='LA18_N_CC' platform='LA18_CC_N'/>
  <signal slot='CLK0_M2C_N' platform='CLK0_N'/>
  <signal slot='CLK0_M2C_P' platform='CLK0_P'/>
  <signal slot='CLK1_M2C_N' platform='CLK1_N'/>
  <signal slot='CLK1_M2C_P' platform='CLK1_P'/>
  <!-- These signals do not have connections to the platform -->
  <signal slot='DP0_C2M_P' platform=''/>
  <signal slot='DP0_C2M_N' platform=''/>
</slot>

Some platforms do not connect all possible slot signals to the FPGA.  In this case the 
slot element maps them to an empty signal name on the platform, indicating that these 
slot signals cannot be used on this platform.  In the above example, the last two slot 
signals mentioned (DP0_C2M_P/N) are not connected to the (Zynq) FPGA  on the 
ZedBoard platform.

Finally, when a platform does not use the slot name prefix in its signal names, a leading 
slash can be given in the platform attribute to indicate that no such prefix should be 
applied.  E.g. a signal mapping of:

<signal slot='DP0_C2M_P' platform='/DP0_SLOT2_P'/>

would imply that the signal name in the constraints file would be DP0_SLOT2_P rather 
than FMC_DP0_C2M_P.

OpenCPI Platform Development Guide Page 49 of 80



5.4.3.6 Examples of Platform XML Files

An example of a complete XML file for a Zynq-based HDL platform is below.  The 
platform worker directly supports a control plane (using cpmaster), and sets the time 
server's clock frequency to 100e6, and declares an SDP data plane (via sdp) with 2 
channels.  It has one fmc_lpc slot and 4 LEDs.  No switches are declared.  One signal
(to drive external LEDs) is declared.  No clock signals are declared since this platform 
worker uses on-chip clock-generator resources in the Zynq chip.

<HdlPlatform Language="VHDL" spec='platform-spec'>
  <specproperty name='platform' value='myzynq'/>
  <specproperty name='nLEDs' value='4'/>
  <metadata master='true'/>
  <timebase master='true'/>
  <cpmaster master='true'/>
  <device worker='time_server'>
    <property name='frequency' value='100e6'/>
  </device>
  <sdp name="zynq" master='true' count='2'/>
  <slot name='FMC' type-'fmc_lpc'/>
  <signal name='led' width=4' direction='out'/>
</HdlPlatform>

A second example uses an interconnect that indirectly supports a control plane so no 
cpmaster is necessary, but signals to get clocks and raw interconnect signals are 
declared.  Notice that three different clocks are taken from external inputs, and the PPS 
inputs and outputs are used to support the time server.:

<HdlPlatform Language="VHDL" spec='platform-spec'>
  <specproperty name='platform' value='mypci'/>
  <metadata master='true'/>
  <timebase master='true'/>
  <device worker='time_server'>
    <property name='frequency' value='200e6'/>
  </device>
  <sdp name="pcie" master='true'/>
  <signal name="sys0_clk" direction='in' differential='true'/>
  <signal name='sys1_clk' direction='in' differential='true'/>
  <signal name='pci0_clk' direction='in' differential='true'/>
  <signal name='pci0_reset_n' direction='in'/>
  <signal name='pcie_rx' direction='in' differential='true'
                         width='4'/>
  <signal name='pcie_tx' direction='out' differential='true'
                         width='4'/>
  <signal name='led' direction='out' width='13'/>
  <signal name='ppsExtIn' direction='in'/>
  <signal name='ppsOut' direction='out'/>
</HdlPlatform>
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5.4.4 Writing the Platform Worker Source Code

While a platform worker's XML (OWD) has extra elements to describe the platform's 
hardware (devices, slots), it is still an OWD, and thus it describes any implementation-
specific properties and ports of the platform worker.  Being a device worker, it can also 
define external signals that are connected externally to pins.

Thus to complete the OWD, any such ports and properties must be defined.  The spec 
(OCS) for all platform workers defines certain ports and properties that all platform 
workers must support and implement, but platform workers can and typically do have 
other ports and properties that are platform-specific.

5.4.4.1 Platform Worker Properties

Some required platform worker properties are dealt with entirely in the platform XML file 
since they just require parameter values which can be specified in the OWD.

Several OCS properties are readable characteristics of the platform that may be defined
as parameters with a constant value in the OWD, or be declared as volatile with a 
runtime-determined value.  These include the nSwitches, nLEDs properties.  If they 
are volatile, the worker must drive them by assigning values, e.g.:

props_out.nSwitches <= to_ulong(3);
props_out.nLEDs <= to_ulong(7);

Otherwise, the OWD can simply specify the value, e.g.:
<specproperty name='nSwitches' parameter='true' value='3'/>

Some platform properties are always volatile such as switches and 
slotCardIsPresent, so the platform worker drives them with:

props_out.switches <= switch_input_pins;
props_out.slotCardIsPresent <= (others => '0');

Some are writable such as LEDs, and are input to the worker:

my_led_pins <= props_in.leds(3 downto 0);

Finally, some properties are associated with platform ports and are described below in 
the sections about each platform port type.

Here is a typical example of VHDL code in a platform worker for its properties:
props_out.switches          <= (others => '0');
props_out.slotCardIsPresent <= (0 => not fmc_prsnt,
                                others => '0');
props_out.UUID              <= metadata_in.UUID;
props_out.romData           <= metadata_in.romData;
metadata_out.clk            <= ctl_in.clk;
metadata_out.romAddr        <= props_in.romAddr;
metadata_out.romEn          <= props_in.romData_read;
led(0)                      <= props_in.leds(0);

Below is a summary table with the OCS properties and their accessibility.
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Table 2:  Platform Worker OCS Properties

Name Type Access Description

platform String Parameter Platform name
Set in OWD <specproperty>

sdp_width UChar Parameter Width in DWORDS of SDP.
Set in OWD for sdp platform port

UUID ULong
*16

Readable Unique ID of bitstream file.
Connected in source code for metadata platform port.

romAddr UShort Writable Address for reading bitstream metadata.
Connected in source code for metadata platform port.

romData ULong Volatile Data when reading bitstream metadata
Connected in source code for metadata platform port.

nLEDs Ulong Parameter/
Readable

How many LED indicators are present?
Can be parameter or readable.

LEDs ULong Readable+
Writable

Actual LED settings, up to 32, LSB is LED 0

nSwitches Ulong Parameter/
Readable

How many switches are present?
Can be parameter or readable.

switches ULong Volatile Actual switch settings, up to 32, LSB is switch 0

nSlots Ulong Parameter How many slots are present?
Set in OWD <specproperty>
Must match number slot elements in OWD

slotCardIs
Present

Bool
array

Volatile Indicate whether card is plugged into slot

slotNames String Parameter Comma-separated list of slot names
Set in OWD <specproperty>

5.4.4.2 Ports of Platform Workers

Platform workers have ports that are different than ports of application workers.  They 
are not used for moving data to and from other workers.  They allow the platform worker
to provide required services to the rest of the HDL infrastructure.  The platform ports 
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were introduced in Platform Ports in a Platform XML File.   Each has implications in the 
platform worker source code.

The simplest platform port is the metadata port, which simply requires that the platform
worker connect the signals at the metadata port to the properties associated with the 
port using this exact VHDL code:

props_out.UUID              <= metadata_in.UUID;
props_out.romData           <= metadata_in.romData;
metadata_out.clk            <= ctl_in.clk;
metadata_out.romAddr        <= props_in.romAddr;
metadata_out.romEn          <= props_in.romData_read;

For the timebase port, the worker is required to provide three output signals to that 
port, and take one output signal from that port, e.g.:

timebase_out.clk   <= clk;
timebase_out.reset <= reset;
timebase_out.ppsIn <= '0';
my_pps_out_pin     <= timebase_in.pps

These signals are the basis for timekeeping on the platform.  They are a clock and 
associated reset, a PPS input signal and an optionally connected PPS output signal.  
The platform worker should provide the timebase clock that is best suited for 
timekeeping, which usually means the one with the least jitter and drift over the short 
term.  On some platforms this is simply the same as the control clock, but on others 
there may be a clock with better performance for this purpose and the platform worker 
should use it.

If a platform worker is directly supporting a control plane master port (indicated by the
cpmaster element in the OWD), the platform worker must provide an addressable path
from the controlling processors's software into the FPGA.  This usually involves 
adapting a address window on an addressable bus that the FPGA is connected to, to 
the protocol and signals of the cpmaster port.  The adaptation is normally put into its 
own module and then instanced in the platform worker.  The platform worker must 
choose an appropriate clock and (asserted high) reset signal to serve as the platform's 
control clock/reset.

Remember that the platform worker may provide for a control plane indirectly by 
providing an interconnect port that can serve the same purpose.  In that case no 
platform worker support of a cpmaster port is necessary.

A cpmaster example from the ZedBoard platform is where an addressable bus port in 
the Zynq chip, which connects the processor to the FPGA, is called the M_AXI_GP0.  
The Zynq CPU is the master, and generates read and write accesses to the FPGA 
acting as a slave.  In this case an adapter module was written (called axi2cp) to 
convert the protocol used by the M_AXI_GP0 port in the SoC hardware, to the OpenCPI
control plane protocol.  This module is instanced in the Zed platform worker and 
connected to the Zynq CPU on one side, and the platform worker's cpmaster port on 
the other.  In the Zed platform worker this adapter and its connection is shown by this 
code:
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cp : axi2cp port map(clk     => clk,
                     reset   => reset,
                     axi_in  => ps_m_axi_gp_out(0),
                     axi_out => ps_m_axi_gp_in(0),
                     cp_in   => cp_in,
                     cp_out  => cp_out);

The signaling protocol of a cpmaster port is described in the Control Plane Master Port
Protocol section.

The last platform port type, system interconnect, is specified using the sdp element in 
the OWD.  The platform worker must provide a path from the platform's 
bus/interconnect to the sdp port.  When the interconnect used for data flow can also be 
used to provide control plane access, then the cpmaster port described above is 
unnecessary.  The key attribute needed of the system interconnect to indirectly support 
control plane access is that the processor on the other side of the interconnect can read
and write into the FPGA with the FPGA acting as an addressable slave.  This is 
common when there is only one external bus connected to the FPGA, such as PCI 
Express.

In the case of the Xilinx Zynq platform, there are multiple interfaces between the on-chip
system interconnect and the FPGA (called PL on Zynq).  In this case the platform 
worker reserves one such interface exclusively for control access (the M_AXI_GP0 
connected to a cpmaster port), and uses different interfaces for the data plane.

The sdp ports act as bus masters, generating addressed DMA requests to the platform 
worker which should adapt and present those requests to the system interconnect.  The
sdp ports can also act as bus slaves, allowing their use for control plane purposes.  The
platform worker decides whether to support the sdp port as only a bus master (e.g. as it
does on Zynq), or as both master or slave (as it does on PCI Express systems).

The sdp ports can be multichannel, meaning that the platform worker can provide 
multiple simultaneous paths between the system interconnect and the FPGA data plane
infrastructure to support simultaneous data flows between workers in the FPGA and 
workers outside the FPGA.

The signaling protocol of an sdp port is described in the SDP Port Protocol section.

5.4.4.3 Platform Worker Clocks

As seen above in the discussion of the control plane adaptation (the cpmaster port), 
the platform worker sources the clock (and reset) used for the OpenCPI control plane 
on the platform.  It also sources any clocks associated with the “data plane” where 
data/messages are flowing to other workers in other FPGAs or software platforms.  In 
both these cases the clock and reset signals are part of the interface at these ports.

A platform worker usually also sources another clock for timekeeping on the platform (in
the timebase port), unless there will never be any need for timekeeping on the 
platform.

In general these clocks already exist on the platform and are simply assigned to these 
additional purposes.  I.e. the control clock may be the clock already associated with the 
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bus between the CPU and FPGA.  In some cases the platform worker may 
synthesize/generate new clocks for these purposes.

5.4.5 The Makefile for the Platform Worker

Like any other worker, a platform worker has a worker Makefile that is used for 
various purposes, normally created by the ocpidev command.  Since the 
HdlTarget(s) and HdlPlatform(s) are implicit for a platform worker (its name), there
is no need to specify either (in the file or on the command line).

As with other HDL workers, the Makefile may reference other local source files or 
primitive cores and libraries from elsewhere.  The basic contents for a platform worker's 
Makefile, as created by ocpidev, is simply:

include $(OCPI_CDK_DIR)/include/hdl/hdl-platform.mk

The platform worker is built in its directory (in one or more target subdirectories).  
Platform configurations are also built in the platform worker directory.  In fact, when 
nothing else is specified, a “base” platform configuration (with no device workers) is built
whenever the platform worker is built.  To specify more platform configurations to build, 
specify them in the Configurations make variable in this Makefile, and for each 
one, write an XML file describing which devices (and any parameters for them) that 
should be included in the platform configuration.  See the next section for a complete 
description of platform configurations.

Running make in a platform worker directory builds the platform worker, the base 
configuration, and any other platform configurations as specified in the 
Configurations make variable.

Each platform worker must have a make file fragment called <platform>.mk which 
defines make variables required for users of the platform.  There is one variable 
required to be set in this file:  HdlPart_<platform>.  This variable must be set to the 
part name of this platform.  Also, if there is an association between this HDL platform 
and an associated software platform (typically for FPGA SoCs with embedded 
processors), the HdlRccPlatform_<platform> variable can be set to name the RCC 
software platform associated with this HDL platform.  An example file is for the Xilinx 
Zynq part on the ZedBoard platform:

HdlPart_zed=xc7z020-1-clg484
HdlRccPlatform_zed=xilinx13_4

This indicates the actual part for the platform, and also indicates that the associated 
software platform is the 2013.4 release of Xilinx Linux.

The ExportFiles make variable is specific to platform workers and specifies which 
local files in this directory must be made available to users of the platform.  Files in this 
list include the jtag and flash support scripts for the platform, as well as constraints files 
required to build container bitstreams for the platform.
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5.4.6 Specifying Platform Configurations in XML Files.

For each platform configuration mentioned in the Configurations variable in the platform 
worker Makefile, there must be a corresponding XML file.  This XML file has these 
aspects:

 The top level element is “HdlConfig”.

 A device child element is present for each device in the configuration.

For devices previously defined as being part of the platform (and thus mentioned in the 
platform worker's OWD), the device element simply has a “name=” attribute indicating 
which of the platform's devices should be included in the platform configuration.

Platform configurations can also specify devices that are on cards plugged into one of 
the platform's slots.  Specifying the card attribute indicates which card the device is on,
and implies that the card is plugged into one of the platform's slots.  If there are multiple 
slots of the type that the indicated card is defined for, then a slot attribute must be 
used to unambiguously indicate which slot the card is plugged into.

Thus platform configurations can indicate a mix of devices:  those that are part of the 
platform, and others that should be made available assuming a certain type of card is 
plugged into one of the platform's slots.  The following example, (for the ZedBoard 
platform), indicates that a configuration should be built that assumes a lime-zipper-
fmc card should be plugged into a slot on the platform, and thus device workers to 
support the lime_adc device on that card should be included.  There is no slot 
attribute included or required since the platform has only one slot.

<HdlConfig>
  <device name='lime_adc' card='lime-zipper-fmc'/>
</HdlConfig>

Device elements in this file can also set values for parameter properties of the device 
worker for the device, but only those that are not already specified in the board 
definition (either platform worker XML file or card definition XML).  I.e. the board 
definition file specifies fixed aspects of the device as it exists on that board, but any 
other parameter properties not mentioned for the board can be configured as required in
the platform configuration (or in the container).  E.g.:

<HdlConfig>
  <device name='lime_adc' card='lime-zipper-fmc'>
    <property name='use_control_clock' value='true'/>
  </device>
</HdlConfig>

The same capability exists for the platform worker itself.  Parameter property values for 
the platform worker can be specified by top level property elements in this file, e.g.:

<HdlConfig>
  <property name='ocpi_debug' value='true'/>
  <device name='lime_adc' slot='lime-zipper-fmc'/>
</HdlConfig>
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5.4.7 Control Plane Master Interface

This interface is undocumented at this time.

5.4.8 Scalable/Simulatable Data Plane (SDP) Interface

When FPGA platforms have off-chip interconnects to connect with other FPGAs or 
GPPs, they need to be adapted to the on-chip infrastructure that is common to all 
OpenCPI FPGA platforms.  Prime examples of off-chip interconnects are PCI Express, 
Ethernet, and the Zynq AXI interconnect between the FPGA side of the SoC (called PL) 
and the multi-core  GPP side (called PS).

A key interface in the OpenCPI data-plane infrastructure is the SDP.

The S in SDP is used both for the Scalable aspect (where the width of the data path is 
parameterized) as well as the Simulatable aspect (where the entire on-chip data plane 
infrastructure runs in simulation).

The SDP port interface is an on-chip (inside of FPGA) interface which is used for 
transferring packets to/from OpenCPI infrastructure modules. The purpose of this 
chapter is to provide the information required to adapt other interfaces/interconnects to 
SDP.  Each interconnect is adapted to the SDP so that all the rest of the on-chip data-
plane infrastructure remains common across all HDL platforms supported by OpenCPI.

Within the OpenCPI data plane stack, the data plane is organized in two layers, the 
transport and the data transfer layers.

The transport layer is fabric agnostic and provides buffer and protocol management.  
The data transfer layer is defined by OpenCPI to be a protocol specification for Remote 
DMA (RDMA) which provides data transfer interoperability between heterogeneous 
components executing within FPGAs, DSPs, and GPPs that all have access to each 
other’s addressable space.  The RDMA driver level module allows new drivers to be 
plugged into OpenCPI enabling data exchange over a variety of fabrics.  OpenCPI 
provides several intrinsic drivers with the standard distribution including Host Memory, 
network sockets and PCI bus.

SDP was designed to process the OpenCPI RDMA protocol inside of FPGA containers. 
Other requirements and/or design goals of SDP were:

 Minimize differences between SDP and common FPGA interconnects (AXI, PCIe)

 Minimize complexity of FPGA infrastructure which must interface to SDP

The SDP interface has the following attributes:

 Bidirectional: either side of a connection can be master 

 Multi-master

 Packet-based: header and data (optional)

 Split transaction: Read request packets elicit read response packets (with data), 
Write request packets (with data) are posted, with no response

 Full-duplex
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The side of interface closer to the off-chip interconnect is called the SDP interface 
master, and thus must interact with a slave interface.  At the VHDL port level, there are 
two record structures (one per direction) with VHDL types m2s_t, and s2m_t.  Data is 
also bidirectional and of type dword_array_t with parameterized width with generic 
sdp_width to define the width, hence the “Scalable” in SDP.

The VHDL ports (e.g. for an SDP master) are:
sdp_out      : out m2s_t
sdp_out_data : out dword_array_t(0 to sdp_width-1)
sdp_in       : in  s2m_t
sdp_in_data  : in  dword_array_t(0 to sdp_width-1)

Within both m2s_t and s2m_t records is a common messaging record of VHDL type 
sdp_t.  The figure below illustrates the port structure using VHDL types, and the tables 
following tables describe the signals.

Figure 1:  SDP VHDL Record Structure

Table 3:  SDP m2s_t Signals

Signal Type Description

sdp sdp_t SDP header and handshake signaling common to masters and slaves

clk std_logic The clock for the SDP instance, usually from the HDL platform worker.

reset bool_t Associated synchronous reset (asserted high for minimum of 16 cycles)

id id_t The SDP node/position/ordinal assigned to the attached slave

OpenCPI Platform Development Guide Page 58 of 80



Table 4:  SDP s2m_t Signals

Signal Type Description

sdp sdp_t SDP header and handshake signaling common to both SDP 
masters and slaves

dropCount uchar_t Count of non-decoded/dropped packets from slave (only when 
slave is terminator)

The sdp_t VHDL record contains header and handshake signaling for SDP.  The figure
below illustrates the record structure and following tables describe the record signals.

Figure 2:  sdp_t Record Structure

Table 5:  SDP sdp_t Signals

Signal Type Description

valid bool_t Data/header is valid (like AXI).  Analogous to “FIFO not empty”.

eop bool_t End of packet.  Qualified by valid.

header header_t Header defines contents of packet.  Will be stable from sop to eop

ready bool_t Can accept/is accepting data from other side - like AXI; analogous to 
“FIFO dequeue”.
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Table 6:  SDP header_t Signals

Signal Type Description

count count_t Number of dwords of data minus 1 (like AXI).  For read requests, 
requested count.  For writes and read-responses, count of data in 
packet.

op op_t Operation: read/write/response. 

xid xid_t Transaction ID for matching responses to read requests

lead unsigned Number of invalid bytes at start of first dword of packet.

trail unsigned Number of invalid bytes at end of last dword of packet

node id_t For packets to slaves:  The on-chip node that should receive this 
packet. For packets to masters:  The on-chip node that should receive
the response (if any)

addr addr_t LSBs of dword address. For requests to slave, address within specific
SDP node.  For requests to master, simply word address LSBs.

extaddr extaddr_t For requests to master, address MSBs to achieve 36 bit addressing.

Packets are transferred using a sequence of transfers controlled by valid and ready. 
In FIFO-speak, valid is analogous to “FIFO not empty”, and ready is analogous to 
“dequeue”.  The valid signal in one direction is acknowledged by the ready signal in 
the other direction.  When they are both asserted (from opposite directions) at a rising 
edge, the transfer is complete.  The valid signal can lead ready or vice versa.  This 
terminology is similar to AXI.

The following diagram shows three SDP transfers: 

 ready trailing valid

 ready leading valid

 ready simultaneous with valid

Figure 3:  Three SDP Transfers with Different Ready and Valid Assertions
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The eop signal indicates the last transfer in a packet, and is qualified by the valid 
signal. When valid is not asserted, eop is meaningless/undefined. The last transfer in 
a packet is indicated when both valid and eop are asserted. The start of a packet is 
inferred (after previous eop or reset).  The following diagram shows an example of a 
packet transfer completion.

Figure 4:  SDP Packet Transfer Showing EOP

The initiator must hold the header constant for the duration of a packet.  The header 
signal structure is continuously valid at the first transfer in the packet through the last 
one; i.e. it does not need to be captured on the first transaction in the packet.  It 
becomes valid when the valid signal is asserted at the beginning of a packet.  The data 
signal may provide new data on each transaction in the packet. For some packets (e.g. 
read requests), only the header is used, and the data is unused.  The following diagram 
shows a packet transfer including the header.

Figure 5:  SDP Packet Transfer Showing Header

SDP is split transaction, like PCIe and AXI.  Read request packets elicit read response 
packets (with data).  Write request packets (with data) are posted, with no response.  
The first transfer of a packet transfers data (unless it is a read request).  The header 
defines what the packet is for (its operation or op):
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 A read request (with address and no data)

 A read response (data responding to a read request)

 A write request (with address and data)

The following diagram shows an example of a write request with basic header 
information and data.

Figure 6:  Basic Write Request with Address and Data

The header defines xid (transaction ID) for matching responses to read requests.  The 
following diagram shows an example of a read request with corresponding response.
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Figure 7:  Read Request and Corresponding Response

The amount of data in a packet may be any number of 8-bit bytes.  The header 
specifies count (number of dwords of data minus 1 ).  For read requests, count is the 
requested number of dwords.  For write and read responses, count is the number of 
dwords in the packet.  The maximum count allows for 16KB (e.g. enough for jumbo 
Ethernet frames).

In addition to count, the header specifies leading invalid bytes in first dword and trailing
invalid bytes in last dword. The following diagram shows how 16 bit writes are conveyed
on a 32 bit interface using lead and trail.
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Figure 8:  Two 16-bit Writes on a 32-bit Interface with Leading/Trailing Invalid Bytes

The data in a packet (if not a read request) is aligned, little endian.  This is relevant if 
the SDP interface is configured with a dword-width of > 1.  For example, if width is 2 
dwords, and a single dword transfer has dword address of 1, the LSB dword will be 
padding, and MSB dword is the single dword of valid data.  The following diagram 
illustrates this scenario.

Figure 9:  32-bit Write on 64-bit Interface Showing Little-endian Alignment

5.4.9 The UNOC Data Plane Interface

The precursor/legacy interface for the on-chip data plane for OpenCPI was called 
UNOC (micro-network-on-chip).  This interface is used in some PCI Express 
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interconnect designs and is deprecated.  Those designed are being converted to use 
the SDP.

5.4.10 Testing the Basic Platform without Devices

You can build and run various tests without supporting any of the devices on the 
platform.  This can be the first chance to test the full bitstream build flow.

In particular, to test the control plane support, you can test the platform with no 
interconnect/dataplane support by using applications like “tb_bias_v2” which do not 
require interconnect support for the data plane.

Data plane support can then be tested one direction at a time, using simple applications
like “patternbias_v2” or “biascapture_v2” that only flow data in one direction between 
the FPGA platform and the processor.

The biascapture_v2 assembly (in 
assets/hdl/assemblies/biascapture_v2/biascapture_v2.xml) contains 
the following XML, which takes external input and captures it:

<HdlAssembly>
  <Instance Worker="bias_vhdl" connect='capture_v2' external='in'/>
  <Instance Worker='capture_v2'/>
</HdlAssembly>

The file-bias-capture_v2 application (in assets/applications/file-bias-
capture_v2/file-bias-capture_v2.xml) reads from a file and then uses the 
above assembly.  The XML is:

<application package='ocpi.core' done='capture_v2'>
  <instance component="file_read" connect="bias">
    <property name='filename' value='test.input' />
    <property name='messagesInFile' value='false' />
    <property name='opcode' value='0' />
    <property name='messageSize' value='2048' />
    <property name='granularity' value='4' />
  </instance>
  <instance component='bias' connect="capture_v2">
    <property name='biasValue' value='0x01020304'/>
  </instance>
  <instance component="ocpi.assets.util_comps.capture_v2">
  <property name='stopOnFull' value='true'/>
  <property name='numRecords' value='256'/>
  <property name='numDataWords' value='1024'/>
  </instance>
</application>

Testing in one direction greatly simplifies initial debugging of platform workers that are 
using new interconnect adapters for SDP.
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5.5 Device Support for FPGA Platforms

Device support development involves the creation of workers that enable OpenCPI to 
use the devices attached to an HDL platform or card.  Device workers are like "device 
drivers" for specific FPGA-attached hardware devices — workers that interface with 
devices using device-specific signals and I/O pins.

In addition to a control interface and data interface(s) that an application worker would 
have, device workers also have signal connections with hardware attached to pins of 
the FPGA.   For example, a device worker for an output device (like a DAC or a printer) 
would have some signals attached to FPGA pins that are connected to the output 
device, and would also have a normal worker input data port that would be connected to
some application worker producing the data.

[Diagram showing app worker → device worker → device.]

When the device is attached to the FPGA via dedicated pins, the device is considered 
part of the platform.  When the device is on an optional card plugged into a slot (which 
has pins connected to the FPGA), the device is considered part of the card, not the 
platform.  In both cases the same device worker is used to access and control the 
device.  An OpenCPI HDL device worker can be reused across platforms and cards.

A simple DAC device worker might have an XML descriptor (OWD) like this:
<HdlDevice Language='vhdl' spec='dac-spec'>
  <streaminterface name='in' datawidth='8'/>
  <signal name='valid' direction='out'/>
  <signal name='data' direction='out' width='8'/>
  <signal name='dataclk' direction='out'/>
  <signal name='ready' direction='in'/>
</HdlDevice>

The HdlDevice element is similar to the HdlWorker element except that it allows 
some extra features like the signal child elements.

The spec='dac-spec' attribute indicates that this device worker implements the 
component spec common to all DAC devices (properties and ports).  It can add its own 
properties as required in its OWD.  The streaminterface element simply sets the 
physical data width of the input port to 8.  The signal elements specify the names of 
device signals (HDL language “ports”) connected to the FPGA pins that are connected 
to a device supported by this device worker.

All the details of an HdlDevice XML are mentioned below.  An example of the device 
worker source code (using version=2) for this (simplistic, single clock domain) device 
worker might be:

dataclk     <= ctl_in.clk;
data        <= in_in.data;
valid       <= in_in.valid
in_out.take <= ready;
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5.5.1 A Device Worker Implements the Data Sheet

It is recommended to use the data sheet's signal names and register names in the 
device worker code (and its OWD) so they are easily correlated to the names in the 
data sheet.  This allows for easier code maintenance and system level debugging.  E.g.,
a system engineer may find it especially valuable to probe and examine device-level 
settings when referring to the data sheet, even though they might not be HDL coders.  
When the naming conventions in the data sheet are at odds with “better” naming 
conventions, it may still be preferable to use them for these reasons.

 Implementing all the functionality in a device may not be desirable when it is 
initially written for a given platform, since that platform may not use all the device's
capabilities.  When a device worker is insufficient in this way for a new platform or 
project, it should be enhanced in such a way that any existing uses of it will still 
work (backward compatibility) so that the community in fact gets the benefit of a 
newer more complete device worker implementation.

As mentioned above, multi-function chips should generally be supported by multiple 
device workers.  But within any device worker for a function, if there are features or 
modes that carry significant overhead, they should be controlled by parameter 
properties (thus generics in VHDL) so that the resources are not wasted when the 
feature/mode is not being used.  This promotes re-use of the device worker.

When devices have internal registers, the most common approach is to define each 
internal register as a property in the OWD (not in the OCS), and use the “raw property” 
feature of HDL workers to access those registers.  This enables direct control and 
display of the internal configuration of the device with no programming since the 
ocpirun and ocpihdl commands can easily access this information.  It allows a clean
“hardware-to-software” handoff when the device worker implements what the datasheet 
describes.

5.5.2 Device Component Specs and Device Worker Modularity

In order to ensure that similar devices have common application-visible behavior, 
OpenCPI has device class specs that represent commonly used classes of devices.  
This is a special case of the component specification (OCS) being the basis of multiple 
implementations (workers) of the same functionality.  In this device case, the “multiple 
implementations” are for different devices of the same class.  Device workers for 
devices in the same class implement the same OCS; a device class is represented by 
this device class OCS.

As the integration of functionality on single chips increases, it is common for a “chip” to 
implement multiple functions of different classes of device (e.g. an ADC and a DAC).  
Generally, this should not result in a single device worker for the multi-function chip.  
Creating such a single device worker would result in the functions not being represented
to the system or to users the same as a similar function from a non-integrated single-
purpose chip.  Thus, a device worker should be developed for each class that is present
on the multifunction chip.

This avoids exposing the multi-function integration of a single chip to applications and 
thus enhances the re-use of applications.  Furthermore, when only one function is 
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needed, a multi-function device worker would use FPGA resources for functions that are
not being used.  While it is possible to develop “swiss-army-knife” device workers for 
multifunction chips that intend to avoid using resources for parts that are unused, 
OpenCPI recommends designs that are more modular, namely:

 Chips that contain multiple functions should generally be treated as multiple 
devices using multiple device workers of the appropriate classes.

When a multi-function device has pins or hardware that must be shared among the 
functional device workers (e.g. a common reset or SPI or clocks), a “subdevice” module 
can be used for such shared logic.  This is discussed in a later section.

The first step in developing support for a new device is to identify the device class specs
that are relevant, and determine the list of device workers that must be created.  Each 
device class spec defines common properties, data ports, and implied functionality that 
all device workers of the class should try to implement.

Some examples of classes of devices currently defined are:

 ADC and DACs which convert between isochronous data and flow-controlled data 
and may have scheduling and time-stamping functionality.

 Upconverters and downconverters between IF/Baseband and RF.

 Clock generators

 DRAM

5.5.3 Device Proxies — Software Workers that Control HDL Device Workers

A device proxy is a software worker (RCC/C++) that is specifically paired with a device 
worker in order to translate a higher level control interface for a class of devices into the 
lower level actions required on a specific device.  While it is possible that the HDL 
device worker itself could support the required generic interface, for many device 
classes, it is more productive to split the supporting code for the device into a (software)
proxy and a HDL device worker.  When a device worker has a proxy, it is termed the 
“slave” of that proxy.  Using a proxy is not always required since the underlying (slave) 
device worker is always controllable directly.

The requirements for a class of devices may in fact be split into a low level part that 
HDL device workers typically implement, and a high level part that would usually be 
implemented in a proxy.  An example might be where an ADC device worker had a low-
latency gain adjustment input port that could probably not be implemented in software, 
as well as a high level sample rate setting that would be better implemented in a proxy.

Device proxies are simple C++ (not C) RCC workers where the XML (OWD) specifies a 
“slave” attribute, indicating which worker is the “slave” for that proxy.  That attribute 
enables convenient access to all the slave worker's properties from the proxy's code.

Thus there are two patterns for implementing HDL device support in OpenCPI:

 Device-worker-only, where the device worker implements both the device 
component spec as well as any required higher level properties.
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 Device-worker-and-proxy, where the device worker implements only the device 
component spec, and the device proxy implements the higher level properties for 
the class.

A common example of higher level properties for a device class is the center/tuning 
frequency of an RF/IF up/down converter.  The high level property is a convenient 
floating point number, which typically requires setting a variety of device registers to 
accomplish.  The proxy code would make the necessary translations and computations 
before setting the correct register values in the HDL device worker.

5.5.4 Subdevice Workers

[Diagrams here, based on existing PPTs etc.]

Writing a device worker to be reusable across many embedded systems is made more 
difficult by two facts:

 Multifunction devices have aspects that are shared between functions (e.g. 
common reset)

 Controlling different devices sometimes involves sharing control/configuration 
buses (e.g. SPI and I2C) or other hardware.

In order to preserve the modularity of distinct classes of devices, as well as the 
reusability of device workers, OpenCPI supports a further specialization of device 
workers called subdevice workers.

A subdevice worker implements the required sharing of low level hardware between 
device workers.  It is defined to support some number of device workers, and is thus 
instantiated whenever any of its supported device workers are instantiated in a platform 
configuration or container.  Subdevice workers may simply support the different device 
workers used on a single multi-function device, or they may support a variety of different
device workers that are found on a platform.  Thus they are usually very platform-
specific or card-specific.

New subdevice workers may be required when a device with an existing device worker 
is used on a new platform or card, since the sharing of hardware (e.g. an I2C bus) may 
require different logic.  That may result in the existing device worker being refactored to 
share functions that it did not share before.

There are cases where a subdevice is required to support a single device worker when 
some low level logic must be different for different platforms.  This allows the device 
worker itself to remain portable, letting alternative subdevices to do platform/card-
specific dirty work.

Subdevice workers typically have no control interface.  Like device workers they have 
signals that are attached to FPGA pins.  These pins are usually what is “shared” 
between the device workers that the subdevice supports.  It is possible that subdevices 
have no external signals and only exist to coordinate between several optionally present
device workers.

Subdevice workers also have connections to the device workers they support.  The XML
(a minimal OWD) for a subdevice defines:

OpenCPI Platform Development Guide Page 69 of 80



 The hardware FPGA pins it is attached to (via the “signals” element like all device 
workers)

 The device workers it supports

 How it is connected to each of the device workers it supports.

Since platforms and cards declare which devices they have, including subdevices, they 
can specify which subdevices are present.  This allows different subdevices to be used 
for different platforms while leaving the device workers untouched and reused.

For help in understanding these aspects of OpenCPI, look closely at the 
lime_zipper_fmc_lpc card (hdl/cards/specs/lime_zipper_fmc_lpc.xml), 
and the devices that it includes.  This card is used in the zed platform for certain 
configurations based on the hdl/platforms/zed/zed_zipper_fmc* files.  To learn
more about raw properties, take a look at the si5351 device at 
hdl/devices/si5351.hdl.  The many raw properties declared in the  xml file 
correspond  to  hardware  registers  on  the  si5351  chip.   See  chapter 7/page 23 
(“Register Map Summary") at 
https://cdn-shop.adafruit.com/datasheets/Si5351.pdf.  Each raw 
property in the OpenCPI si5351.xml corresponds to a line in the datasheet table 
there.

Finally, for a further understanding of subdevices, take a look at lime_spi (in 
hdl/devices/lime_spi.hdl), which is a subdevice that handles raw property 
accesses and low level SPI functionality.  It supports the lime tx/rx devices, which 
means that the lime tx/rx devices can delegate their raw property accesses to the 
lime_spi subdevice.

5.5.4.1 Using RawProp Ports with SubDevices

The example below defines a subdevice with no control interface (no properties or 
control operations), driving two signals that are an I2C interface, and supporting a 
si5351 clock generator device worker via a rawprop worker port (defined below).  It is 
declaring that if that device is present, it should also be present and be connected to 
that device worker via the rawprop port.  By including this subdevice in a board 
description file (in the platform's OWD a card's spec file), it will be associated on this 
board with the si5351 device worker.

<HdlDevice language="vhdl">
  <componentspec nocontrol='true'>
  <rawprop/>
  <supports worker='si5351'>
    <connect port="rawprops" to="rawprops"/>
  </supports>
  <Signal name='sda' direction='inout'/>
  <Signal name='scl' direction='inout'/>
</HdlDevice>

The most common connection between a device worker and a subdevice that supports 
it is the rawprop connection that enables a device worker to delegate some or all of its 
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raw property accesses to the subdevice.  The device worker declares a rawprop 
master port for this delegation, and the subdevice declares an array of one or more a 
rawprop slave ports to support device workers this way.  This type of connection is 
common when there is a shared control path like SPI or I2C to access the registers of 
several devices' properties.

The rawprop port has a bundle (VHDL record) of signals that is identical to the raw 
signals defined in the Raw Access to Properties section of the OpenCPI HDL 
Development Guide.  This record is called raw in both the control interface signals 
(props_in.raw, props_out.raw) as well as the rawprop port signals 
(rawprops_in.raw and raw_props_out.raw).

A rawprop worker port consists of a VHDL record of signals that allow a device worker 
to easily delegate all of its raw property accesses to the subdevice, using this VHDL:

rawprops_out.present     <= '1';
rawprops_out.reset       <= ctl_in.reset;
rawprops_out.raw         <= props_in.raw;
props_out.raw            <= rawprops_in.raw;

The present signal tells the subdevice that there is a connection to a device worker.  
The reset signal tells the subdevice that this device worker is being reset, and the raw
subrecord is conveying the raw property signals between the device worker and the 
subdevice.  In the subdevice, the rawprop port may be an array port (with count 
attribute > 1) when the subdevice worker is supporting multiple device workers.

5.5.4.2 Using DevSignal Ports with SubDevices

When the rawprop connection is not sufficient for all of the shared functionality in the 
subdevice (raw properties, presence and shared control reset), another type of 
connection is used, which is a customized set of signals.  This is called a devsignal 
port.  The port is declared for both the device worker (or platform worker in some cases)
and the subdevice worker using devsignal element.

The devsignal element declares the port and has four attributes: name, master, 
signals and count.  The optional name attribute provides a port name, with the 
default being "dev".  The boolean master attribute defines a master/slave role for the 
port, which is used relative to signal directions.  The signals attribute is the name of a 
file containing a top-level signals element , containing signal definitions for this port.  
The direction of the signals declared in the file are relative to the master port.  Here is 
an example signals file (named mydevsignals.xml):

<signals>
  <signal name='DATA_CLK_P' direction='in'/>
  <signal name='DATA_CLK_N' direction='in'/>
  <signal name='SYNC_IN' direction='out'/>
  <signal name='ENABLE' direction='out'/>
</signals>
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The master port (usually the device worker) would drive the SYNC_IN and ENABLE 
signals as outputs, and the slave port (usually the subdevice) would receive them as 
inputs.  The port declaration in the OWD of the device workers would be:

<devsignal master='true' signals='mydevsignals'/>

Since the signals are common to both ports, they are in their own file, usually in the 
specs directory of the component library containing both device and subdevice workers
(usually hdl/devices/specs).  Since the purpose of the subdevice is normally to 
share/multiplex output signals among more than one device worker, the subdevice's 
port declaration normally includes a count to indicate that the port is actually an array of 
identical ports.  So the subdevice port declaration would be something like:

<devsignal signals='mydevsignals' count='2'/>

As with the rawprops examples above, the connection of these ports is indicated by the 
supports element and its connect child element.

5.5.5 Testing Device Workers with Emulators

A device worker may specify that it is actually a device emulator that emulates a device 
for test purposes.  Thus while a normal device worker supports and controls a device by
driving and receiving signals from the device (via FPGA pins), the emulator acts like the
device.  So if the device has a reset input pin, the normal device worker will drive that 
reset signal as an output of the device worker, into the actual device.  The emulator for 
the device will have that reset signal as an input signal.

We discuss this relationship such that:

 We use “emulator” to mean “emulator worker”, which is a special type of device 
worker (much like a platform worker is a special type of device worker).

 The device worker supports a device, and may have an associated emulator, 
which is its emulator.

 The emulator emulates a device which has a device worker, which is its device 
worker.

There is nothing about emulators that restricts them to running only in simulators, so 
when it is useful, they can be written to be synthesizable and executed in hardware.

5.5.5.1 Emulator Signals, Ports and Properties

Emulators establish this relationship with a top level emulate attribute whose value is 
the name of the device worker for the device it emulates.  An emulator automatically 
inherits the signals from its device worker, with the directions reversed.  Thus no 
signal elements need be defined in an emulator's OWD.

Similarly, for non-data, non-control ports (usually rawprop or devsignals ports), the 
emulator has the same ports defined, with the same name, with the opposite master 
attribute value.  I.e. when the device worker is a master of such a port, the emulator is a
slave.  The emulator has its own control port, and may have its own data ports. 
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Finally, the emulator also inherits all the parameter and writable properties of its device 
worker so that when used, it sees the same parameter and property values that its 
device worker sees.  It can then emulate accordingly.  It can have its own additional 
properties of course, but it cannot have parameters with multiple values.  its build 
configurations are the same as its device worker's build configurations.

When testing a device worker with its emulator both the emulator and the device worker
are instantiated, their signals are connected, and the non-control, non-data ports are 
connected between them.  Thus they form a test unit (UUT) where each has its own 
control port, and each may have its own data ports.

5.5.5.2 Emulator Worker OWD XML Files

An emulator's OWD references the OCS for all emulators, emulator-spec, using its 
spec attribute.  It identifies its device worker using the emulate attribute, whose value 
must include the .hdl model suffix.  An emulator must have a control interface so it 
cannot set the nocontrol attribute to true.

An example emulator OWD is:
<HdlDevice emulator='mydevice.hdl' spec='emulator-spec'>
  <property name='errorcount' volatile='true'/>
  <streaminterface name='tracedata' producer='1'/>
</HdlDevice>

This OWD says that the emulator will have a volatile property errorcount to report the
number of errors encountered while observing its device worker's behavior.  This 
property is in addition to all its device worker's parameters and writable properties that 
are automatically inherited.

The streaminterface element is directly introducing a data output port even though 
there is no such port in the OCS, since emulators are not required to have such ports.  

The “results” of running the emulator would be the errorcount property's value and 
the data produced at its tracedata output port.

An emulator OWD has these restrictions when compared to a normal device worker:

 It must implement/reference the emulator-spec (via spec attribute)

 It must reference its device worker via the emulate attribute

 It cannot have any property whose name conflicts with any parameter or writable 
property of its device worker.

 It cannot have any data port whose name conflicts with any of its device worker's 
ports.

 It cannot have any signals (it will inherit its device worker's signals)

5.5.5.3 Using an Emulator for Device Worker Unit Testing

The OpenCPI unit test framework described in the OpenCPI Component 
Development document also applies to testing device workers.  When a test directory 
is defined for a device worker (using the ocpidev create test command), 
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OpenCPI expects to find an emulator worker in the same component library and will 
instantiate and connect it next to the device worker in all test assemblies.

All the testing then proceeds the same as testing application workers with these 
additions:

 The final values for the emulator's own properties is also available to verification 
scripts.

 Data input ports of the emulator must be supplied with data with input files or 
generator scripts.

 Data output ports on the emulator will captured and available to verification scripts.

Essentially the UUT becomes the combination of a device worker and its emulator.

If the emulator is written to be synthesizable, test execution can include hardware 
platforms as well as simulator platforms.

n the container as “floating” devices (devices which have not been declared as existing 
on the platform).

5.5.5.4 Using an Emulator in Containers without the Unit Test Framework.

When a more complex testing configuration is needed beyond the “one device worker 
with its emulator” scenario describe above, it can be done by instantiating device 
workers and emulators directly in a container using the “floating device” feature.

Floating devices are simply those that are not really part of the platform being targeted 
(usually simulators in this case), but are devices instantiated and connected directly to 
their emulators.  This allows for test configurations that combine device workers, 
subdevice workers, and emulators in various ways.

An example container XML file that uses emulators is:
<HdlContainer platform='isim'>
   <device worker='lime_spi_em' floating='1'/>
   <device worker='lime_spi' floating='1'/>
   <device worker='lime_tx' floating='1'/>
   <device worker='lime_tx_em' floating='1'/>
</HdlContainer>

This example instantiates two device workers (lime_spi and lime_tx) as well as their 
emulators.  The emulators are automatically wired up with the device workers then are 
emulating.  They all use the floating attribute since they are not defined as existing 
on the isim platform.

[Preliminary feature with limited support]

5.5.6 Higher-level Endpoint Proxies Suitable for Applications

[Preliminary feature with no specific support]

As discussed above, we use device proxies to normalize the behavior of a class of 
devices.  The granularity of such classes is sometimes below the level appropriate for 
applications, but is optimal for sharing, reuse, and rapid enablement of new platforms.
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An example of fine granularity is a clock generator chip.  There are many such chips, 
and device workers are written for them.  They should all act the same, in terms of how 
they are set up and programmed, usually using a device proxy.  When users or 
applications want access to a clock generator device, they should be able to use it the 
same way as any other clock generator device.

However, clock generator chips are also frequently used to drive other devices to a 
specific clock (e.g. sampling) frequency, and there may be some specific relationship on
a given platform or card between specific clock generator chips and the devices they 
provide clocking too.

So, in addition to device proxies that are defined for the granularity of individual devices,
that have device workers, OpenCPI also defines specifications for some higher level 
proxies called Endpoint Proxies, for presenting a collection of devices to applications 
as something to connect and configure within the application.  The purpose of higher 
level Endpoint Proxies is to remove all device specifics from applications, rather than 
simply normalize the behavior of a device to its class.  Applications and users want to 
see standard, portable interfaces for endpoints (e.g. sources and sinks of radio data).  
Endpoint proxies make that possible.

Endpoint proxies are simply proxies that typically have multiple slaves, which 
themselves are probably device proxies, or in some cases device workers.

As with subdevices at the bottom of the OpenCPI “device support” stack, endpoint 
proxies are at the top of the “device support” stack, appropriate for use by applications. 
But both may internally be somewhat platform specific.  Both exist to “leave the device 
workers alone” so that they are reusable across platforms and cards.

[Insert diagram for “stack”]

Applications use endpoint proxies by instantiating a component of an endpoint proxy 
spec.  A good example of a class of endpoint proxies is a “radio front end” (as defined 
by the RedHawk system or GNU Radio), or a “transceiver subsystem” as defined in the 
Wireless Innovation Forum, or the “RF Chain” as defined in the JTRS MHAL 
specification.  Since OpenCPI is not a software radio framework as such, an endpoint 
proxy can represent any application-level subsystem or source or sink of data.

5.5.7 XML Metadata for Device Workers/Subdevices/DeviceProxies/EndpointProxies

The three types of workers that relate to device support in OpenCPI are:

 Device Workers

 Device Proxies

 Subdevices

All these are workers and share the XML structure of workers via the OWD for ports and
properties.

Device workers use the normal top-level spec attribute to identify the class of the 
device.  Device workers and subdevice workers use the HdlDevice top level XML tag, 
have signal elements for hardware signals, and may have rawprop and devsignal 
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ports to connect device workers to subdevice workers.  If a device worker uses a 
subdevice worker, it may in fact have no signal elements.

Subdevice workers have supports child elements describing which device workers 
they support and how they are connected to them.

Device proxies have a top-level slave attribute identifying which worker they are a 
proxy for.  The name should include the authoring model suffix, such as:

slave='adc-chip123.hdl'

The signal elements in the OWD for devices and subdevices are as described above 
for platform workers in Signal Declaration XML Elements.

5.5.7.1 RawProp XML Elements for Device Workers and Subdevice Workers

The rawprop child element identifies a port of the worker that extends the raw property 
signals from a device worker to a subdevice worker.  It may be an array port.  Its 
attributes (all optional) are:

Name — The name of the port  (default is rawprops)

Optional — Indicates if a connection to this port is not required (default false).  
Normally true on subdevices supporting multiple optional devices.

Count —  Indicates if > 1 that this is an array of raw property ports (default is 1).  
Normally only specified on a subdevice supporting multiple devices.

Master — Boolean Indicating who generates addresses for raw accesses (usually 
the device worker sets it true).

The port is an array port if count is specified greater than 1 or if the count attribute
value is an expression based on parameter values.

5.5.7.2 DevSignal XML Elements for Device Workers and Subdevice Workers

This XML element represents a custom signal bundle that is connected between device 
workers and subdevices.  It has these attributes:

Name — the name of the port (the default is dev).

Optional — whether this port must be connected or not.

Count — indicates an array of similar ports with the same signals (when > 1)

Signals — indicates a file containing a top level signals element consisting of 
signal child elements.  The .xml suffix is not required in the attribute.

The file indicated by the signals attribute enumerates the signals in the bundle, 
similar to the signal elements in a device worker's OWD.
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5.5.7.3 The Supports XML Element for Subdevices.

Subdevices indicate which device workers they support by using supports XML 
elements.  To indicate how they are connected to a device worker they support, they 
specify connect child elements within the supports elements, e.g.:

  <supports worker='lime_dac'>
    <connect port='rawprops' to='rawprops' index='1'/>
    <connect port='dev' to='dev' index='1'/>
  </supports>
  <supports worker='lime_adc'>
    <connect port='rawprops' to='rawprops' index='0'/>
    <connect port='dev' to='dev' index='0'/>
  </supports>

The attributes of the supports element are:

worker —  the name of  the device worker it supports

index — identifies which device of that type (on the platform or card) is being 
supported by the subdevice via this supports element

The attributes of the “connect” child element of the “supports” element are:

port — the port on this subdevice that should be connected

to — the port on the supported device worker that should be connected

index — index into the subdevice's port array (when its count attribute is > 1).

It is possible that different instances of the same device on a platform or card are 
supported by entirely different subdevices or by a single subdevice.

5.5.8 Associating Device Workers and Subdevice Workers with Platforms and Cards.

Both device workers and subdevice workers are enumerated in the XML description of a
platform or card using the device child element and the worker attribute.  This 
declares the existence of the device on the platform or card as well as the device 
worker that is used.  The order of these elements defines the ordinals of the devices 
when multiple instances of the same device are present.

The presence of subdevice workers in this declared list makes them available to support
any devices that are used in a platform configuration or container.  When a device is 
used (instantiated based on the platform configuration XML or the container XML), any 
subdevices that exist on the platform that support the device will also be instanced and 
connected.

5.5.9 Summary of Worker Types for Supporting HDL Devices

Device Workers directly control and attach to physical devices, as “device drivers”, and
generally implement the data sheet for the device, providing access and visibility to the 
device's native registers and capabilities.
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Subdevice Workers enable multiple device workers to share some underlying 
hardware, like shared resets, shared SPI or I2C busses.  They also allow workers to 
stay portable when low level modules differ by platform or card.

Proxy Workers (for device workers) provide a higher level and more generic interface 
to make the device look more like others in its class, providing more user and software 
friendly access and visibility to the devices capabilities.

Emulator workers are used to test device workers by providing the mirror image of the 
device worker's external signals so they can emulate the device in simulation.

OpenCPI Platform Development Guide Page 78 of 80



5.6 Defining Cards Containing Devices that Plug into Slots of Platforms

A card is specified in a card definition XML file initially created using the ocpidev 
create hdl card <cardname> command, which creates the file <cardname>.xml
file in the hdl/cards/specs directory.  This file has a top-level card XML element 
with a required type attribute, and contains device elements.

The type attribute is the slot type and must match the name of a defined slot type.

The device elements declare device instances on the card, and act the same as 
device elements in platform XML files except for one thing.  In both platform XML and 
card XML files the signal child elements of device elements indicate a mapping 
between device worker signals and platform or card-level signals.  Whereas the signal 
mapping on platforms use the platform attribute for the platform/card-level signal 
name, in card definition files, the card attribute is used.  This makes it clear that in the 
case of cards, you are mapping a device worker's signal to a card signal.

Card signal names are derived from the slot type's signals.  Thus each device instance 
is essentially wired to slot pins.

Here is example of a simple card definition file with one device.  It has one required 
parameter property setting (use_ctl_clk), one device signal that is not available on 
the card (tx_clk) and some other signals mapped to card signals that are derived from
the slot type: 

<card type='fmc_lpc'/>
  <device worker='lime_dac'>
    <property name='use_ctl_clk' value='true'/>
    <Signal name="tx_clk"    slot=''/>
    <Signal name='tx_clk_in' slot='LA04_N'/>
    <Signal name="tx_iq_sel" slot='LA29_N'/>
    <Signal name="txd(0)"    slot='LA25_N'/>
    <Signal name="txd(1)"    slot='LA25_P'/>
    <Signal name="txd(2)"    slot='LA22_N'/>
    <Signal name="txd(3)"    slot='LA22_P'/>
    <Signal name="txd(4)"    slot='LA20_N'/>
    <Signal name="txd(5)"    slot='LA20_P'/>
    <Signal name="txd(6)"    slot='LA16_N'/>
    <Signal name="txd(7)"    slot='LA16_P'/>
    <Signal name="txd(8)"    slot='LA12_N'/>
    <Signal name="txd(9)"    slot='LA12_P'/>
    <Signal name="txd(10)"   slot='LA08_N'/>
    <Signal name="txd(11)"   slot='LA08_P'/>
  </device>
</card>
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6 Glossary
Application – In this context of Component-Based Development (CBD), an application 
is a composition or assembly of components that as a whole perform some useful 
function.  The term “application” can also be an adjective to distinguish functions or 
code from “infrastructure” to support the execution of component-based application.  I.e.
software/gateware is either “application” or “infrastructure”.

Configuration Properties – Named scalar values of a worker that may be read or 
written by control software. Their values indicate or control aspects of the worker’s 
operation. Reading and writing these property values may or may not have side effects 
on the operation of the worker. Configuration properties with side effects can be used 
for custom worker control. Each worker may have its own, possibly unique, set of 
configuration properties. They may include hardware resource such registers, memory, 
and state.

Control Operations – A fixed set of control operations that every worker has. The 
control aspect is a common control model that allows all workers to be managed without
having to customize the management infrastructure software for each worker, while the 
aforementioned configuration properties are used to specialize components.

Infrastructure – Software/gateware is either application of or infrastructure.

Worker – A concrete implementation (and possibly runtime instance) of a component, 
written according to an authoring model.

Authoring Model – A set of metadata and language rules and interfaces for writing a 

[Incomplete]
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