
OpenCPI
Installation Guide

OpenCPI Installation Guide Page 1 of 43

Revision History

Revision Description of Change Date

1.0 Creation 2014-06-23

1.01 Add all FPGA and embedded system (Zed) content 2014-07-07

1.02 Update details for CentOS6 and Zed 2015-01-31

1.03 Update new simplified ZedBoard Installation 2015-02-27

1.1 Add ML605 details, change to use new/std doc template, bug fixes 2015-06-26

1.2 Add system.xml details 2016-05-18

1.3 Minor update for 2017.Q2 2017-09-07

1,4 Update for 2018.Q3, simplified CentOS and ZedBoard installation 2018-08-27

1.5 Update for 1.5 2019-04-30

OpenCPI Installation Guide Page 2 of 43

Table of Contents

1 References..4

2 Overview..5

3 Installing OpenCPI on Development Hosts...6

3.1 Installing the Hardware and OS for OpenCPI Development...7

3.1.1 Obtaining the CD Image File for the OS Installaion..7

3.1.2 Booing from, and Running the Installaion CD/Image...8

3.1.3 Enabling Your User for “sudo” and Installing “git”..11

3.1.4 Summary of CentOS6/7 Installaion Steps Prior to Installing OpenCPI...................................12

3.2 Obtaining the OpenCPI Code Base..13

3.3 The Single Command Installaion Process...15

3.3.1 Installing Required Standard Sotware Packages for OpenCPI..16

3.3.2 Installing Prerequisite Packages for OpenCPI..16

3.3.3 Building the OpenCPI Framework and its Built-in Projects...17

3.3.4 Tesing the Sotware Aspects of the Installaion...17

3.4 Coniguring your Environment to Run OpenCPI...18

4 Embedded Systems as Target Hosts...21

4.1 The Digilent ZedBoard with Xilinx Zynq SoC Processor..23

4.1.1 Establishing the Cross-Building Environment for OpenCPI targeing Zynq..............................23

4.1.2 Creaing and Populaing a Directory to Create a Bootable SD Card..26

4.1.3 Seing Up the ZedBoard Hardware to Run OpenCPI..29

5 FPGA Plaforms Based on PCI Express Cards..35

5.1 Installaion of PCI Express-based FPGA Cards..36

5.1.1 Ensure Suicient Power and Cooling for the Card..36

5.1.2 Conigure any Required Jumpers and/or Switches on the Card..36

5.1.3 Enable Bitstream Loading, and JTAG Access...37

5.1.4 Plug in the Card and Power up the System...37

5.1.5 Load an OpenCPI Bitstream into the Power-up Flash Memory on the Card...........................38

5.1.6 Reboot the System and Test OpenCPI's Ability to See the Card..38

5.2 Xilinx ML605 PCI-Express Card as an OpenCPI HDL Plaform...39

5.2.1 Hardware Setup for ML605..39

5.3 Altera ALST4 PCI-Express Card as an OpenCPI HDL Plaform...40

5.4 Altera ALST4X PCI-Express Card as an OpenCPI HDL Plaform...41

6 FPGA Simulaion Plaforms..42

6.1 Modelsim..42

6.2 Xilinx Isim...43

6.3 Xilinx xsim...43

OpenCPI Installation Guide Page 3 of 43

1 References

This document assumes a basic understanding of the Linux command line (or “shell”)
environment. It does not require a working knowledge of OpenCPI, although if anything
goes wrong with the installation, more experience with OpenCPI may be required. The
reference below is an overview of OpenCPI and may prove useful.

Title Published By Link

OpenCPI Overview OpenCPI

Public URL:
https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI_O

verview.pdff

OpenCPI Installation Guide Page 4 of 43

https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Overview.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Overview.pdf
http://github.com/opencpi/opencpi

2 Overview

This document describes how to install OpenCPI from the source code repository. The
installation is in layers that are mostly optional depending on which platforms are being
used. The core installation is the development “host” that allows both for local software-
based execution of OpenCPI applications and components, as well as cross-building for
other platforms.

This document does not describe installation of OpenCPI based on packaged binary
distributions, e.g. from CentOS or RedHat RPM packages. That is described in other
documents at https:://opencpi.github.io.

The default installation platform for OpenCPI development hosts is CentOS7 Linux
x86_64 (64-bit). Other Linux variants and 32-bit systems have been used successfully,
but CentOS7 64-bit is the default, tested, installation for a development host.
Development hosts can either be actual physical systems or virtual machine
installations.

Additional installation options exist for other target processors and technologies such as
the Xilinx Zynq SoC (with ARM processor cores and FPGA resources), and various
FPGAs. For embedded CPUs, preference is given to cross-building when possible,
rather than self-hosting development tools on such platforms, in order to limit the
complexities of installing tools on different development hosts.

This document is divided into sections for different classes of target platforms:

 Development hosts (virtual and physical)

 Embedded CPUs

 FPGA platforms.

 GPU platforms

In each section, when appropriate, the physical/electrical installation issues will be
addressed as well as issues for installing any required tools on the development host.

A final section lists specific reference platforms that are commonly used and frequently
tested.

In several sections it is noted that certain features are “roadmap items”. This means
that the need for the feature is clear and recognized, and it is on the list of features to be
implemented in some future release.

OpenCPI Installation Guide Page 5 of 43

file:///data/jenkins_2tb/jenkins_workspaces/Job_1_v1.5.0gh@3/doc/odt/https::%2F%2Fopencpi.github.io

3 Installing OpenCPI on Development Hosts

The basic installation on (Linux) development host systems enables the development
and execution of OpenCPI components and applications on the development host itself
(called native execution). It also establishes the host platform for the tools that enable
development for other target platforms, including embedded CPUs, FPGAs, and GPUs.

The installation process takes these steps, in three phases:

Phase 1: Hardware and OS installation

1. Installing the hardware or creating a bare virtual machine.

2. Installing and configuring the operating system from CD or CD image file.

3. Updating the operating system to the latest patch level, and enable “sudo”.

At this this point we have a basic up-to-date OS installation. There are many
ways to get here, but we outline a basic approach that works on CentOS6
and CentOS7. If your system is already installed, this phase is not needed.

Phase 2: Download OpenCPI sources, and install prerequisite software packages.

4. Install the “git” software package, and use it to download the OpenCPI
source distribution. [roadmap item: officially support installation without git]

5. Install standard required packages using the package update and installation
tools of the operating system distribution.

6. Configure the (non-default aspects of) the OpenCPI environment.

7. Install and build some prerequisite packages that need special OpenCPI-
supplied installation scripts.

At this point we have installed all prerequisites and have a clone/copy of the
OpenCPI code tree on our OS installation.

Phase 3: Build and test OpenCPI

8. Build OpenCPI's core tools, libraries, components and example applications.

9. Execute some tests to verify that the installation is working.

These steps result in a development system with tools and runtime software ready to
support development and native execution (on the development system) of OpenCPI
components and applications. In most cases, steps 5 through 9 can be done with a
single command.

This installation process is based on source code that is downloaded and built on the
development host. Other prebuilt/binary installations are available at
http://opencpi.github.io.

The following section describes phase 1: Installing the Hardware and OS for
OpenCPI Development. Subsequent sections describe phase 2: Obtaining and
Configuring OpenCPI and Prerequisites, and phase 3: Building OpenCPI and
Testing Native Execution. For other target systems and platforms see the sections on
embedded systems and FPGA platforms.

OpenCPI Installation Guide Page 6 of 43

http://opencpi.github.io/

3.1 Installing the Hardware and OS for OpenCPI Development

The quick description of this OS installation section is: install CentOS6 or
CentOS7 with the “git” software installed and your user id enabled for “sudo”.

This step is only necessary if you are installing the OS from scratch. If your OS is
already installed and up to date, your account is already sudo-enabled, and the git

command is available on your system, you can skip to the Obtaining the OpenCPI
Code Base and Installing Prerequisites section below.

To just deal with the sudo and git issues on an installed OS, skip to: Enabling Your

User for “sudo” and Installing “git”

Since a development host has no special hardware requirements, it must simply support
the recommended and supported development host operating systems (currently
CentOS7 Linux 64-bit). Some development tools (especially those for FPGAs) require
large memories and exploit multiple CPU cores and thus the minimum memory should
be at least 8GB, with 16GB or more preferred. For test purposes, VMs with 2GB have
been successful, but slow.

If the development host system will also host other embedded CPU or FPGA cards
acting as OpenCPI target platforms, the appropriate slots, cooling and power supplies
should be considered.

If the development host will also be the runtime host for ethernet-attached devices (such
as the Ettus N210), it is sometimes useful to use dedicated ethernet ports for such
devices. In this case a host system with multiple ethernet ports/interfaces should be
considered. This minimizes interference between Ethernet traffic to the locally-attached
platforms, and general LAN or WAN/Internet traffic.

OpenCPI development is commonly hosted on laptops, server machines with card slots,
and virtual machines hosted on other operating systems. One example system is a
CentOS7 64-bit virtual machine running under the “Parallels” virtual machine system on
Apple MacBook Pro laptops. Another is a Dell server with well-powered PCI Express
slots for hosting a number of FPGA and/or GPU boards.

3.1.1 Obtaining the CD Image File for the OS Installation

The normal operating system installation starts with a CD image downloaded from
centos.org (or one of its mirrors). Two examples of CentOS installations are

described here. Many installation scenarios are possible.

For a physical system, you can burn this CD image file (a.k.a. ISO file) onto a real
CD/DVD, and then boot from that physical CD/DVD. For a virtual machine, you can
usually designate that the CD/DVD image file be mounted to the virtual machine as a
virtual CD/DVD device.

Creating a virtual machine usually involves answering a few questions about the to-be-
created VM, and then booting it from the Installation CD/DVD image file. For most VM
systems, the most import questions to answer are the amount of memory to give to the
VM, and the number of cores to provide. Each VM system does it slightly differently.

OpenCPI Installation Guide Page 7 of 43

Booting the development host system from the CD or CD image file proceeds the same
whether it is a physical system or a VM.

For the case of using the Parallels VM system on Macs we select “customize
settings before installation”, and set memory at 4GB and 2 cores/CPUs.

3.1.1.1 CentOS6: with the Live CD Installation Image (CentOS7 is below)

The CD image for CentOS6, for the “live CD” installation, is currently available from a
mirror on this site:

http://isoredirect.centos.org/centos/6/isos/x86_64/

The trailing slash is required in the above URL. The actual file name to download is:

CentOS-6.7-x86_64-LiveCD.iso

The md5sum.txt file in the same directory provides the md5 checksum for the file to

check against after downloading using the md5 command (on MacOS) or the md5sum

command on Linux:

% md5sum CentOS-6.7-x86_64-LiveCD.iso
339b607c497fe6b524da36803420ca61 CentOS-6.7-x86_64-LiveCD.iso

This installation, when booted from the CD image, runs Linux itself, with a desktop
environment, that can then be used to install your system.

3.1.1.2 CentOS7: with the Minimal CD Installation Image

The CD image for the minimal CentOS7 installation is available from mirrors at:

http://isoredirect.centos.org/centos/7/isos/x86_64/

The trailing slash is required in the above URL. The actual file name to download is:

CentOS-7-x86_64-Minimal.iso

This installation is suitable for command-line only (no GUI) headless systems, and
booting from the CD (image) immediately runs the installer. Other CensOS7 installation
images are available with more packages preinstalled on the image.

3.1.2 Booting from, and Running the Installation CD/Image

3.1.2.1 CentOS6 with Live CD Image

The Live CD/DVD boot-up comes up as a CentOS6 system hosted on the CD itself, and
there is an icon on the desktop called “Install to Hard Drive”, which installs the CentOS6
OS on the hard drive (or virtualized HD for a VM). Double-clicking on this “Install to
Hard Drive” icon will start the generic CentOS6 installation process: see the figure
below.

OpenCPI Installation Guide Page 8 of 43

Figure 1: CentOS6 Installation Screen after booting from Installation CD

The “Install to Hard Drive” will then ask questions about:

 the keyboard language (we chose English (United States))

 storage device types (we chose Basic Storage Devices)

 whether to discard the HD contents (we answer Yes, discard any data)

 the network host name of the system (we chose livecd.centos.6.7)

 timezone

 root password

 whether to “use all space” on the HD (we chose “Use All Space”)

Finally, select “write changes to disk” to make the HD installation complete.

OpenCPI Installation Guide Page 9 of 43

This results in the (possibly virtual) HD-based system having a CentOS6 installation
with the screen as follows:

Figure 2: Screen after Installation to HD from CD or CD Image File

Pressing “Close” at this screen exits the initial CD-to-HD installation process. You
should now:

 Remove/eject the installation CD/CD-image to ensure it is not used on the reboot.

 Reboot using the “System->Shut Down...” menu item, and choose the “Restart”
option.

This will result in your new HD-based CentOS6 installation booting for the first time, and
asking more installation questions like:

 License agreement (agree)

 Create User

In certain NFS mounting scenarios it is useful to create a user with the same
user-id number and group-id number as the host system you will use as an
NFS server. In this case select the “Advanced...” button in the CreateUser
screen and create the user there.

 Date and Time (use NTP or set manually)

 Kdump (disable in most cases)

At this point you can log in as the newly created user.

OpenCPI Installation Guide Page 10 of 43

3.1.2.2 Performing Software Update on the New CentOS6 Installation

Assuming you have a good internet connection, you should update your software using
the “System->Administration->Software Update” menu item, and, assuming there are
updates, the “Install Updates” button. You should repeat this process until there are no
updates to install since there can be dependencies that require more than one
“Software Update”. When there are no more updates, you should restart again using
“System->Shut Down...->Restart”

After restarting it is conceivable that there are more updates, so you should try
“Software Update” one more time to verify there are no more updates.

At this point you have a fully updated (for the default set of software packages)
CentOS6 system. If you are on a VM system with support for “snapshots”, you should
probably take one at this point.

3.1.2.3 CentOS7 with Minimal CD Image

When this image boots it immediately runs an installer that asks for things like
language, and root password. It is better to not create users at this point, but to simply
run the installer. When the installed system boots, it is in command line (shell) mode.
At this point you must at least enable the network interface, if not done during the
installer, using the nmtui tool (the default network interface is eth0), and then update

your system using the

yum update

command. To ensure you are up to date, you must reboot (using the reboot

command) after yum update, and then, after the reboot, run yum update again, and

repeat this process until it says there are no updates.

On the command line you can add users, using the simple adduser command. An

example would be:

adduser -m -N -r -u 501 -g 20 user1

You only need to specify the user and group ids if you are trying to match them to an
existing installation for convenient NFS mounting. Otherwise you can simply use:

adduser -m user1

This would use default behavior to create the account and home directory.

3.1.3 Enabling Your User for “sudo” and Installing “git”

A number of scripts supplied by OpenCPI require that the user be enabled for the “sudo”
command. You should add your user account to the list of accounts that are allowed to
use “sudo”. For CentOS6 Linux, this can be accomplished in a terminal window (from
Applications->System Tools->Terminal). On the CentOS7 minimal installation you are
already at the command line. With <RootPasswd> and <User> being replaced by your
root password and your user name, do:

OpenCPI Installation Guide Page 11 of 43

% su
Password: <RootPasswd>
echo <User> ALL = ALL >> /etc/sudoers
exit
%

The “% “ and “# “ are just command prompts: you don't type them. Be careful to use
the two “>>” characters to append the line to the file. Of course if you are experienced
with Linux, you may do this many other ways.

OpenCPI has several software prerequisites, but only one of them is required to be
installed before the OpenCPI code base is installed: git. The git program is used to

download a local copy of the code base, and after that, a script in the code base is used
to finish the installation of OpenCPI. To obtain git, the following command should be

issued at the command prompt in the terminal window:

% sudo yum -y install git

This ensures that you have the git package installed on your system so that you can

use the git command. Git is the distributed revision control system used by

OpenCPI. We will only use a few git features and commands for installation.

3.1.4 Summary of CentOS6/7 Installation Steps Prior to Installing OpenCPI

 Download the CentOS CD image file, and check the md5 digest.

 For physical systems, burn a CD from that file.

 Boot the physical or VM system from the CD or CD image file.

 Run the installer using the “Install to HardDrive” icon and answer questions.

 Boot your newly installed system and answer more questions.

 Upgrade the software repeatedly until there are no more updates available.

 Enable your user ID for the sudo command.

 Install the git configuration management software.

You now have an installed, up-to-date operating system, with a user account that is
sudo-enabled and the git software configuration management package installed.

OpenCPI Installation Guide Page 12 of 43

3.2 Obtaining the OpenCPI Code Base

Assuming you are in a terminal window, in the directory where the codebase should go
(in a subdirectory named opencpi, which the following command will create), type:

% git clone https://github.com/opencpi/opencpi.git

This will create an opencpi subdirectory and populated it with the current OpenCPI

code base: i.e., a “git clone” of the code base that can be easily updated in the future.
You should change into this directory for further commands:

% cd opencpi

By default, the git clone operation downloads the “latest and greatest” or “bleeding

edge” version of the code. This may or may not be what you want. After downloading,
if you want a specific, perhaps more stable release, you use the git tag command to

list the tagged releases available, then set the code base to the one you want, using
git checkout, with the release tag (as listed by git tag) as an argument.

The OpenCPI source code releases are tagged with the following format:

OpenCPI-<year>.Q<quarter>-v<major>.<minor>.<patch>

E.g. a recent release was:

OpenCPI-2018.Q4-v1.4.0

The release compatibility policy is to maintain component binary compatibility between
patch releases within the minor release, and source compatibility (requiring rebuilding)
for new minor releases within the major release. Patch releases within a minor release
still require rebuilding OpenCPI itself since the distribution is source-based. Early
releases of a next minor release are identified with minor releases starting with “rc” for
“release candidate”, e.g.:

OpenCPI-2019.Q2-v.1.5.0.rc0

To set the release of the codebase after you have downloaded, you use the git

checkout command with the release tag as an argument:

% git checkout OpenCPI-2018.Q4.v1.4.0

This will result in some messages about “detached HEAD”, which can be ignored unless
you are modifying OpenCPI itself, rather than just using it for component or application
development. To do development on OpenCPI itself, and potentially submit patches,
etc., you need to know more about git. To simply return the codebase to be the latest

version, you can do that by using master as the tag (this is not recommended for those

not interested in developing OpenCPI itself):

% git checkout master

Whenever you check out a different tag after any building activity, you should perform a
clean operation on the code base:

% make cleaneverything

OpenCPI Installation Guide Page 13 of 43

Summary of Steps to Prepare the OpenCPI Code Base:

% git clone https://github.com/opencpi/opencpi.git
% cd opencpi
% git tag
% git checkout OpenCPI-2018.Q4.v1.4.0 # use tag from git tag output

You now have an OpenCPI source tree configured (checked out) for a specific tagged
version of OpenCPI.

OpenCPI Installation Guide Page 14 of 43

3.3 The Single Command Installation Process

After the above steps to obtain the code base (git clone and cd to the opencpi

subdirectory), you are in the top-level directory of the source distribution (a.k.a. the git
clone). At this point one command can be used to perform the rest of the installation,
including running some tests to ensure that the installation is working. This command
is:

./scripts/install-opencpi.sh [<sw-platform>]

The optional argument is a software platform that the installation process should target.
The default software platform is the one you are running on. This <sw-platform>

option is typically used for embedded, cross-compiled platforms like xilinx13_4 for

the Zynq/Arm SoC-based systems.

During the several phases of this script, it will perform some tests that require the user
to enter the sudo password, unfortunately requiring monitoring of the process. It is not

recommended nor supported to perform the whole installation under-sudo/as-root.

If this command completes and succeeds, you are ready to use OpenCPI for the
targeted platform and can proceed with the environment setup described in the section
Initializing your Environment for OpenCPI. The rest of this section provides more detail
about how this script performs the installation. After running this script:

You now have an OpenCPI installation built and tested, ready to be used after some
additional environment setup steps. This does not include FPGA tools, code, or
bitstreams, which are installed/built elsewhere.

The following description is for the curious or when the above script fails. If it succeeds
the rest of this section is just a detailed description of what the script does. This script
performs these functions, in order, with each depending on the previous ones:

1. Install standard packages required for OpenCPI development, globally on the
system, from the OS's repository. This is accomplished using the underlying
install-packages.sh script described below. Important examples of such

packages are “make” and “python”. For CentOS or Redhat Linux, this script uses
the yum install command.

2. Build and/or install prerequisite packages for OpenCPI, in an area only used
by this installation of OpenCPI (i.e. sandboxed). This will cross-compile
these packages if necessary for the targeted software platform. The
install-prerequisites.sh script performs this function and is

described below. This usually involves downloading source tarballs for the
package and (cross) building them.

3. Build the OpenCPI framework (libraries and executables) itself. This step
and the following one are accomplished using the build-opencpi.sh

script described below.

4. Build the built-in projects that are part of the OpenCPI source distribution, for
all software assets (RCC workers and ACI applications).

OpenCPI Installation Guide Page 15 of 43

5. For the installation platform (not embedded/cross-compiled platforms), run a
number of tests to verify the installation. This step uses the ocpitest

command.

These underlying steps can be run individually for troubleshooting purposes, but are
otherwise unnecessary. The rest of this section describes them in more detail, but can
be skipped if the install-opencpi.sh script succeeds.

3.3.1 Installing Required Standard Software Packages for OpenCPI

This step (#1 above) uses the underlying script:

scripts/install-packages.sh [<sw-platform>]

Most OS distributions are associated with an internet-based repository of software
packages, and have a way to install packages from that repository. For Redhat and
CentOS Linux systems, the yum command is used to access software packages in the

repository for that OS. Most embedded/cross-compiled OSs do not have such a
repository, but might. When this type of package is installed on your system, it is
globally visible and usable and is not removed when the OpenCPI directory you created
for the installation is removed. In this way this script simply adds standard software to
your system if it not already there.

Since different OSs use different package management systems, this script uses the
appropriate commands for the OS you are running on and adds the packages required
for OpenCPI development. It also uses a list prepared for each software platform as to
which packages are in fact required for OpenCPI development on that platform.

Since installing packages on to your system typically requires sudo privileges, a

password prompt usually happens when this script is run.

3.3.2 Installing Prerequisite Packages for OpenCPI

This step (#2 above) uses the script:

scripts/install-prerequisites.sh [-f] [<sw-platform>]

We use the term prerequisite to be software required by OpenCPI software or its built-
in projects, that must be compiled specifically for OpenCPI, for all software platforms
whether cross-compiled or not. These are built and used specifically for OpenCPI, in
directories inside the OpenCPI installation's file hierarchy and are thus not used nor
visible to other software on the system.

When this script is used for a cross-compiled platform, it first ensures that the
prerequisites are also installed for the development system you are running on. It also
checks whether the targeted software platform has any platform-specific prerequisites
(such as a cross-compiler not otherwise needed), and builds/installs those before
installing the generic prerequisites required for all software platforms.

This script checks for a timestamp indicating that all the prerequisites for a platform
have been built/installed and does not do it again unless the force option (-f) is

specified. It also recognizes when the download for each prerequisite has been done

OpenCPI Installation Guide Page 16 of 43

before and does not re-download software, even if the force option (-f) causes it to be

built/installed again.

Prerequisites are usually downloaded from the internet based on URLs for each
prerequisite. If your organization does not allow this (or is not connected to the
internet), and has a staging server or file share for vetted downloads, some environment
variables can be used to redirect the download process to an alternative local server
instead of the server indicated by the internet URL associated with the prerequisite.
See the environment setup section below for these options.

3.3.3 Building the OpenCPI Framework and its Built-in Projects

This step (#3 and #4 above) uses the script:

scripts/build-opencpi.sh [<sw-platform>]

This building script will build:

 The core software infrastructure libraries, and utility command executables.

 The OpenCPI Linux kernel/device driver

 The software components in libraries in the built-in projects.

 Some example applications in the built-in projects.

This script first builds the OpenCPI framework executables, libraries and drivers, and
then builds the software aspects of the built-in projects for the targeted software
platform. It does not do any HDL (FPGA) building in the built-in projects since that
depends on what FPGA tools may be available, and is thus done manually by users
after installation, based on their environment.

3.3.4 Testing the Software Aspects of the Installation

This step (#5 above) uses the script:

scripts/test-opencpi.sh

It does not test cross-built platforms — only the installation (development) platform.
Thus this step is skipped if the <sw-platform> argument to the top-level installation

script is a cross-built platform. A variety of tests are run. One is to test loading the
kernel driver, which requires sudo privileges and typically prompts for a password.

OpenCPI Installation Guide Page 17 of 43

3.4 Configuring your Environment to Run OpenCPI

To set up your environment as a user of OpenCPI, you must use the
opencpi-setup.sh script that is in the cdk subdirectory. OpenCPI currently only

supports the "bash" shell. There are two ways to perform this setup step:

If you want to manually set up your environment in each shell window as you need it,
you simple source the script where it lives. E.g. if OpenCPI was downloaded into the

~/opencpi

directory, you would issue the command:

source ~/opencpi/cdk/opencpi-setup.sh -s

Sourcing this script with no arguments (or the -h or --help options), will display more

options for special cases. If you want to set up the environment on each login, you
would add this same line to your ~/.profile file (or ~/.bash_login or

~/.bash_profile). Note that this will only take effect when you login, or when you

start a new "login shell" using the -l option to bash, like:

bash -l

There are several additional environment variables that are required in some
circumstances. They are usually set in your .profile file prior to sourcing the

opencpi-setup.sh file.

For native execution, no such environment variables may be necessary, but when third
party tools are required for other platforms, their locations and/or license file locations
may need to be set this way. Such variables are described in the sections below about
configuring for use of such tools.

Environment variables that can affect runtime behavior may be set either permanently in
the ~/.profile file or simply set as needed. They are described in detail in other

documents, but are summarized here also.

OpenCPI Installation Guide Page 18 of 43

Table 1: Environment Variables for Runtime Configuration

Name Description

OCPI_CDK_DIR
The variable set by sourcing the
opencpi-setup.sh script indicating the location

of the OpenCPI installation. This variable should
not be set directly.

OCPI_LOG_LEVEL
The log level (amount of logging) output by the
runtime system. The default if not set logs
unusual/unexpected events to stderr.

OCPI_PROJECT_PATH
A colon-separated set of projects to be considered
in addition to those that are registered.

OCPI_SYSTEM_CONFIG
The runtime system XML configuration file. Default
is $OCPI_CDK_DIR/../system.xml

OCPI_DMA_MEMORY
When the OpenCPI kernel driver is not used, this
environment variable allows super-user privileged
processes to specify physical DMA memory to use.
The format is <mbytes>M$0x<address>, with

mbytes in decimal, and address in hexadecimal.

OCPI_SMB_SIZE
This variable specifies the size (in bytes, decimal) of
the memory pool used for buffers in software
containers.

The OpenCPI system configuration file is an XML file that allows additional parameters
to be specified that affect the runtime system. Its location is usually
$OCPI_CDK_DIR/../system.xml, but its location may also be specified by the

environment variable OCPI_SYSTEM_CONFIG. It is organized hierarchically according

to the major runtime software module hierarchy. An example is:

<opencpi>
 <container>
 <ocl load='0'/>
 <rcc load='1'/>
 <hdl load='1'>
 <device name="PCI:0000:05:00.0" esn="000013C1E1F401"/>
 <device name="PCI:0000:04:00.0" esn="91d28408"/>
 </hdl>
 <remote load='1'/>
 </container>
 <transfer smbsize='128K'>
 <pio load='1'/>
 <!-- <dma load='1'/> -->
 <socket load='1'/>r
 </transfer>
</opencpi>

The two top level categories of configurable modules are:

OpenCPI Installation Guide Page 19 of 43

 container: for the runtime modules (drivers) that support different authoring
models

 transfer: for the runtime modules (drivers) that support different dataplane
transport mechanisms.

Each driver has a boolean load attribute that specifies whether the module should be

loaded (and thus enabled) in the runtime environment. Otherwise all attributes are
module-specific.

The device child element can appear under any of the container driver elements and

specifies attributes specific to individual devices supporting that container type. In the
example above, an esn attribute is applied to two HDL devices, which is used to

indicate the electronic serial numbers of the JTAG cables attached to specific PCI
devices.

The smbsize attribute to the transfer element specifies a default value for the size in

bytes of the buffer memory pool for each dataplane endpoint. It can also be applied to
each module below it which overrides the default.

OpenCPI Installation Guide Page 20 of 43

4 Embedded Systems as Target Hosts

In this document we use the term embedded systems for processors and systems that
will execute OpenCPI components and applications, but are generally not used to build
or compile OpenCPI or components. Our primary example is the Digilent ZedBoard,
which has a Xilinx Zynq SoC chip which contains 2 ARM cores for software and an
FPGA section for “gateware”.

When using any embedded system, the first step is to install the appropriate cross-
compilation tools on your development system. While some embedded systems can
actually host their own tools, we generally avoid this in order to avoid burdening the
embedded platform with such tools, and also avoid challenges associated with porting
the OpenCPI development environment to a new platform.

If no Linux-hosted cross-tools are available for the embedded target, then the OpenCPI
build/development environment must indeed be ported to that platform, and any
incompatibilities must be addressed. The OpenCPI development environment does not
have many dependencies, but they must all be addressed on the new development
platform. This is a partial list of dependencies that some aspects of the OpenCPI
development environment require:

 C and C++ compilers and linkers

 Bash and Make

 Python

 Miscellaneous POSIX utilities such as “tr”, “sed”, “cp”, etc.

When other cross-tools and/or FPGA tools are required for a target platform, other
prerequisites may be required.

Along with using cross-compilers we generally assume (in a development context) that
the embedded system has a network interface that will allow it to mount and access the
file systems on the development system where the OpenCPI codebase is built and
cross-built. This also requires that the development system be enabled as a file server,
and any associated firewall issues are addressed between the embedded system and
the development host. This configuration typically uses nfs, with the embedded

system acting as an nfs client, and the development system as the nfs server. If the

development system is not yet configured for nfs, the appropriate software is installed

(on CentOS/RedHat systems) using the command:

% sudo yum install nfs-utils

When network access to the development system is unavailable, inconvenient, or
inappropriate, then a small subset of the OpenCPI cross-built environment is copied to
the embedded system to enable execution without any network. This is called
“standalone” or “embedded” mode for OpenCPI on the embedded system.

One key build option for OpenCPI is whether to build all libraries and executables with
static linking or dynamic linking. When built with static linking, executables are truly
standalone and don't require many libraries to be copied to the embedded system.

OpenCPI Installation Guide Page 21 of 43

For each embedded system that is supported, we divide the instructions into these
steps:

1. Install cross development tools and cross-build OpenCPI on the development
system.

2. Create a bootable kit (usually an SD card) to install on the embedded
system, using the development system.

3. Set up the hardware as needed for OpenCPI.

4. Install the bootable kit (usually plugging in an SD card) on the embedded
system.

OpenCPI Installation Guide Page 22 of 43

4.1 The Digilent ZedBoard with Xilinx Zynq SoC Processor

This hardware platform is the smallest and least expensive platform that can support
software and FPGA development using OpenCPI.

Supporting the even-smaller “MicroZed” platform (with the Z-7010 device) is considered
feasible and is a roadmap item.

The steps below describe the process of building OpenCPI and preparing a bootable
SD card from scratch, including assets from a Xilinx Linux kernel release as well as
those built in OpenCPI. However, there is a shortcut that allows you to bypass all these
steps if you just want to quickly run OpenCPI on a ZedBoard: a directory in the
OpenCPI code base contains a prebuilt SD card directory that can simply be copied to a
real SD card that can then be inserted into a ZedBoard before restarting it.

Assuming the SD card (at least its first partition usually entitled “BOOT”) is mounted on
/media/xyz (or sometimes /run/media/<username>/BOOT), the following

commands will remove its current contents and copy the OpenCPI contents onto it and
unmount it so you can remove it and plug it into a ZedBoard. It is assumed that you are
in the directory where the OpenCPI software platform is defined, in some project, e.g.:

<some-project>/rcc/platforms/<sw-platform>

For the ZedBoard in particular, one common software platform to use is xilinx13_4,

which is the Xilinx-provided Linux release released shortly after the 14.7 version of the
Xilinx ISE tools. This particular platform is in the OpenCPI built-in project called core,

so from the top of the OpenCPI source tree, its path is:

projects/core/rcc/platforms/xilinx13_4

Assuming you are in this directory with the normal OpenCPI environment set up, for the
zed hardware platform, you would do:

% rm -r -f /media/xyz/*
% cp -R -p release/OpenCPI-SD-zed/* /media/xyz
% umount /media/xyz

To use this shortcut, you still need to at least arrange for console access to the
ZedBoard, as described in the section below.

After removing the SD card, plug it into a properly configured (powered off) ZedBoard,
power on and run some simple applications that are already there. If this will serve your
purposes (initially), you can skip the rest of this section and proceed to the section for
ZedBoard hardware setup. Of course you can add any of your own files to the SD card.

Summary: you can use the pre-built SD card contents unless:

 You need to use a more up-to-date OpenCPI version.

 You need a more up-to-date or different Xilinx Linux release.

4.1.1 Establishing the Cross-Building Environment for OpenCPI targeting Zynq

This section describes how to build OpenCPI for the ZedBoard and enable building
applications and components for it. It is what you do on a development system (not on

OpenCPI Installation Guide Page 23 of 43

the ZedBoard) before doing anything on the ZedBoard hardware. The basic steps are
summarized at the end of this section.

4.1.1.1 Install Xilinx ISE and EDK Tools

There are two aspects to building for Zynq: user mode code and kernel driver code.
Both rely on the cross-compiler supplied in the Xilinx tools release (the EDK). Thus the
first prerequisite is to install Xilinx ISE and EDK tools. We will refer to the Xilinx release
number as $XRN, and the pathname where Xilinx releases are installed as $XROOT. In
a typical installation, $XRN might be 14.7, and $XROOT might be /opt/Xilinx, so

the current release would be installed in the

/opt/Xilinx/14.7

directory. This procedure has not been tested on ISE releases prior to 14.6 and is
unlikely to work on prior releases. Be sure to include the EDK in the installation (when
running the Xilinx installer) since that is where the cross compiler and some other
required files come from. The XRN and XROOT variables are notional for this
document. You do not need to actually set or use those variables. The Xilinx Vivado
tools can also be used, with the compiler provided by the “SDK” add-on.

We assume a Xilinx ISE+EDK or Vivado+SDK installation on CentOS6 or CentOS7 64-
bit Linux, the standard OpenCPI development host. Xilinx officially supports Red Hat
Enterprise Workstation 6 (64-bit), of which CentOS/64-bit is a free “clone”, without any
official support.

We also assume that you have created a clone of the OpenCPI git repository, placed it
in a directory on a development system (e.g. /home/myself/opencpi), and built and run
OpenCPI on that development host system. Instructions for this are above.

The OpenCPI ZedBoard installation includes certain artifacts that are derived from one
or more Xilinx Linux kernel releases. Under normal circumstances these can be used
as they exist in the OpenCPI tree. The core/platforms/xilinx13_4/release file

is a link to the Xilinx Linux release (inside the OpenCPI tree) that will be used during the
remaining installation steps. If you need to change or customize the Xilinx Linux kernel
release, see the platforms/zynq/README.linux file. We also assume a

successful OpenCPI development host installation (and runtime tests) as described
above.

In summary, the prerequisites for using OpenCPI on the ZedBoard (and other Zynq-
based platforms) are:

 A working OpenCPI installation on CentOS/64-bit

 A Xilinx ISE+EDK installation at $XROOT/$ZRN (e.g. /opt/Xilinx/14.7) or a

Vivado+SDK installation at $XROOT/Vivado/$XRN
(e.g. /opt/Xilinx/Vivado/2015.4)

4.1.1.2 Establish and Customize your Cross Build Environment

To build OpenCPI for Zynq/ARM software development, we use the Xilinx-supplied
ARM/Zynq cross-build tools (cross from CentOS x86_64 to Zynq). There is nothing

OpenCPI Installation Guide Page 24 of 43

specific to the ZedBoard platform about these Zynq tools. You may set the
OCPI_XILINX_DIR, OCPI_XILINX_VERSION, and OCPI_XILINX_LICENSE_FILE
environment variables if the defaults are not correct. You do not need to run any Xilinx-
supplied initialization scripts. Using these Xilinx ISE+EDK tools for cross-compilation
has been tested in ISE 14.6 and 14.7. Using Vivado+SDK has been tested using
version 2015.4 and later.

4.1.1.3 Installing for the Zed Embedded Target.

The same script is used to prepare OpenCPI for development targeting as was used for
the development system itself. The only difference is to provide the software platform
as an argument to the script. E.g. to prepare for development using the xilinx13_4
software platform you can run:

./scripts/install-opencpi.sh xilinx13_4

This builds and installs prerequisites for this (cross)platform and then builds the
OpenCPI framework libraries and executables, as well as the software assets in the
built-in projects that are part of OpenCPI.

This will build the Zynq versions of all OpenCPI libraries, executables, components,
examples, and kernel driver for the Zynq Linux platform. This will not interfere with the
libraries, executables and components already built for the native CentOS/64-bit
environment. With OpenCPI, all compilation results are placed in target-specific
directories, so building for multiple targets in the same tree is supported and expected.

Building the OpenCPI kernel driver relies on the release of the Xilinx Linux kernel that is
already established in the software platform's directory, e.g.:

projects/core/rcc/platforms/xilinx13_4

4.1.1.4 Build FPGA Libraries, Components, Platform and Bitstreams

In order to build the HDL/FPGA code, including test bitstreams, you do:

% make hdl HdlPlatforms="isim zed"

This will build all the primitive libraries, components, bitstreams for ZedBoard's Zynq
chip and for isim (the ISE simulator). If using the Vivado simulator, use xsim rather

than isim. If you had already built OpenCPI HDL/FPGA code for other Xilinx targets,

the isim or xsim aspect of the build may already have been done and thus will not be

rebuilt. For previous OpenCPI HDL developers: the OpenCPI HdlTarget for the

ZedBoard using ISE is zynq_ise and the HdlPlatform is zed_ise. Using Vivado,

the target is zynq and the platform is zed. This step can take an hour or more.

This is the end of building all the OpenCPI assets for development and execution on the
ZedBoard.

OpenCPI Installation Guide Page 25 of 43

4.1.2 Creating and Populating a Directory to Create a Bootable SD Card

The final software step to perform on the development system is to create and populate
a directory to be copied to an SD card that can be plugged into the ZedBoard for
booting. The contents of the SD card directory tree is a combination of:

 Binary files from a Xilinx Linux Kernel release from
http://www.wiki.xilinx.com/Zynq+Releases

 Binary files built and stored in the OpenCPI tree that were patched from the Xilinx
release and Linux source code.

 Core files from the OpenCPI tree built from sources.

 Component library files from the OpenCPI tree (RCC and HDL).

This resulting SD card can be used standalone (independent of the network) or based
on a network connection that allows the zed platform to communication with the

development system. The network-based development setup mounts the development
system from the ZedBoard using NFS, so usually very few files really need to be on the
SD card itself. In standalone mode, OpenCPI can be used with the files on the SD card,
and with no network.

To create an SD card tree run the following from the top level of the OpenCPI project:

make deploy Platforms=zed:xilinx13_4

These instructions prepare a directory tree for an SD card locally (in cdk/zed/zed-
deploy/sdcard-xilinx13_4), to be copied to a real SD card, that can then be unmounted,
plugged into the Zed board, and used to boot the ZedBoard.

If you ran make hdl HdlPlatforms="isim zed" from above and want to include the .bit.gz’s
on your SD card you will need to manually copy the .bit.gz’s files to cdk/zed/zed-
deploy/sdcard-xilinx13_4/opencpi/xilinx13_4/artifacts/ or if you want all the .bit.gz’s you
can run the following:

 find . -path "*/target-zynq/*.bit.gz" -exec cp {} cdk/zed/zed-
deploy/sdcard-xilinx13_4/opencpi/xilinx13_4/artifacts/ \;

There are two files that must be customized before making the SD card. One for
standalone mode and one for network mode (NFS mounting of the development
system). If you are not using the network/NFS mode you can ignore the second one.

4.1.2.1 Standalone Mode Startup Script

You should make copy of the default_mysetup.sh file into mysetup.sh (here in the

cdk/zed/zed-deploy/sdcard-xilinx13_4 directory) and customize it, in

particular, specifying at least:

 The system to be used as a time server

 Your timezone.

At least in CentOS6 and CentOS7, the following command will print what the timezone
should say:

% tail -1 /etc/localtime

OpenCPI Installation Guide Page 26 of 43

http://www.wiki.xilinx.com/Zynq+Releases

These items are on the command line in mysetup.sh that runs the internal

zynq_setup.sh script, which configures the ZedBoard system for OpenCPI each time

it boots. Since the ZedBoard has no real time clock these are needed to set the time
properly. If you truly have no network connection, you can set the time server to "-" and

set the time manually when the ZedBoard system is booted.

When the SD card is created, this script will be copied to it, and it is run each time the
system is booted (manually for now).

% cp default_mysetup.sh mysetup.sh
{ customize mysetup.sh }

4.1.2.2 Network Mode Startup Script

Network mode is when you mount the development system (and the OpenCPI tree), as
an NFS server with the ZedBoard as NFS client. This provides easy and dynamic
access to all of OpenCPI, and presumably any components and applications you may
have. You can avoid customizing this file if you only want to use standalone mode, but
you must make sure the mynetsetup.sh exists.

Make a copy of the default_mynetsetup.sh file into mynetsetup.sh (here in the

cdk/zed/zed-deploy/sdcard-xilinx13_4 directory) and customize it, in

particular, specifying at least:

 The NFS "share name" of your development system.

 The directory name relative to that mountable file system where the OpenCPI tree
lives.

 The system to be used as a time server.

 Your timezone description.

All these items are on the command line in mynetsetup.sh that runs the

zednetsetup.sh script, which configures the zed system for OpenCPI each time it

boots, for network/NFS mode. The network address of your development system will
be specified later, dynamically, as an argument to mynetsetup.sh.

% cp default_mynetsetup.sh mynetsetup.sh
{ customize mynetsetup.sh }

Note the mynetsetup.sh script you copied to the SD card takes the development

system's IP address as an argument. If it is fixed, you could hard-wire it in this script.

4.1.2.3 Initialize (partition, erase) the SD Card

This step completely initializes, formats, and partitions the SD card, whereas the next
step copies the contents onto it. This step creates a 200MB boot partition in FAT32
format, and also creates a second linux ext2/ext3 file system using the rest of the space
on the card. Because it is partitioning the drive from scratch, there must be no mounted
file systems on the drive when it is executed.

If you don't want a "fresh" SD card, but want to use an existing one that is correctly
formatted for a ZedBoard boot disk, you can skip this step.

OpenCPI Installation Guide Page 27 of 43

You must determine the linux device name of the SD card, usually something like
/dev/sdb. The "sudo fdisk -l" command describes all disk devices on the system

and can help in identifying the device for the SD card you plugged in. Using the wrong
device name could erase the disk, so be careful! Also, you can use the "mount"

command to see if any of the partitions of the disk are already mounted. They should
be unmounted before running this script.

The following script completely reinitializes/partitions/erases the SD card for use with
the ZedBoard. The single argument is the linux disk device name. The "sudo" is
usually necessary unless the device has general write permission.

% sudo ./platforms/zynq/formatOpenCPIZynqSD.sh /dev/sdX

4.1.2.4 Copy the Prepared SD File Tree to the Actual SD Card.

The source of this step is the directory created by the make deploy above, which is

cdk/zed/zed-deploy/sdcard-xilinx13_4. If you have just formatted the SD

card with the previous step, you would need to mount it first using the mount command,
or simply unplug it and plug it in again, which normally automatically mounts it.

After the “BOOT” partition is mounted (e.g. /dev/sdb1 is mounted on /media/boot) do:

% rm -r -f /media/boot/*

% cp -R -L -p cdk/zed/zed-deploy/sdcard-xilinx13_4/* /media/boot

If you have more files to add, do so now, then remove it using:

% umount /media/boot

At this point you have a development environment ready for the ZedBoard, have built all
the libraries, executables, components, and examples for both software and FPGA, and
have prepared a bootable SD card.

4.1.2.5 Summary of Pre-Hardware Steps to Prepare to Run OpenCPI on a
ZedBoard

Assuming you not taking the shortcut mentioned at the top of this section:

From the top level directory of an OpenCPI source code installation a.k.a.
OCPI_ROOT_DIR, that is already functional for the CentOS system, with a Xilinx

ISE+EDK installation, in a fresh/new shell/window, do these steps:

% cp example_zed_env.sh myzed.sh
{ customize myzed.sh for your build environment, e.g. where Xilinx
tools are }
{ customize the Xilinx Linux release if needed - see README.linux if
you need to}
% source myzed.sh
% ./scripts/install-opencpi.sh xilinx13_4
% make hdl HdlPlatforms='isim zed'

OpenCPI Installation Guide Page 28 of 43

% make deploy Platform='zed:xilinx13_4'
% cd cdk/zed/zed-deploy/sdcard-xilinx13_4/opencpi
% cp default_setup.sh mysetup.sh
% cp default_netsetup.sh mynetsetup.sh
{ customize mysetup.sh and mynetsetup.sh for your environment,
etc. }

% cd /../../../../..
{ If you need a freshly formatted SD card:
 plug your SD card in and figure out what the disk device name is
for it.
 unmount any mounted partitions on the drive/disk
 BE CAREFUL TO GET IT RIGHT SINCE THAT DISK WILL BE ERASED
 % sudo ./platforms/zynq/formatOpenCPIZynqSD.sh /dev/sdX
}
{ Plug in the SD card, e.g. mounted as /media/xyz }

% rm -r -f /media/xyz/*
% cp -r -L -p cdk/zed/zed-deploy/sdcard-xilinx13_4 /media/xyz
% umount /media/xyz

Now everything is built and ready for the ZedBoard, and you have a bootable SD card
for using OpenCPI on a ZedBoard. The next section describes how to install the
hardware and set it up to execute based on the OpenCPI system you just built and the
SD card you created. There are two usage modes, one is network-based, where the
ZedBoard can talk to the development (CentOS) system via network and NFS, and the
other is standalone/embedded mode where OpenCPI can be used even without a
network connection.

Now everything is built and ready for the ZedBoard: you have a bootable SD card for
using OpenCPI on a ZedBoard.

4.1.3 Setting Up the ZedBoard Hardware to Run OpenCPI

This section describes how, after installing Xilinx tools, installing and building OpenCPI
(software and FPGA aspects) for Zynq/Zed, and preparing an SD card, you actually set
up your ZedBoard itself to run OpenCPI applications and components on the Zed itself.

These steps do not enable any particular devices that might be attached to the
FPGA/PL part of the Zynq.

Always be careful of static electricity when touching the board. Touch some metal shell
first each time. Start with the power cable disconnected. The metal shell of the network
connector is a good thing to touch first.

4.1.3.1 Set Up the Hardware Jumpers and Switches

It is a good idea to have the Digilent ZedBoard Hardware Users Guide at:

http://www.zedboard.org/sites/default/files/documentations/
 ZedBoard_HW_UG_v2_2.pdf

OpenCPI Installation Guide Page 29 of 43

The “Jumpers” section has good photographs showing the location of jumpers on the
board. Only change the jumpers when the power is OFF. These are the required
jumper settings:

 MIO 2: set to GND

 MIO 3: set to GND

 MIO 4: set to 3V3

 MIO 5: set to 3V3

 MIO 6: set to GND

 J18: VADJ Set to 1.8V (the setting is labelled 1V8)

 JP6: shorted (only needed for "CES" silicon versions)

 JP2: shorted (needed to power USB peripherals or dongles).JP2: shorted

 JP6: shorted (note: we didn't have enough jumpers and this wasn't needed)

All other jumpers should be left unshorted. The power switch should be off.

4.1.3.2 Insert the SD Card into the Socket on the Bottom of the Board.

Notice that the SD card is plugged in with its label down since that connector socket is
on the back of the board.

4.1.3.3 Connect the Supplied Micro-USB-to-normal-USB-cable to a System

This cable is what provides access to the ZedBoard's serial console. It must be
connected to a system with a terminal emulator set to 115200 baud, 8 data bits, 1 stop
bit, no parity. There are two different connectors on the board: be sure to use the one
labelled: UART, and not the one labelled USB OTG.

4.1.3.4 Apply Power to the ZedBoard

With the power supply cable connected, turn the power switch on. The green POWER
LED should come on. The system has actually booted itself, but without a console
attached you can't really see anything.

4.1.3.5 Get Access to the Serial Console of the ZedBoard, and Reboot from There

Since the OpenCPI development environment is running on a Linux system (usually
CentOS6 or 7), you can just plug this USB cable into that Linux system, and it will
automatically create a /dev/ttyXXX file for this connection when you plug it in and the

ZedBoard is powered up. You need to determine this pathname and watch it come and
go when you disconnect and reconnect the USB cable (or when the ZedBoard is
powered down and up). Typically the file name is /dev/ttyACM0, but not always.

Without any other configuration of the Linux development host, you typically have to add
read/write permission to this "/dev/tty*" file manually each time the cable is connected
and/or the ZedBoard is powered on, using the command:

% sudo chmod a+rw /dev/ttyACM0

OpenCPI Installation Guide Page 30 of 43

(assuming the /dev/ttyXXX file created for that cable is /dev/ttyACM0, which is the

default for the first such hot-plugged USB/serial cable on CentOS6). Again, this must
be done each time the board is power cycled or disconnected. To eliminate this step
you can add a udev rule to your system for the /dev/ttyXXX in question by issuing

this command:

% echo 'KERNEL=”ttyACM0”, MODE=”0666”' | \
 sudo dd of=/etc/udev/rules.d/99-opencpi-tty.rules

With the /dev/ttyXXX existing and with proper permissions, you must run a serial

console terminal emulator program on the development system that is attached to the
USB cable from the UART connector on the ZedBoard. There are many alternative
terminal emulation applications to provide for this USB remote serial console for the
ZedBoard (or any similar board). One that is available in the standard CentOS
repository is "screen", obtainable by simply using:

% sudo yum install screen

Then in any terminal window, you can do:

% screen /dev/ttyACM0 115200

To exit this program, you use the sequence: Control-a followed by backslash.

For Emacs users, you can use the serial terminal emulator built in to Emacs, by simply
doing: M-x serial-term in a window, and providing the /dev/ttyACM0 name and

115200 baud rate when prompted. There are two modes in this window, "char" and
"line". The default is "char" mode, where every character typed is immediately sent
without any interpretation at all. This means no emacs commands work in that emacs
window and you have to use the mouse to switch to another emacs window. The "line"
mode is more line buffered, like "shell" mode, and all line editing and other emacs
commands work fine. But the display can get confused in this line mode so you have
sometimes switch back and forth: control-c control-j switches to line mode, control-c
control-k switches to char mode, control-c control-c sends a control C in char mode.

With a good terminal emulator connection, hit return a few times in the serial console
window to see the "zynq login:" prompt, or, if the system was previously logged in

and running, you might see the "root@zynq:~#" prompt. You must login as "root" with

the password "root".

Sometimes if the screen or terminal emulator is confused, or if, after hitting "return", the
prompt stays on the same line, try typing the command "clear", to clear the state of the
terminal emulator.

In normal usage it is generally best to log into the board using SSH via the network and
leave the console window alone. After the board boots, you can log in with SSH without
using the console at all if you know the DHCP network address — or see it on the
console output. The ifconfig command on the ZedBoard will print the internet

address.

You can now log in (root, root), and see that rebooting works fine by both trying the
"reboot" command, as well as pressing the reset button on the board (labeled: PS_RST).

OpenCPI Installation Guide Page 31 of 43

Now you know Linux can boot, and that you have console access.

4.1.3.6 Get the Network Working to Talk to the Development System

If you want to start in standalone mode, without needing a network or connection
to the development host, skip to Standalone Mode section below.

To enable the network connection to the development host, connect the ethernet
connector on the ZedBoard to a LAN with DHCP. The green light that is part of the
network connector socket should come on to indicate that you have a network
connection.

You can also use USB network dongles, with the appropriate cable adapters, plugged
into the USB OTG connector.

Reboot the ZedBoard to have it come up properly on the network. You can reboot
either by typing the reboot command, pressing the PS-RST button, or turning the

power switch off and on. Power cycling might cause you to need to do another "sudo

chmod a+rw /dev/ttyACM0". After reboot, and re-login on the console, you can use

the ifconfig command to confirm that the "eth0" interface (or "eth1" for USB

Ethernet dongles) has an internet address, courtesy of DHCP. E.g. the output below
shows we have the internet address 10.0.1.108.

root@zynq:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0A:35:00:01:22
 inet addr:10.0.1.108 Bcast:0.0.0.0 Mask:255.255.255.0
 inet6 addr: fe80::20a:35ff:fe00:122/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:42 errors:0 dropped:1 overruns:0 frame:0
 TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:6793 (6.6 KiB) TX bytes:1737 (1.6 KiB)
 Interrupt:54 Base address:0xb000

The network address is also printed out on the console during booting. To check
connectivity, use ping in both directions: ping your development host from the

ZedBoard console and ping your ZedBoard from your development host. If both pings
work you have network connectivity.

4.1.3.7 Enable NFS on the Development Host for the "share" that Includes
OpenCPI

There are many "cookbook" documents for setting up NFS on Linux systems. You need
to export a mountable directory above the directory where OpenCPI is installed.

An example might be, if OCPI_BASE_DIR was /home/user/opencpi, and /home

was NFS-mountable, then the “share” would be /home, and the OpenCPI subdirectory

would be user/opencpi. On CentOS6, you can enable NFS using the System-

>Administration->Services menu item. You may also need to enable local clients in the
System->Administration->Firewall menu item.

OpenCPI Installation Guide Page 32 of 43

To verify you have NFS connectivity try to manually mount it on the ZedBoard by typing,
on the ZedBoard console:

% mount -t nfs -o udp,nolock,soft,intr <ipaddr>:<dir> /mnt/net

Where <ipaddr> is the address of the development host, and <dir> is the directory

being exported/shared by the server. The OpenCPI directory will be underneath that
directory.

If that succeeds, you have a good NFS connection. unmount it using the "umount"

command since the automated scripts will mount it next.

4.1.3.8 Run the Setup Scripts after Booting to Access the Development System

When Linux boots on the ZedBoard from the SD card created as above, it creates a
memory-based root file system, initialized from decompressing the
uramdisk.image.gz file on the SD card. It also mounts the SD card itself as a file

system, at /mnt/card. This means that anything you write to the root file system is

not persistent. To create any persistent file you use SD file system, at /mnt/card.

Our standard setup uses the built-in NFS client on the ZedBoard to access the
OpenCPI source code base from these types of systems (in a development
environment).

After booting, and logging in as root (either via the serial console or ssh), the first
command should be to source the startup script on the SD card, supplying the

development host's IP address as an argument.

root@zynq:~# source /mnt/card/opencpi/mynetsetup.sh 10.0.1.108

This command, executed once per boot (not per ssh login), are all that is necessary to
enable OpenCPI (unless you take additional measures to execute them automatically at
boot time). If this script works ok, then it proves you can run OpenCPI utilities (and
applications).

After this commands is run after booting, any new logins will automatically run the
appropriate setup actions for that login shell.

4.1.3.9 Confirm OpenCPI Software Operation.

The mynetsetup.sh script above already sets the path to find OpenCPI executables

and software components. It may also change to some working directory. Below
"xxxxxx" is the path to get to the OpenCPI development tree. The default setup script
(that you modified), in fact changes to this directory in any case. In standalone mode, it
changes to the /mnt/card/opencpi/xml directory.

To run a simple test application:

zynq> ocpirun -v -d -mbias=rcc testbias

This should run the testbias application (using file_read->bias->file_write)

components, forcing it to run in software, and not the FPGA.

OpenCPI Installation Guide Page 33 of 43

4.1.3.10 Confirm OpenCPI Execution of an FPGA-based Application

There is no bitstream loaded on power up, but one will be loaded automatically as
needed. So, assuming your OCPI_LIBRARY_PATH points to the builtin bitstream

(which the default setup file does in both network and standalone mode), you can run:

zynq> ocpirun -v -d -mbias=hdl testbias

which runs the same application with the bias component on the FPGA, with the
appropriate bitstream being automatically loaded.

4.1.3.11 Standalone Mode

To run in standalone mode, which has no requirement of a network, but can still use one
if present, you run, after booting, the following command:

source /mnt/card/opencpi/mysetup.sh

This will set up the environment to run some applications locally based on files in the
SD card, without accessing any files on the network.

The opencpi subdirectory on the SD card has executables and scripts in the "bin"

directory, component artifacts in the "artifacts" directory, and xml applications in the

"xml" directory.

The steps to run OpenCPI applications without and with FPGA components are in the
previous two sections and work in standalone mode as well as network mode.

OpenCPI Installation Guide Page 34 of 43

5 FPGA Platforms Based on PCI Express Cards

Any development host system that has PCI Express slots can host FPGA cards where
the FPGA is attached directly to the PCI Express fabric. All PCI Express-based FPGA
cards require that the development host installation is complete and functional, including
the Linux kernel driver. At this point supported FPGA cards can be installed and used
as OpenCPI processors that can host OpenCPI components built for those FPGAs.

Each PCI Express-based FPGA card has its own installation issues, but most
installations are similar. Assuming there is already OpenCPI support for the card, the
steps necessary to bring it up as an OpenCPI processor are:

 Ensure sufficient power and cooling for the card

 Configure any required jumpers and/or switches on the card

 Enable bitstream loading, and JTAG access.

 Plug in the card and power up the system

 Load an OpenCPI bit file into the power-up flash memory on the card

 Reboot the system

 Ensure the card is now recognized and usable.

OpenCPI Installation Guide Page 35 of 43

5.1 Installation of PCI Express-based FPGA Cards

This section describes the installation process in general that applies to all PCI Express-
based FPGA cards. Following sections provide specific details for some of the cards
that are supported for OpenCPI. We use the term “bitstream” in this section for the file
containing an FPGA configuration to be loaded into the FPGA. Bitstream files are
created by the OpenCPI development process when the target platform is an “HDL”
platform, which usually means an FPGA.

5.1.1 Ensure Sufficient Power and Cooling for the Card

PCI Express-based FPGA cards have a range of cooling and power requirements, and
some even require that the chassis and box they are plugged into be left open for
access to connectors etc.: they are “lab cards” that remain fully exposed. Others are
typical PCI-Express cards that simply plug into a slot, and the box can be closed.
Frequently there are LEDs and other indicators, switches or displays that are useful to
see when the card is fully exposed.

Some cards require extra power supply cables to supply more power than is available
through the backplane connector. Some of these have their own “power blobs” that
connect directly to AC outlets, while others have power cables that attach to the power
harness in the box that usually supplies power to hard drives. For the latter case you
may need an adapter cable for the power harness in the system box.

It is out of scope here to provide guidance on power and cooling issues, but ignoring the
issues can frequently result in unreliable or broken hardware. Usually the hardware
manuals of these cards provide sufficient guidance.

This step is complete when you have decided on how and where (which slot) the board
should be plugged in, how it will receive sufficient cooling, and how its power supply
requirements (and cables) will be satisfied.

5.1.2 Configure any Required Jumpers and/or Switches on the Card

Nearly all cards have hard-wired jumpers and switches that configure how the board
should operate. For the purpose of OpenCPI, the most common options relate to how
the board powers up, and how the PCI-Express interface behaves. For most cases you
should configure the board so that it boots a bitstream from a part of flash memory that
can be written with a new bitstream, usually via JTAG. Even during active bitstream
development and loading via JTAG, it is required to have a baseline OpenCPI bitstream
loaded in flash memory that is automatically loaded on power up and reset.

Some PCI-Express-based FPGA cards have an option to disconnect the PCI Express
interface or to become the “root” of the PCI Express fabric. Neither of these options
should be selected. The PCI-Express interface should be a normal peripheral endpoint
(both master and slave) on the fabric.

Some boards only re-load the bitstream from flash memory on power cycling, while
others can/will also do it on system (PCI fabric) reset.

OpenCPI Installation Guide Page 36 of 43

5.1.3 Enable Bitstream Loading, and JTAG Access.

As supported by OpenCPI, bitstreams can be loaded in one of 4 ways:

 On power-up and/or PCI-Express fabric reset, from on-board flash memory.

 On command, from on-board flash memory.

 On command, from JTAG

 On command from some other processor-accessible interface.

It is a roadmap item to support reloading a (part of) a bitstream via the PCI-Express
interface itself.

If JTAG is required (which it normally is) a cable (and possibly a “JTAG pod”) must be
connected to the board, and to a (usually) USB port on the development system.

When more than one card is in a system, and thus multiple JTAG cables are attached to
multiple USB ports, the OpenCPI system must know which JTAG cable is connected to
which card. This is done by making this association in the OpenCPI system
configuration file, in /opt/opencpi/system.xml. An example is:

<opencpi>
 <container>
 <hdl>
 <device name="0000:05:00.0" esn="000013C1E1F401"/>
 </hdl>
 </container>

 ...(other xml)
</opencpi>

This example says: the OpenCPI HDL (FPGA) device found at PCI slot named
“0000:05:00.0” should be associated with the USB-based JTAG pod with the electronic
serial number (ESN) of 000013C1E1F401. The way to find the serial number is

vendor-specific, but the OpenCPI script: probeJtag will scan for JTAG cables for both
Xilinx and Altera. Unfortunately not every JTAG pod has such a serial number, and thus
more than one of them cannot be used in a system. The lspci Linux utility can be

used to list PCI-Express slots and information about the cards that are plugged into
them.

This editing of the system.xml file is only necessary when there is more than one

such JTAG cable in a system.

5.1.4 Plug in the Card and Power up the System

After the cards are plugged in and the system is powered up, there is usually some
board-specific LEDs that show that the power is good, the PCI Express bus is alive, and
perhaps a factory default bitstream has been successfully loaded from flash. See the
sections for individual boards.

OpenCPI Installation Guide Page 37 of 43

5.1.5 Load an OpenCPI Bitstream into the Power-up Flash Memory on the Card

OpenCPI FPGA PCI-Express cards will not be discovered by OpenCPI unless they are
currently running a bitstream that was created by OpenCPI. Thus part of installation is
to write a bitstream to the card's flash memory. As mentioned above, the board should
be configured to boot from this flash on power up or PCI-Express reset. A good
candidate for loading is the “testbias” bitstream that is built for all supported platforms.
If you are in the top level of the OpenCPI tree, an example of loading this default
bitstream is:

% loadFlash alst4 hdl/platforms/alst4/testbias_ml605_base.bitz \
 01c4b5f5

This command loads the flash memory of an “alst4” PCI-Express card (the Altera
Stratix4 development board) from the OpenCPI default bitstream for the alst4, using the
JTAG pod whose serial number is 01c4b5f5.

There is always also a vendor-specific method for those that are experienced users of
that vendors tools, but the actual file to load would then not be the “.bitz” file but rather a
vendor-specific file probably built as part of OpenCPI's build flow.

It is a roadmap item to specify the existence of a PCI-Express card in the system
configuration file, and avoid the flash bitstream requirement. This automatic mode is
currently supported only on the ZedBoard embedded processor.

5.1.6 Reboot the System and Test OpenCPI's Ability to See the Card.

After the initial flash bitstream is installed on the card, power cycle the development
host system. Use the OpenCPI utility called ocpihdl to check that the board is found.

The following command will search for recognizable cards and print out their
information:

% ocpihdl search

This command should print out the cards it could find, along with the PCI-Express
address for each. If you have more than one of the same card, in different slots, you
will see them both, although other than the slot, there is no other identifying information.

It is a roadmap item to display the electronic serial number of the card/chip itself,
although not all boards or chips have such unique identification.

OpenCPI Installation Guide Page 38 of 43

5.2 Xilinx ML605 PCI-Express Card as an OpenCPI HDL Platform

The ML605 is a PCI-Express-based Xilinx development board with a Virtex-6 FPGA,
along with a variety of useful peripherals. It costs $1795 (as of July 2014), and includes
a license to the Xilinx tool set that is limited to targeting this exact board. It can be
purchased either from Xilinx directly, or through Avnet. The URL page for this card is:

http://www.xilinx.com/products/boards-and-kits/EK-V6-ML605-G.htm

5.2.1 Hardware Setup for ML605

As with any exposed electronics, care should be taken with ESD (static electricity) when
handling and configuring the board. To configure the hardware, use the document:
“UG534: ML605 Hardware User Guide”.

There are many hardware options for how the ML605 can be used, but we focus here
on the minimum changes from the default configuration that is supported by OpenCPI.

The default settings of switches and jumpers are listed in Appendix B of the Xilinx
document. The non-default settings necessary for using the ML605 with OpenCPI are:

 Set the S2 DIP switches for “Slave SelectMAP Platform Flash XL” mode.
Per Table 1-27, S2.1: On, S2.2: Off, S2.3: Off, S2.4: On, S2.5: On

 Set jumper J42 to PCIe present with width x4 (short pins 3 and 4).
There is no technical reason why other PCI-Express widths could not be used, but
the OpenCPI support for the ML605 has only been configured and tested for x4.

 Remove the “legs” from the ML605 card so it can be inserted into the
motherboard.

 Ensure that SW2 (the external power switch) is set to OFF until after the board is
plugged in.

 Connect EITHER (one but NOT BOTH) the J25 connector to the PC power
harness (typically used for hard drives) OR the J60 connector to the AC power
adapter.

 Connect a USB cable to the JTAG USB port, and leave the other end
unconnected.

After the board is plugged into the PCI-Express slot, switch the SW2 power ON, and
connect the JTAB/USB cable to a USB port on the development system. The SW2
switch should be on whenever the system is powered up.

If you have not yet loaded the initial OpenCPI bitstream into the flash memory on the
ML605 card, it should boot the factory default bitstream. In this case the Linux lspci

command should show the board as a Xilinx vendor board. After loading the initial
OpenCPI bitstream into flash, and resetting the system, the ocpihdl search

command should find it as an OpenCPI platform. As mentioned earlier, use the
loadFlash command to load the default bitstream into flash memory:

% loadFlash ml605 hdl/platforms/ml605/testbias_ml605_base.bitz \
 <esn-for-jtag>

OpenCPI Installation Guide Page 39 of 43

5.3 Altera ALST4 PCI-Express Card as an OpenCPI HDL Platform

This platform is the PCI-Express Altera development card for Stratix4, which has the
smaller s4gx230 part on it. The OpenCPI name for this platform is “alst4”.

OpenCPI Installation Guide Page 40 of 43

5.4 Altera ALST4X PCI-Express Card as an OpenCPI HDL Platform

This platform is the PCI-Express Altera development card for Stratix4, which has the
larger s4gx530 part on it. The OpenCPI name for this platform is “alst4x”. It only differs
from the ALST4 platform is that has a larger capacity FPGA chip on it.

OpenCPI Installation Guide Page 41 of 43

6 FPGA Simulation Platforms

In OpenCPI, an FPGA simulator is “just another platform”. You build “bitstreams” for it
as a platform, and run component-based applications running components on this
platform. Using such simulators with OpenCPI is described in the OpenCPI Component
Developer Guide. Other than simply installing the simulation software according to the
vendor's instructions, there a few addiitonal steps to use these simulators with
OpenCPI. The one OpenCPI-specific task for using the simulators as platforms is to set
up various environment variables in the OpenCPI environment setup script.

It is currently a roadmap item to run OpenCPI applications where some components are
running in the simulator and some components are running on other platforms (software
or FPGA). Presently OpenCPI applications that run on the simulator must have all the
components running in the simulator. Note that the “file_read” and file_write”
components do have implementations that run in simulators.

6.1 Modelsim

Modelsim is a third party simulator offered by Mentor Graphics Corporation. Although
Altera provides a stripped down version of Modelsim, that version is not usable with
OpenCPI since it does not support mixing VHDL and Verilog.

To use Modelsim with OpenCPI, you need the version that runs on the Linux OS
running on your development host, and also that supports both VHDL and Verilog mixed
in the same design. CentOS6 and CentOS7 are supported.

To use Modelsim you must set the following environment variables in your OpenCPI
environment setup script (that you “source” in new shell command windows):

 OCPI_MODELSIM_DIR should be set to the Modelsim installation directory.

 OCPI_MODELSIM_LICENSE_FILE should be set to the name of the license file.

These instructions have been used with node-locked Modelsim licenses. Other license
configurations my require other actions.

OpenCPI Installation Guide Page 42 of 43

6.2 Xilinx Isim

The isim simulator comes as part of the Xilinx ISE tool set. It is fully supported as a

target platform on which to execute OpenCPI subassemblies.

Using isim requires no additional setup beyond installing the Xilinx ISE tool set for any
other Xilinx platform. The environment variables related to using isim are:

 OCPI_XILINX_DIR for the Xilinx ISE installation directory (e.g. /opt/Xilinx)

 OCPI_XILINX_VERSION_DIR for the version subdirectory (e.g. 14.7)

 OCPI_XILINX_LICENSE_FILE for the license file you are using.

As with ISE installations for hardware platforms, you must also “source” the
environment script, “env/xilinx.sh” in your setup script. An example section of an
environment setup script for using Xilinx ISE is:

export OCPI_XILINX_DIR=/home/user1/Xilinx
export OCPI_XILINX_VERSION=14.7
export OCPI_XILINX_LICENSE_FILE=/home/user1/Xilinx/Xilinx-
License.lic
source ./env/xilinx.sh

6.3 Xilinx xsim

This is the simulator that comes with the Xilinx Vivado tool set. It is currently not
supported for OpenCPI.

OpenCPI Installation Guide Page 43 of 43

	1 References
	2 Overview
	3 Installing OpenCPI on Development Hosts
	3.1 Installing the Hardware and OS for OpenCPI Development
	3.1.1 Obtaining the CD Image File for the OS Installation
	3.1.1.1 CentOS6: with the Live CD Installation Image (CentOS7 is below)
	3.1.1.2 CentOS7: with the Minimal CD Installation Image

	3.1.2 Booting from, and Running the Installation CD/Image
	3.1.2.1 CentOS6 with Live CD Image
	3.1.2.2 Performing Software Update on the New CentOS6 Installation
	3.1.2.3 CentOS7 with Minimal CD Image

	3.1.3 Enabling Your User for “sudo” and Installing “git”
	3.1.4 Summary of CentOS6/7 Installation Steps Prior to Installing OpenCPI

	3.2 Obtaining the OpenCPI Code Base
	3.3 The Single Command Installation Process
	3.3.1 Installing Required Standard Software Packages for OpenCPI
	3.3.2 Installing Prerequisite Packages for OpenCPI
	3.3.3 Building the OpenCPI Framework and its Built-in Projects
	3.3.4 Testing the Software Aspects of the Installation

	3.4 Configuring your Environment to Run OpenCPI

	4 Embedded Systems as Target Hosts
	4.1 The Digilent ZedBoard with Xilinx Zynq SoC Processor
	4.1.1 Establishing the Cross-Building Environment for OpenCPI targeting Zynq
	4.1.1.1 Install Xilinx ISE and EDK Tools
	4.1.1.2 Establish and Customize your Cross Build Environment
	4.1.1.3 Installing for the Zed Embedded Target.
	4.1.1.4 Build FPGA Libraries, Components, Platform and Bitstreams

	4.1.2 Creating and Populating a Directory to Create a Bootable SD Card
	4.1.2.1 Standalone Mode Startup Script
	4.1.2.2 Network Mode Startup Script
	4.1.2.3 Initialize (partition, erase) the SD Card
	4.1.2.4 Copy the Prepared SD File Tree to the Actual SD Card.
	4.1.2.5 Summary of Pre-Hardware Steps to Prepare to Run OpenCPI on a ZedBoard

	4.1.3 Setting Up the ZedBoard Hardware to Run OpenCPI
	4.1.3.1 Set Up the Hardware Jumpers and Switches
	4.1.3.2 Insert the SD Card into the Socket on the Bottom of the Board.
	4.1.3.3 Connect the Supplied Micro-USB-to-normal-USB-cable to a System
	4.1.3.4 Apply Power to the ZedBoard
	4.1.3.5 Get Access to the Serial Console of the ZedBoard, and Reboot from There
	4.1.3.6 Get the Network Working to Talk to the Development System
	4.1.3.7 Enable NFS on the Development Host for the "share" that Includes OpenCPI
	4.1.3.8 Run the Setup Scripts after Booting to Access the Development System
	4.1.3.9 Confirm OpenCPI Software Operation.
	4.1.3.10 Confirm OpenCPI Execution of an FPGA-based Application
	4.1.3.11 Standalone Mode

	5 FPGA Platforms Based on PCI Express Cards
	5.1 Installation of PCI Express-based FPGA Cards
	5.1.1 Ensure Sufficient Power and Cooling for the Card
	5.1.2 Configure any Required Jumpers and/or Switches on the Card
	5.1.3 Enable Bitstream Loading, and JTAG Access.
	5.1.4 Plug in the Card and Power up the System
	5.1.5 Load an OpenCPI Bitstream into the Power-up Flash Memory on the Card
	5.1.6 Reboot the System and Test OpenCPI's Ability to See the Card.

	5.2 Xilinx ML605 PCI-Express Card as an OpenCPI HDL Platform
	5.2.1 Hardware Setup for ML605

	5.3 Altera ALST4 PCI-Express Card as an OpenCPI HDL Platform
	5.4 Altera ALST4X PCI-Express Card as an OpenCPI HDL Platform

	6 FPGA Simulation Platforms
	6.1 Modelsim
	6.2 Xilinx Isim
	6.3 Xilinx xsim

