
OpenCPI
Component Development Guide

OpenCPI Component Development Guide Page 1 of 150

Revision History
Revision Description of Change Date

1.01 Creation 2010-06-21
1.02 Add ocpisca information and HDL application information 2010-08-05
1.03 Add more detail to HDL building, and general editorial improvements 2011-03-28
1.1 Editing, platform and device aspects of ocpigen, HDL details 2011-08-01
1.2 Update for latest HDL details 2013-03-12
1.3 Rename document, add VHDL coding details and ocpihdl utility 2013-06-15
1.4 Add new and complete assembly and container info, and add two new ocpihdl functions 2013-11-06
1.5 HDL coding practices, more HDL platform information 2013-12-10
1.6 Convert to ODT format, add more clarity for parameter properties and readonly properties 2014-03-31
1.7 Use standard template., minor updates, add generic OWD content. 2015-02-27
1.8 Incorporate the authoring model reference content into this document 2015-10-31
1.9 New section on projects, removed the HDL content to a different doc, removed authors

cleaned up and refreshed all content.
2016-01-11

1.95 Processed additional clarity issues raised 2016-04-12
2.0 Clarify project dependencies in 13.5 2016-05-18
2.1 Update for 2017.Q2, major ocpidev update, minor unit test update. 2017-08-06
2.2 Update for 2018.Q1, projects, registries, package-IDs, pass/fail+remote containers in tests 2018-02-26
2.3 Update for 2018.Q3, ocpidev run/show 2018-09-28
2.4 Update for release 1.5. version 2, EOF, property accessibility, make variable deprecation 2019-04-16

OpenCPI Component Development Guide Page 2 of 150

Table of Contents

1 References..6

2 Overview..7

3 Introduction to Worker Development...9
3.1 A Simple Example Worker...11

4 Authoring Models...13
4.1 Requirements for All Authoring Models..14
4.2 Control Plane Introduction..15
4.3 Software Execution Model..21

5 Protocol Specifications (in OPS XML files)..25
5.1 Protocol Element as Top-level Element...26
5.2 Protocol Specification (OPS) Examples..28
5.3 Message Payloads on Data Ports...29
5.4 End-of-File (EOF) Indications on Data Ports...30

6 Component Specifications (typically in OCS XML files)...32
6.1 ComponentSpec Top-level Element...34
6.2 Properties Element of ComponentSpec Elements...35
6.3 Property Element of ComponentSpec or Properties Elements...36
6.4 Accessibility Attributes..39
6.5 Port Element of ComponentSpec Elements...43

7 Property Value Syntax and Ranges..45
7.1 Values of Unsigned Integer Types: uchar, ushort, ulong, ulonglong.....................................45
7.2 Values of Signed Integer Types: short, long, longlong..45
7.3 Values of the Type: char..45
7.4 Values of the Types: float and double...46
7.5 Values of the Type: bool..46
7.6 Values of the Type: string..46
7.7 Values in a Sequence Type..46
7.8 Values in an Array Type...46
7.9 Values in Multidimensional Types...46
7.10 Values in Struct Types...47
7.11 Expressions in Property Values..47

8 Worker Descriptions in OWD XML Files...49
8.1 XML Attributes of the Top-level XYZWorker Element in the OWD.......................................50
8.2 Property and SpecProperty Child Elements in the OWD..54
8.3 Attributes only Allowed in OWD Properties and SpecProperties...55
8.4 Attributes Allowed in OWD SpecProperty Elements..56
8.5 Built-in Parameters of All Workers..57
8.6 Port Elements of XYZWorker Elements..58

9 Worker Build Configuration XML Files...59
9.1 Build Configurations..60
9.2 Parameter elements in the <worker>-build.xml file..62

OpenCPI Component Development Guide Page 3 of 150

9.3 Configuration Elements in the <worker>-build.xml File...63

10 Component Libraries...64
10.1 The Component Library Makefile..66
10.2 The Library.mk File..68

11 Developing Workers..69
11.1 Creating Workers...69
11.2 The Worker Makefile...71
11.3 Editing Workers...73

12 The Worker Source Files..74
12.1 How Parameter Value Settings Appear in Source Code..74
12.2 Building Workers...74

13 Unit Testing of Workers...76
13.1 The Phases of the Unit Test Process..77
13.2 Unit Test Concepts and Terminology...79
13.3 Unit Test Description XML File...80
13.4 Unit Test Makefile Contents..90
13.5 Preparing Unit Test Inputs...91
13.6 Preparing for Unit Test Output Verification...92
13.7 Off-line One-time Tasks Prior to Test Execution and Verification...93
13.8 Testing on Remote Systems...94
13.9 On-line Tasks for Test Execution and Verification...96
13.10 Summary of Make Goals and Variables...98

14 Developing OpenCPI Assets in Projects..99
14.1 Managing Project Assets...101
14.2 Package IDs...102
14.3 The Project Registry: How Projects Depend on and Find Each Other.................................105
14.4 Project Makefiles..107
14.5 The Project.mk File for Project-wide Variable Settings..109
14.6 Project Exports..112
14.7 Exporting a Project to be used Elsewhere..116
14.8 Using Other Projects that Exist Outside the Project Being Developed...............................117

15 The ocpidev Tool for Managing Assets...118
15.1 Create/Delete Assets...120
15.2 Build/Clean Assets..125
15.3 Show Assets..128
15.4 Run..129
15.5 Refresh..132
15.6 Utilization..133
15.7 Register/Unregister...135
15.8 Set/Unset..135
15.9 Assets Managed by ocpidev..137

16 Environment Variables used in Component Development...139

17 Tools Used in Component Development..142

OpenCPI Component Development Guide Page 4 of 150

18 Appendices...143
18.1 Appendix A - ocpidev JSON...144

OpenCPI Component Development Guide Page 5 of 150

1 References

This document also refers to concepts and definitions in other documents, but does not
depend on them.

Table 1: References to Related Documents

Title
Published
By

Link

OpenCPI Overview OpenCPI https://opencpi.github.io/releases/1.5.0.rc/doc//OpenC
PI_Overview.pdf

OpenCPI RCC
Development Guide

OpenCPI https://opencpi.github.io/releases/1.5.0.rc/doc/OpenC
PI_RCC_Development.pdf

OpenCPI HDL
Development Guide

OpenCPI https://opencpi.github.io/releases/1.5.0.rc/doc//OpenC
PI_HDL_Development.pdf

OpenCPI Application
Development Guide

OpenCPI https://opencpi.github.io/releases/1.5.0.rc/doc//OpenC
PI_Application_Development.pdf

The OpenCPI Application Development Guide has introductory material on XML and the
OpenCPI conventions for using XML. It also contains the description of the syntax for
property values and expressions that is also used in XML files described in this
document.

OpenCPI Component Development Guide Page 6 of 150

https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Application_Development.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Application_Development.pdf
http://github.com/opencpi/opencpi
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_HDL_Development.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_HDL_Development.pdf
http://github.com/opencpi/opencpi
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_RCC_Development.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_RCC_Development.pdf
http://github.com/opencpi/opencpi
https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI_Overview.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI_Overview.pdf
http://github.com/opencpi/opencpi

2 Overview

This document describes how to create OpenCPI component implementations (
workers) in a component library, so that they are available for OpenCPI application
developers and users. It introduces a kit of tools to specify and develop OpenCPI
workers in any supported authoring model language and API. It also describes how to
create, build, and manage libraries of heterogeneous components where the
components may have multiple implementations.

This document describes tools and processes to development component libraries in
general. Other documents describe the process of developing workers for specific
authoring models, which currently include Resource-Constrained C Language workers
RCC (C and C++ workers for software targets), Hardware Description Language
workers HDL (VHDL or Verilog workers for FPGAs), and OpenCL workers, OCL
(OpenCL workers for GPUs).

References to the kit of tools, scripts, documents and libraries used for developing
components and workers in libraries are part of the OpenCPI Component
Development Kit (CDK). The CDK is not an integrated development environment
(IDE), but rather is a set of commands, make and shell level tools, and scripts that
support the development process. The CDK relies on several conventional tools,
including GNU Make, and other basic POSIX command-line tools.

The CDK also includes tools specific to OpenCPI that support heterogeneous code
generation and component testing. These tools are usually used indirectly, using the
provided makefile scripts to build component libraries of workers (heterogeneous
implementations), and, when applicable, building workers in each of the available
authoring models. OpenCPI's code generation significantly reduces the code that
needs to be hand-written in implementing heterogeneous components, applications,
and FPGA bitstreams.

The OpenCPI CDK relies on technology-specific compilers (e.g. gcc), synthesis (for
FPGAs) and simulation tools (e.g. Xilinx XST and Isim, Altera Quartus, Modelsim etc.).
These tools are a mix of open-source/free and commercially available products.
Specific supported tools and versions are found in the OpenCPI Installation Guide.

Several key concepts are described in the following sections, followed by the
development process for creating component libraries.

Component Specification: an XML file that describes a component in such a way that
it may be implemented using different languages and APIs for different processing
technologies and environments. It specifies the properties and ports of the component.

Protocol Specification: an XML file that describes the allowable data messages and
payloads that are used for communication between components.

Property: (or configuration property) are writeable and/or readable values that enable
configuration, control and monitoring of workers by control software at run time.

Port: an interface of a component that allows it to communicate with other components
using a protocol. Ports are unidirectional: input or output, consumer or producer.

OpenCPI Component Development Guide Page 7 of 150

Authoring Model: one of several ways of creating component implementations in a
specific language using a specific API between the component and its execution
environment. Existing models described below are RCC, HDL and OCL.

Worker: a specific implementation of a component specification, with the source code
written according to an authoring model.

Component Library: a collection of component specifications and workers that can be
built, exported and installed to support applications.

Project: a work area in which to develop OpenCPI components, libraries, applications,
and other platform and device oriented assets.

OpenCPI Component Development Guide Page 8 of 150

3 Introduction to Worker Development

This section introduces the aspects of the worker development process that are
common across all types of workers and authoring models. There are separate
documents for each authoring model which describe their respective aspects in more
detail, including languages and APIs. After this section introduces the general
development process, following sections provide details for the contents of the various
directories and files that are involved.

A worker is developed in its own directory, based on a component specification that
typically exists in a file elsewhere. The component specification is the basis for multiple
potential alternative implementations (workers). A component specification is an XML
file called an OpenCPI Component Specification (OCS), abbreviated as spec file, is
described in detail in the Component Specifications section. The spec file also typically
references one or more OpenCPI Protocol Specification (OPS) files, defined in the
Protocol Specification section, to indicate the types of messages allowed to flow into
and out of an implementation.

In addition to a worker having their own directory, they are typically developed in a
component library (a collection of workers). The worker directories are then
subdirectories of the component library's directory, and the OCS (and OPS) for a worker
is typically found in the specs subdirectory of the component library.

Some authoring models (e.g. RCC) support creating a single binary artifact that
implements multiple workers, but usually a single worker implementation is in its own
subdirectory and when compiled, results in a single binary artifact.

The names of the worker directories have a suffix indicating the authoring model used
for that implementation (e.g. .rcc, .hdl). For a component whose component
specification file is named xyz-spec.xml, the RCC authoring model implementation of
that component will typically be in a worker directory called xyz.rcc. The worker's
directory must combine the name of the worker, before the “.”, and the authoring model
used, after the “.”. A worker named abc written using the authoring model named rcc,
would exist in a directory named abc.rcc.

The names of the spec file and the worker's directory do not have to match, but it is
recommended and allows the use of more defaults to simplify the process. An HDL
implementation of the component spec xyz-spec.xml would be in the subdirectory
xyz.hdl. Note that these names “xyz” are not required to be the names that occur in
the programming language source files (e.g. C, C++, Verilog, etc.), although that is
usually the simplest.

An xyz.test directory, at the same level as the worker directories, should be created
for unit tests common to all implementations of the xyz component's spec file. This
means that tests in this directory apply to all workers that implement the same spec.

It is possible to have multiple workers implementing the same component specification,
written in the same authoring model. In this case the worker names must be different
and at least one of them must be different from the name implied by the component

OpenCPI Component Development Guide Page 9 of 150

specification. E.g. one might have big_fast_xyz.rcc and small_slow_xyz.rcc,
both implementing the OCS in xyz-spec.xml.

Once an OCS is available, a worker can be created, usually in a library, by using the
ocpidev tool, which creates a worker's directory and populates it with an initial version
of several files that can be edited later. The ocpidev tool is described in the ocpidev
section. The initial files created that are then edited as necessary include:

1. OpenCPI Worker Description File (the OWD XML file, xyz.xml)

2. Worker “make” file (named Makefile)

3. Worker initial source code file (named xyz.<language-suffix>)

All three of these file types have initial, automatically generated, skeletal contents that
may be subsequently edited by the developer as required. Frequently only the source
code files require editing. These files are described in detail below.

The OWD file is an XML file that describes the worker itself, by internally referring to an
OCS and including implementation-specific attributes needed by the framework. The
second file is a “make” file that describes how the worker is built, and the third is the
initial source code file for the worker's actual logic.

The component specification (OCS) for the worker contains the description of the
component’s external behavior. These will exist in all implementations (workers) that
reference the component specification. The OWD adds information about a particular
implementation worker.

The OWD XML file has the name of the worker and the .xml suffix. The primary
source code file has the name of the worker, with the typical suffix for the programming
language used (.c, .cc, .vhd etc.). The primary source file for the xyz.rcc worker
written in the C language would be xyz.rcc/xyz.c. A worker may also reference
additional source files.

The worker building process invokes built-in scripts and makefiles, which automatically
create and populate two types of subdirectories in the worker directory.

The first, called gen, holds automatically generated source code and XML files that are
target-independent (architecture independent). The second type, with the name
target-<platform> holds architecture-specific object/binary files usually generated
for or by a compiler for a specific target. In this case <target> is the name of the
compilation target being built, such as centos6 for CentOS 6 Linux running on a 64-bit
x86 processor. Both types of directories are files resulting from the build process and
are removed by make clean, as they are always regenerated and should never
manually edited. More details about these targets is in the Developing Workers section.

In the sections below, a simple example will be given, followed by a detailed description
of the component specification files (OCS), followed by the three types of worker files
just introduced.

OpenCPI Component Development Guide Page 10 of 150

3.1 A Simple Example Worker

Here is a simple example of a software worker written in C++. The component's
function is to add a constant, called the biasValue, to each unsigned 32 bit integer at its
input, and put the value at its output, one message at a time. The component
specification XML file, OCS file, is named “specs/bias-spec.xml”, and contains

<ComponentSpec>
 <property name='biasValue' writable='true' type='ulong'/>
 <port name='in' protocol='u32-proto'/>
 <port name='out' producer='true' protocol='u32-proto'/>
</ComponentSpec>

The protocol specification XML file, OPS file, indicated by the protocol attributes in
the OCS, would be found in the file specs/u32-proto.xml, and contains:

<Protocol>
 <Operation name='info'>
 <Argument name='values' type='ulong' sequenceLength='0'/>
 </Operation>
</Protocol>

For the bias.rcc worker as created by ocpidev, which implements the above spec
using the C++ language, the OWD XML file is named bias.rcc/bias.xml, and
contains:

<RccWorker language='c++' spec='bias-spec'>
</RccWorker>

This OWD indicates that the authoring model is RCC, the spec is bias-spec, and the
language is C++. The source file that implements this bias.rcc worker, simplified
without header files or error checking, is in the file named bias.cc, and contains:

class BiasWorker : public BiasWorkerBase {
 RCCResult run(bool /*timedout*/) {
 size_t length = in.info().values().size();
 const uint32_t *inData = in.info().values().data();
 uint32_t *outData = out.info().values().data();

 for (unsigned n = length; n; n--)
 *outData++ = *inData++ + properties().biasValue;
 out.info().values().resize(length);
 out.setOpCode(in.opCode());
 return length ? RCC_ADVANCE : RCC_ADVANCE_DONE;
 }
};

The Makefile in the worker's directory, automatically generated, would be:

include $(OCPI_CDK_DIR)/include/worker.mk

OpenCPI Component Development Guide Page 11 of 150

If the worker was written to the HDL model, in the VHDL language, its OWD would be:
<HdlWorker language='vhdl' spec='bias-spec'/>
</HdlWorker>

For a detailed explanation for using HDL workers see the HDL Development Guide
document for VHDL examples.

OpenCPI Component Development Guide Page 12 of 150

4 Authoring Models

This section introduces the concept of an OpenCPI Authoring Model, and defines
aspects common to all authoring models. It specifies the concepts, lifecycle states and
related operations, and XML metadata used and manipulated by OpenCPI tools and
OpenCPI component developers.

The use of the term component is to encompass the functionality and abstract interface
aspects of a model. The term worker is meant for particular implementation of a
component written, authored, using a programming language source code.

The definition of a authoring model can be casually referred to as a way to write a
worker. A key goal is to support different processing technologies available such as
General Purpose Processors (GPPs), Field-Programmable Gate Arrays (FPGAs),
Digital Signal Processors (DSPs), or Graphical Processing Units (GPUs).

Since there is no one language, or API, that allows all these processing technologies to
be utilized with efficiency and utilization comparable to their native languages and tool
environments, we define a set of authoring models that achieve native efficiency with
sufficient commonality with other models to be able to:

 Implement an OpenCPI worker for a class of processors in a language that is
efficient and natural to users of such a processor

 Be able to switch, replace, the authoring model and processing technology used
for a particular component in a component-based OpenCPI application without
affecting the other components of the application.

 Combine workers, component implementations, into an application using a
multiplicity of authoring models and processing technologies.

An OpenCPI Authoring model consists of these specifications:

 An XML document, structure/schema/definition, to describe the aspects of the
implementation that are specific to the authoring model being used and needed by
tools and runtime infrastructure software.

 Three sets of programming language interfaces used for interactions between the
worker itself and its environment:

1. Control and configuration interfaces for run-time lifecycle control and
configuration, referred to as the control plane.

2. Data passing interfaces used for workers to consumer/produce data
from/to other workers in the application (of whatever model on whatever
processor), referred to as the data plane.

3. Local service interfaces used by the worker to obtain various services
locally available on the processor on which the worker is running.

 Each authoring model also specifies how a worker is built (compiled, synthesized,
linked) and packaged, to be ready for execution in an application.

OpenCPI Component Development Guide Page 13 of 150

4.1 Requirements for All Authoring Models

 Enable/support well-defined data plane interoperability with other authoring
models

 Define its OpenCPI Worker Description (OWD) XML format.

 Define programming language interfaces for control, data, and local services.

 Must define the packaging for delivering ready-to-execute workers.

The currently supported authoring models are:

RCC (for Resource-Constrained C-language) is an authoring model used in the C or C+
+ language workers that execute on general purposes processors (GPPs). The C
language model is a lean model well-suited to small resource-constrained processors
such as embedded CPUs, DSPs or micro-controllers. The C++ variant is more powerful
and more compact, carries a slightly higher resource footprint, and of course requires a
C++ compiler. Developing workers according to the RCC authoring model (either C or
C++) is fully described in the RCC Development Guide.

HDL (for Hardware Description Language) is an authoring model using the VHDL (and
less-supported Verilog) languages and is targeted at FPGAs. Developing workers
according to the HDL authoring model is fully described in the HDL Development
Guide.

OCL (for OpenCL) is an upcoming authoring model using the OpenCL (C
subset/superset) language targeting graphics processors. It is fully described in the
OCL Development Guide. This support is experimental as of the current release.

OpenCPI Component Development Guide Page 14 of 150

4.2 Control Plane Introduction

The material in this introduction is common to all authoring models. We use the term
control software to describe software that launches and controls OpenCPI
applications. This is either the standard utility program, ocpirun, or custom C++
programs that perform the same function embedded inside them. Such custom
programs use the Application Control Interface, an application launch and control API
described in the OpenCPI Application Development Guide.

We use the term Control Plane to encompass the various aspects of how control
software, usually running in a centralized host processing environment, can control
worker instances at runtime. The entity that is doing the controlling (or managing) is the
control application, or simply control software. The control software uses all controllable
worker instances the same, regardless of where they are running, on what type of
processing technology, and with what authoring model they were written.

While control software sees a uniform view of how to control workers, each authoring
model defines how this is accomplished from the point of view of the worker itself. In
particular, each authoring model defines how the two key aspects of control are made
visible to the worker's source code: LifeCycle control and Configuration Property
access. The documents describing each authoring model give additional interface
details of these interactions, but they all follow a common pattern which is defined here.

4.2.1 LifeCycle State Model

Most component-based systems have an explicit lifecycle state model, where workers
are instantiated and then managed, according to a lifecycle state machine. Normally all
components in the application are managed together and they all progress through the
lifecycle together. However, there are cases where control software must control
(start/stop etc.) some components in the application different than others.

The LifeCycle model is defined by the control states each worker may be in, and control
operations which generally change the state a worker is in, effecting a state transition.
The possible states and transitions are shown in the following diagram.

OpenCPI Component Development Guide Page 15 of 150

Diagram 1: Control States and Operations

4.2.2 LifeCycle Control Operations

Control operations have default implementations that only perform the state transitions:
workers only need to implement the operations that have custom behavior. A good
example is the initialize control operation. If the worker has no runtime initialization to
perform, it can have no implementation of this operation and not even have an empty
“stub”. Each authoring model describes which control operations must have
implementations.

Control operations can have two error types: transient or fatal. Transient errors imply
that no state change occurred and the operation can be retried. Fatal errors imply that
the worker instance has become unusable and needs to be reloaded.

Control software is required to issue control operations correctly, in sequence, so
workers can avoid checking for valid states and transitions. State descriptions are listed
in the table below:

OpenCPI Component Development Guide Page 16 of 150

Table 2: Control States

Control
State

Previous
State(s)

Allowable
Operations

Description

Exists

Initial state or
all (except
unusable),
after release

Initialize

Follows instantiation or a successful release.
Worker is loaded (if necessary), not fully
initialized, with no properties valid, and property
access not allowed.

Initialized Exists Start, Release

Initialization complete. Follows initialize. In a
stable state “ready to start doing work”, not
“operational”. Properties can be read and/or
written.

Operating
Initialized,
Suspended

Stop, (done),
Release

Member doing normal work using properties
and data at ports. Properties can be read or
written. Follows start.

Suspended Operating
(Re)start,
release

Member not operating, will not produce or
consumer at data ports. Properties can be
read or written. Can be resumed via start.

Finished Operating Release
Member is finished and will not produce or
consumer at data interfaces. Properties can be
read or written. Entered autonomously.

Unusable All (fatal errors) none
Fatal error state, may not be ever reusable
without reloading (container-dependent).

4.2.3 Configuration Properties

Configuration Properties are specified in the OCS or OWD, and are writeable and/or
readable values that enable control and monitoring of workers by control software.
They are logically the knobs and meters of the worker's “control panel”. All authoring
models provide an interface enabling workers to access (read and write) these values.

Some authoring models define a flat/linear configuration address space where the
configuration properties are accessed by accessing this memory space, roughly as a
data structure or register file.

The component specification for the worker contains the description of the configuration
properties that are part of the component’s external behavior. These will exist in all
implementations (workers) that reference the component specification. However, each
worker may also add to this set of configuration properties and define implementation-
specific configuration properties. These can be useful for implementation debugging
and testing, or in some cases to allow applications to configure properties specific to a
particular implementation.

OpenCPI Component Development Guide Page 17 of 150

Each configuration property is defined with a name and data type from the data types
listed in the table below. Each configuration property may vary in length (i.e. be strings
or sequences) but must specify a maximum length. This enables components and
workers to be compliant with a variety of component system standards, and enables
authoring models for resource-limited embedded technologies.

Data types for configuration properties are based on the scalar types listed in the
following table. A property data type can be one of the scalar types or a structure
with typed members that are property data types. A property data type may have
array dimensions, and also (after any array dimensions are applied) be defined as a
variable length, single dimension sequence. This recursive definition allows for
complex types such as: a sequence of a two dimensional arrays of structures
containing members that are themselves arrays or sequences or structures.

Table 3: Scalar Data Types for Properties

Scalar Data

Type

Support for
Unsigned
Version

Data

Size

Notes

bool N/A 8 bits

char Yes 8 bits Unsigned version is uchar.

double N/A 64 bits Consistent with IEEE floating-point types

enum N/A 32 bits
Types are represented by ulong values, but are
associated with string names.

float N/A 32 bits Consistent with IEEE floating-point types

long Yes 32 bits Unsigned version is ulong.

longlong Yes 64 bits Unsigned version is ulonglong

short Yes 16 bits Unsigned version is ushort

string N/A fixed Null terminated with a defined max length

When a property's type is a multidimensional array of the above types, the number of
dimensions is fixed, and the length in each dimension is fixed.

When a property's type is a variable length sequence of the above types (or arrays of
above types), it has a current length (number of valid values present), but is still
required to have a defined maximum possible length (capacity). Sequences may have
a current length of zero or any amount up to the specified maximum possible length.
E.g. if a sequence is defined with a maximum length of 4, it means that it may hold zero,
1, 2, 3 or 4 values. Space is always reserved for the maximum number of values, but
the current length is also recorded in the sequence and is set whenever a new value for
the sequence is set.

OpenCPI Component Development Guide Page 18 of 150

Beyond data type, the configuration properties also have accessibility attributes
indicating whether the value can only be:

 set at initialization time

 set any time during execution

 never set (read-only)

Similarly, a configuration property value can be described as volatile where the value
may be changed by the worker during execution, or statically readable and will not
change unless written by control software. These accessibility types are described in
detail in the Accessibility Attributes section.

An OWD file allows additional properties to be defined unique to the worker, beyond
those specified in the OCS. Additionally, the OWD may add to the accessibility of an
OCS property. E.g., for debug purposes, the OWD may make a property readable that
was not readable in the OCS. The accessibility added by the OWD results in the
implementation having a superset of what was described in (and required by) the OCS.

4.2.4 Properties that are build-time parameters

While the OCS specifies properties and their initialization-time and run-time
accessibility, an OWD can further declare that a property is a compile time parameter in
this worker. This is not allowed for properties declared as writable at runtime, either in
the OCS or OWD. When an OWD declares properties to be parameters, this means
that the worker must be built compiled, synthesized, elaborated for specific values of
such properties. This has three implications:

 An application can only use the worker if it is built for a property value that
matches the value requested for an “initial” property in the application.

 Binary component libraries may have multiple binary artifacts for the same worker,
but with different combinations of parameter values.

 The component developer must decide which combinations of parameter values to
build, in order to make alternative settings of such parameters available.

This parameter feature allows implementations to have compile time optimization for
certain values. It also allows a single worker's source code module to be optimized for
different values.

Parameter property values are applied to the build process as per the language of the
authoring model: e.g. by preprocessor symbol definitions for C, static const values
for C++, generics for VHDL, and parameters for Verilog. A framework generated (built-
in) parameter property is the ocpi_debug Boolean property that specifies the typical
debug build vs. production build. Parameter properties are described in more detail in
the Parameter Attribute OWD section.

Each authoring model specifies how properties, at runtime and compile time, appear to
the worker code. In addition it specifies how the worker may read property values
written by control software, and write values that will be read by control software.

OpenCPI Component Development Guide Page 19 of 150

Finally, different authoring models define how workers know when control software
actively reads or writes these values.

OpenCPI Component Development Guide Page 20 of 150

4.3 Software Execution Model

The material in this section applies to most software-based authoring models (e.g. RCC
and OCL). It does not apply to the HDL (FPGA) authoring model.

Execution of the model is based on a construct called Containers. Containers supply
threads and execute software-based workers. This eliminates the need for workers to
create or manage threads. This reduces the complexity of the worker code, eliminates
any requirement to support a threaded API capability, and allows the container to
determine the level of multithreading that is needed. The authoring model defines how
the threading is provided and is detailed in the individual sections for each.

Execution of a worker occurs when the worker is transitioned into the operating control
state. Workers are only executed when either a combination of its ports are ready,(port
readiness), or an amount of time has elapsed. The combination of port readiness and
the passage of time is referred to as the worker's run condition: the condition under
which it should be run.

Every worker has an entry point called its run method. When a worker's run condition
is satisfied, determined by its container, its run method is entered. Worker execution is
a series of “runs” initiated by the container. The run method cannot block, but returns
after doing some work, allowing the container itself to determine when the worker
should be entered again: when its run condition is once again satisfied.

The container calls the worker's run method when the worker’s run condition is satisfied.
Run conditions are satisfied based on the availability of its input buffers, with data, or
output buffers, with space, at a worker's ports or the passage of time/ The worker’s run
method executes some processing tasks and may:

 process some available messages at some of its input ports

 produce messages at some of its output ports

 indicate when messages are consumed as input or produced as output

 make any changes to its run condition

It then returns control to its container. Workers never block. The container conveys the
messages in buffers between collocated workers as well as into and out of the container
as required by the application assembly’s connections.

The container determines when the worker should run, supplies it with buffers full of
input messages, and buffers into which output messages may be placed.

4.3.1 Run Conditions

Workers declare a run condition which tells the container under what conditions the
worker should run. The container evaluates the run conditions of all workers and runs
them as resources and priorities allow.

The run condition object contains two aspects: port readiness and time. The worker is
run when its port readiness requirements are satisfies, or a specified amount of time
has passed. Either or both aspects can be specified.

OpenCPI Component Development Guide Page 21 of 150

While the worker is in the operating state, port readiness means that buffers are
available at that port to be used by the worker. Input ports have available buffers when
there is message data present that has not yet been consumed by the worker. Output
ports are ready when buffers are available into which they may place new data. I.e.
input ports are ready when the worker has data to consume, and output ports are ready
when the worker has room to produce new data into a buffer. Workers may partially
consume or partially produce messages in any given run.

This port readiness model implements simple data driven execution: code is run when
data can flow. The default run condition specifies that the worker should run if data is
available at all input ports and space is available at all output ports (or conversely, there
are no ports that are not ready). Note that this default, for workers with no ports, means
they are always ready to run.

The time aspect of run conditions, indicated by the worker, specifies the desired
maximum time between invocations of the worker’s run method. If no port readiness is
also specified, this simply indicates periodic execution. If the time aspect is specified
with port readiness, it indicates that execution should take place when either the
indicated port readiness conditions are satisfied –or– the indicated amount of time has
passed since the worker's run method was last entered.

The default time aspect of run conditions is: no such maximum time at all. In this case
time passing does not affect worker execution, only port readiness.

A worker may change its run condition at any time during the execution of its run
method by passing a new run condition to the container, to be considered after the run
method returns to the container.

In summary, run conditions specify a combination of data-driven and time-driven
execution. Most workers use one or the other, but both can be used together. The
defaults allow most workers to never have to indicate any run condition at all.

4.3.2 Sending or receiving messages via ports

The worker indicates data flow to the container under two conditions. The first occurs
when the worker has consumed the message in an input buffer at a port. Notification of
which allows that buffer to be released and reused. The second happens when the
worker has finished placing a message in an output buffer at a port. This allows the
message in the buffer to be sent on.

4.3.3 Buffer management

The container provides and manages all buffers and provides references to buffers to
the worker. Input ports operate by the container providing buffers to the worker filled
with incoming messages. Output ports operate by the container providing buffers for
the worker to fill with messages before being sent. Output buffers are either:

 obtained for a specific output port (since they may be in a special memory or pool
specific to a particular output hardware path), or

 originally obtained from an input port and passed to output ports, with no copying
by worker code.

OpenCPI Component Development Guide Page 22 of 150

Workers may modify data in input buffers, allowing input buffers to be used for
temporary storage, to reduce overall memory requirements. When reuse occurs, the
buffers must be annotated in the worker description XML. This ensures the container
does not share the buffer with another consumer of the same data.

Several more advanced buffer management requirements are supported for certain
situations:

 To support sliding window algorithms, workers are allowed to retain ownership of
previous buffers by not releasing them while new ones are requested; i.e. allow
explicit in order input buffer release, not just the most recent buffer obtained. The
worker must still release the buffers in the order received.

 To support zero copy from input ports to output ports, workers are allowed to send
a buffer obtained from an input port to an output port. This method does not
require an empty current buffer to fill on the output port. Such buffers must be
sent, or released, in the order received. This avoids copying data from input
buffers to output buffers.

The features list previously are only needed in certain cases, and can be ignored for
most simple workers. To support these more advanced modes, non-blocking interfaces
for explicitly releasing, sending, and requesting buffers are available.

There are four operations performed with message buffers. These provide the basis for
specific non-blocking functions in the APIs defined for each authoring model.

 Request that a new buffer be made available. For an input port, it will be filled by
the container with a new input message. For an output port, it is to be filled by the
worker with a new output message. In both cases the ownership of the buffer
passes from container to worker when it becomes available. The new buffer may
or may not be immediately available based on this request.

 Release a buffer to be reused, with its contents discarded. The ownership passes
from worker to container. Input buffers must be released (or sent) in the order
received, i.e. ownership of input buffers must be passed from worker to container
in the order that ownership was given from container to worker.

 Send (enqueue) a buffer on an output port, to be automatically released after the
data is sent. The ownership passes from worker to container. If the buffer was
originally obtained from an input port, it must be sent or released in the order
received.

 Take the current buffer from an input port such that is it no longer the current
buffer of the port, but ownership is retained by the worker. This allows new input
buffers to be made available while the worker holds on to previous buffers. A take
implies a request for new buffers. This function allows workers to use previous
buffers to hold history data for algorithms such as sliding window or moving
average, without allocating any additional storage.

The concept of the current buffer of a port supports a model for workers that have no
need to be aware of buffer management. A port is ready if it has a current buffer. A
current buffer on an input port is available to read data from. A current buffer on an

OpenCPI Component Development Guide Page 23 of 150

output port is available to write data into. The concept of advancing a port, is simply a
combination of releasing (input) or sending (output) the current buffer of the port, and
requesting a new buffer to be made available on that port, to become the current buffer
when it becomes available in the future:

 advance = release_or_send + request

Simple workers, using the default run condition, wait for all ports to be ready, process
input buffers into output buffers, advance input and output ports, and return.

Worker APIs defined by the authoring model are designed to make this common pattern
as simple as possible. Workers are run when ports are ready, and they advance ports
after processing messages in current buffers.

OpenCPI Component Development Guide Page 24 of 150

5 Protocol Specifications (in OPS XML files)

An OpenCPI Protocol Specification (OPS), describes, in one or more XML files, the
set of messages that may flow between the ports of components. They are described
separately from the OCS XML file as they are used by both sides of a connection. In a
connection between component ports the specs of both components, in their Port
elements, refer to the same OPS.

The OPS describes the set of messages defined in the protocol, as well as some top
level attributes for the protocol.

In special cases the messages in a protocol are not specified individually, but rather a
set of summary attributes is specified. This indicates the basic behavior of the ports
using the protocol. The information is called a protocol summary. When messages
are specified, protocol summary attributes are inferred from the messages. If protocol
summary attributes are present when messages are specified, they override the
attributes inferred from the message specifications.

As an example, a set of messages of different lengths and different payload formats
might be bounded, having a maximum length, or unbounded, depending on whether
any message has no maximum length. This boundedness attribute is normally inferred
from the set of messages. Another example is the smallest unit of data in any message.
If all messages in a protocol deal only with 64 bit integers, then the smallest unit of data
for all messages is 8 bytes. This minimum data granularity attribute is inferred from
examining all the messages specified for the protocol.

A protocol summary is the set of all summary attributes, whether inferred from the
messages specified for the protocol, overridden by explicit values, or given directly
when messages are not specified. The summary attributes are used by the OpenCPI
code generation tools and runtime environment to determine certain behaviors.

In OPS files, messages are called operations, and fields of messages are called
arguments. This is terminology based on the Remote Procedure Call (RPC), or
Remote Method Invocation (RMI), model of communications. However, this concept
does not apply to OpenCPI inter-component communications, as all communications
are simply unidirectional connections conveying messages.

The term opCode is used to represent a zero-origin ordinal of operations within a
protocol. In the runtime environment opCodes are used to indicate which operation of
the protocol a given message represents. This if the opCode of a message is zero,
then that message should be interpreted as the first operation in the protocol.

OPS files preferably carry the suffix -prot.xml, although -protocol.xml,
_protocol.xml are also used.

OpenCPI Component Development Guide Page 25 of 150

5.1 Protocol Element as Top-level Element.

The Protocol element is a top-level element in a separate file whose name is the
value of the Protocol attribute in a port element in an OCS. It specifies the message
protocol used at a port. The protocol will likely be reused across a variety of
components and interfaces since it specifies how two components talk to each other.
The Protocol element has Operation subelements to indicate the different message
types that may flow out of or into data ports using this protocol.

5.1.1 Name attribute of Protocol elements

When the Protocol element is the top-level element in a file, the optional name
attribute is defaulted from the name of the file, with any -prot, _prot, -protocol,
_protocol, .xml suffixes removed. Since protocols are usually defined in separate
files, the names are usually not present in the XML and are derived from the file name.

5.1.2 Protocol Summary Attributes

These attributes are normally inferred from Operation elements in the protocol and
are rarely used explicitly. They may be used to override the inferred values or they may
be specified in the absence of Operation elements altogether. This table defines the
protocol summary attributes normally inferred from examining Operation elements.

Table 4: Protocol Summary Attributes

Name Type Description

DataValueWidth ulong Size in bytes of smallest unit of data in any message

DataValueGranularity ulong Minimum number of data values in any message

DefaultBufferSize ulong Default buffer size for this protocol even if unbounded*

DiverseDataSizes bool Are there different size data values?

MaxMessageValues ulong Maximum number of data values in any message*

MinBufferSize ulong Minimum allowable buffer size for this.

MinMessageValues ulong Minimum number of data values in any message

NumberOfOpCodes ulong Number of message types

UnBounded bool Do any messages have unbounded length?

VariableMessageLength bool Can messages be different lengths?

ZeroLengthMessages bool Are any messages zero length?

* these attributes have no inferred value if protocol is unbounded.

Name Type Description

OpenCPI Component Development Guide Page 26 of 150

NumberOfOpCodes ulong Number of message types

DataValueWidth ulong Size in bytes of smallest unit of data in any message

DataValueGranularity ulong Minimum number of data values in any message.

ZeroLengthMessages bool Are any messages zero length?

MaxMessageValues ulong Maximum number of data values in any message, or
zero if not bounded

VariableMessageLength bool Can messages be different lengths?

DiverseDataSizes bool Are there different size data values?

UnBounded bool Do any messages have unbounded length?

DefaultBufferSize ulong Buffer size for ports using this protocol
even if protocol is unbounded. Default is zero when
protocol is unbounded.

5.1.3 Operation element of Protocol elements

The term Operation is loosely associated with the analogous concept in RPC systems
where the message is invoking an operation on a remote object. In the context of
OpenCPI it simply describes one of the messages that is legal to send on a port with
this protocol. It has two attributes and some number of argument child elements, which
describe data fields in the message.

5.1.3.1 Name attribute of Operation elements

This string attribute is a case insensitive name of the operation/message within this
protocol. It should be an appropriate identifier for programming languages.

5.1.3.2 Argument element of Operation elements

This child element indicates a data field in the message payload for the given
operation. Its attributes are the same as a Property element and describe a
configuration property with: Name, Type, StringLength, ArrayLength,
SequenceLength, etc. If no argument elements are present under an Operation
element, the operation defines messages with no data fields, referred to as a Zero
Length Message. Argument elements are similar to member elements in property
elements whose Type attribute is struct, but these arguments to an operation do not
have to have bounded lengths. Here the StringLength attribute is not required for
strings, and the SequenceLength attribute can be zero indicating no upper bound.

OpenCPI Component Development Guide Page 27 of 150

5.2 Protocol Specification (OPS) Examples

This protocol has one message type consisting of 1024 unsigned short values.
<Protocol
 <Operation Name=”mess1”>
 <Argument Name=”val” Type=”uShort” ArrayLength=”1k”>
 </Operation>
</Protocol>

OpenCPI Component Development Guide Page 28 of 150

5.3 Message Payloads on Data Ports

The message payload for each operation has a serialized format as a sequence of
bytes that, when used in software, are laid out in byte-addressed memory. For
example, if the operation element in a protocol contains:

<argument name='a1' type='uchar'/>
<argument name='a2' type='ushort' arraylength='2'/>
<argument name='a3' type='ulonglong'/>

And the values of this payload are:
a1: 1, a2: {0x2345,0x6789}, a3: 0xfedcba9876543210

Then the byte sequence (with proper alignment, and encoded little-endian), would be:

Sequence # ► 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Contents (hex) 01 x 45 23 89 67 x x 10 32 54 76 98 ba dc fe

Argument a1 a2[0] a2[1] a3

Contents 1 0x2345 0x6789 0xfedcba9876543210

This layout and these values is the same for all types of workers in all (little endian)
environments and over all data paths. The x values are padding for alignment.

Every numeric type is aligned for its size. Structure types are aligned according to the
largest alignment requirement of any of its members. Sequences are aligned according
to the alignment requirement of their members, and preceded by a 32 bit unsigned
value indicating the number of elements. If the alignment requirement of the sequence
is greater than 32 bits, padding is added after the length to align the first element, even
if there are zero elements. Padding inserted to achieve alignment may be any value.

OpenCPI Component Development Guide Page 29 of 150

5.4 End-of-File (EOF) Indications on Data Ports

Regardless of protocol, the OpenCPI messaging system (its data plane) supports an
EOF indicator in the data paths between workers of all types that indicates that no more
messages/data will arrive at input ports or that no more messages/data will be produced
on output ports. This indication is a persistent condition that will only be removed when
the application and workers are restarted. It is not a message or a protocol operation.

Such an indication only happens when some worker asserts it on an output port, which
then propagates it (down-stream) to the input port of the worker that the output is
connected to. The most common usage of this EOF indication is when data is being
read from a file (e.g. by a file_read component), and when that component
encounters the end of the file it is reading. It typically then has three options:

 Assert an EOF on its output port after the last message/data is sent, and enter the
finished control state.

 Do nothing on the port, and enter the finished control state.

 Start reading the file from the beginning again.

Thus in a typical execution of an application where end-of-data is a meaningful
condition, the EOF will propagate through all workers to the final “sink” components
(e.g. file_write or capture) that do not have output ports. In this way all workers
know that the application is finished, and all can cleanly complete their work (perhaps
flushing pipelines, closing output files etc.). In this way the EOF indication on the data
plane is related to the action that a worker would take to enter the finished control state.
I.e. the reception of EOF would commonly result in the worker entering that state.

For continuous applications where the concept of EOF is not meaningful, it will never be
encountered by any worker since no worker will assert it on an output port.

The unit test framework described in Unit Testing makes use of EOFs to execute
repeatable tests of components. Applications that process data sets of bounded size
will also find the use of EOF to be convenient and useful, since it makes it clear to all
components as well as the application as a whole that the application is “done”.

For most workers, the propagation of the EOF indication from its input port(s) to its
output port(s) is automatically done without their involvement. Input data will simply
stop arriving. However, some workers have more complex interactions with data ports,
and perhaps more complex internal pipelining or state that requires special treatment
when the last data arrives. They will recognize the EOF indications and perform final
processing tasks accordingly. This latter type of worker declares “I will deal with EOFs”,
(using the WorkerEOF attribute) and the OpenCPI infrastructure will not perform the
automatic propagation.

Each authoring model has an interface for the worker to sense the EOF indication on
input and assert it on output. These interfaces are described in the respective
documents specific to the authoring models (e.g. RCC and HDL development guides).

The next section describes important issues of backward compatibility relating to EOF
indications for workers implemented prior to release 1.5, which are still supported.

OpenCPI Component Development Guide Page 30 of 150

5.4.1 EOF Processing Prior to Release 1.5

Prior to release 1.5, the notion of EOF was overloaded with, and frequently confused
with, the notion of a zero-length-message (a.k.a. ZLM). The pre-1.5 file_read
component, upon encountering the end of the file it was reading, would (as a default),
send a zero length message with the opcode of zero as an EOF indication.

This would directly conflict with protocols whose first operation happened to have no
arguments. In general, users avoided the conflict by not defining protocols with the first
operation having no arguments. And it was impossible to use the EOF concept with a
“pure single event” protocol that only had one message with no arguments, which is
useful for sending events (pulses) between components. These difficulties disappear
with the introduction in release 1.5 of a cleanly separate EOF indication that has nothing
to do with messages and protocols.

Workers written prior to release 1.5 that supported EOF for unit test or other reasons,
did so by explicitly adding code to interpret zero-length messages with opcode zero
(ZLM0s) as EOF, and passing them from input to output. A small number actually acted
on the reception of ZLM0 to perform certain flushing operations. This ZLM0 recognition
was required in order to make best use of the unit test framework and the extra worker
code to process ZLM0s was considered “worth the extra code” in order to facilitate
repeatable testing.

5.4.2 EOF-related Compatibility Measures for Pre-1.5 Workers.

In order to maintain backward compatibility with all such workers, in release 1.5 a
“worker interface version” attribute was introduced in OWDs which indicates whether a
worker expects to see the older ZLM0 messages as EOFs or not. Newer workers set
the version attribute to 2 (or later) in their OWD and get the benefit of the new, simpler,
orthogonal EOF model (and other interface improvements introduced in release 1.5).

Workers that do not have this attribute are assumed to be “pre-version2”, which means
that if and when an EOF indication is asserted at its input port, a ZLM0 is injected at that
input port so the worker sees the ZLM0/EOF as it did before. When such a worker
sends a ZLM0 on its output port, it is interpreted as the assertion of EOF.

Workers that were written to not process ZLM0s as EOF (because they would never
see them), and not have protocols whose first operation had no arguments, would never
see or generate ZLM0, so they are also compatible with release 1.5.

These compatibility measures do not extend to workers that do not process ZLM0 as
EOF but do use protocols whose first operation has no arguments. In this case when
they produce a ZLM0 it will be incorrectly interpreted as EOF. A separate option to
suppress this output-ZLM0-recognition-as-EOF may be developed in a patch release if
it is discovered that this type of worker actually exists and deserves this additional
compatibility treatment rather than requiring conversion to a new “version 2” worker.

There is a discussion in the various authoring model documents about such
conversions/upgrades for migrating older workers to use version 2 worker interfaces.

OpenCPI Component Development Guide Page 31 of 150

6 Component Specifications (typically in OCS XML files)

An OpenCPI component is a functional abstraction with a specifically defined control
and configuration interface based on configuration properties, and zero or more data
interfaces (ports), each with a defined messaging protocol. An OpenCPI Component
Specification (OCS) file describes both of these aspects of a component, establishing
interface requirements for multiple implementations (workers) in any authoring model.
Workers are developed based on an OCS.

In the unusual case where there is no expectation of multiple workers implementing the
same OCS, the XML for the OCS may be embedded in the OWD, as a
ComponentSpec element.

The OCS describes two things: (1) the configuration properties of the component (how it
is initially and dynamically configured and controlled), and (2) the (data) ports of the
component (how it talks to other components). Based on these all components can be
configured and interconnected in an application, regardless of component
implementations. An OCS does not contain a behavioral description of the component,
but only its interfaces, for use by both implementations and for applications.

A OCS file is the first step in having a component implementations built and ready for
use in an application. This file is the basis for all the implementations. An OpenCPI
worker is an implementation based on an OCS and a particular authoring model. The
worker consists of two things:

1. A separate XML description called the OpenCPI Worker Description (OWD)
of the particular implementation, indicating the worker's authoring model the
worker is based on and the OCS is it implementing

2. The source code in some programming language that does the actual
computing function of the implementation, written according to the authoring
model.

The OCS XML contains component-global attributes, configuration aspects and data
port aspects. A component specification is contained in the XML element whose type is
ComponentSpec” which should be a top-level element in a file, structured as:

<ComponentSpec

 ---attributes---
 >
 ---child elements---
</ComponentSpec>

The OCS XML file is called the spec file for the component, and has a -spec.xml
suffix. The spec files for all components in a library are usually found the specs sub-
directory of the library. When groups of properties or groups of message protocol
operations, or message types, are shared between spec files they are placed in
separate -prot.xml or -prop.xml files. This allows for references from multiple spec
files. The suffixes and locations of the files are required for the component library

OpenCPI Component Development Guide Page 32 of 150

management scripts. This also enumerates what files must be exported when
applications use components in the library.

The spec files, and if necessary property and protocol files, are used by two different
processes:

 The implementations, in worker subdirectories, need these files to ensure the
implementation matches the specification.

 Applications need these files to correctly use the components and connect them to
each other. Reference the OpenCPI Application Guide document.

It is strongly encouraged to use a common spec, and common unit tests, between
different implementations of the same functionality defined by an OCS.

OpenCPI Component Development Guide Page 33 of 150

6.1 ComponentSpec Top-level Element

Below are the attributes and elements of the ComponentSpec top-level XML element.
ComponentSpec elements may have name and noControl attributes, and may
contain property and port child elements.

6.1.1 Name Attribute of the ComponentSpec element

The optional Name attribute of the component specification provides a name that is
unique within its name scope. The attribute is case insensitive within a library or
application. This means two different component specifications cannot differ only in
case. When the ComponentSpec element is the top-level element of a file, the
component name attribute is defaulted from the name of the file before any suffixes.
That means this attribute is optional when the ComponentSpec is the top level element
of a file. Omitting this attribute and using this default is recommended since this
eliminates any confusing mismatches between the name of the OCS file and the name
of the component in the XML.

6.1.2 NoControl Attribute of ComponentSpec elements

The NoControl attribute of the component specification is a Boolean attribute that
indicates, when true, that components using this specification have no
lifecycle/configuration interface at all. This is generally not allowed for application
components but is specified for certain infrastructure components.

OpenCPI Component Development Guide Page 34 of 150

6.2 Properties Element of ComponentSpec Elements

The Properties element of a component specification has no attributes but consists of a
list of Property child elements. The Properties element may be in a separate file and
referenced using the <xi:include href=”<file>”/> syntax. This is useful when
groups of Property elements are shared among multiple component specifications.
However, the most common usage is to have Property elements directly enumerated
under the top level ComponentSpec element, without using the Properties element
at all.

OpenCPI Component Development Guide Page 35 of 150

6.3 Property Element of ComponentSpec or Properties Elements

A Property element describes one configuration property. It occurs as a sub-element of
either the ComponentSpec element or the Properties element. A Property
element describes the name, data type and accessibility of a configuration property. Its
data type can be a scalar type or a structure. Each property can also be an array
and/or a sequence of its data type. The term array refers to a fixed number of data
values of the specified type. The use of the term sequence refers to a variable number
of data values, up to a specified maximum length. All variable length data types used
for properties must be bounded. See the sequences and strings data types for more
information.

Property elements as described here may also be present in the OWD for a worker, to
specify worker-specific properties beyond what is specified and required by the OCS.

6.3.1 Name Attribute of Property (and Member) Elements

The Name attribute is the case insensitive name of the property. A set of properties
cannot have properties whose names differ only in case. Mixed case property names
can be used for readability. When a Properties element includes other Properties
elements there is still only one flat case-insensitive name space of properties for the
component.

Description Attribute/Element of Property (and Member) Elements

The Description attribute allows the author to add documentation of the property in
XML. This text can also be supplied in a child element, which is more convenient if the
test is multiple lines. To allow multi-line descriptions to be conveniently indented in an
XML file, leading white space is removed from the start of all lines to the extent that it is
common to all lines. Currently this description text is not used in OpenCPI, but it is
intended to support automation for component data sheets. An example of the white-
space removal is:

<property name='prop1'>
 <description>
 Hello this is some descriptive text
 Where we want to show
 - multiline features
 - white-space removal
 </description>
</property>

would result in the description test being:
Hello this is some descriptive text
Where we want to show
 - multiline features
 - white-space removal

OpenCPI Component Development Guide Page 36 of 150

6.3.2 Type Attribute of Property (and Member) Elements

The Type attribute specifies the data type of the property. The legal types are listed in
table Data Types for Properties. When the Type attribute has the String value, the
StringLength attribute must also be supplied. This additional attribute indicates the
maximum length of the string property values, excluding any terminating null character.
If no Type attribute is present in the Property element, the type ULong is used as the
default.

When the type is Enum, the actual values are zero-based Ulong, but the named values
are indicated by strings found in the Enums attribute described below.

The ArrayLength attribute is used when the property is a fixed-length one-
dimensional array of the indicated type. The SequenceLength attribute is used when
the property is a variable length sequence of the indicated type.

When the type is Struct, the Property element itself has Member sub-elements that
indicate the types of the members of the struct property. No struct members can
be of type Struct. The SequenceLength and ArrayLength attributes may apply to
Struct properties. Member child elements are similar to Property elements in that
they describe the name and data type information for the member.

All types have a maximum length and Properties cannot have unbounded length.

6.3.3 StringLength Attribute of Property Elements

The StringLength attribute is required when the Type attribute is String, and
indicates the maximum length, excluding any null termination, string value that this
property can hold.

6.3.4 Enums Attribute of Property Elements

This attribute is required when the Type attribute is enum, and its value is a comma-
separated list of strings naming the enumerated values. The actual values are Ulong
and are zero-based ordinals based on the position of the names in this list.

6.3.5 ArrayLength Attribute of Property Elements

The presence of this attribute indicates that the property values are a fixed length one-
dimensional array of the type specified in the Type attribute, and that fixed length is
indicated in the value of this attribute.

This attribute is a convenience shorthand for using the ArrayDimensions attribute
described below. E.g. if it is used like this:

ArrayLength='5'

This is really shorthand for:
ArrayDimensions='5'

OpenCPI Component Development Guide Page 37 of 150

6.3.6 SequenceLength Attribute of Property Elements

The presence of this attribute indicates that the number of property values is a variable,
but bounded, sequence of the type specified in the Type attribute. The maximum length
is indicated in the value of the SequenceLength attribute. This property has the
specified maximum length, and always contains a current length, up to that limit. When
both SequenceLength and ArrayLength attributes are present, the meaning is
sequence of arrays, not array of sequences.

6.3.7 ArrayDimensions Attribute of Property Elements

The value of this attribute is a comma-separated list of array dimensions indicating an
array whose number of dimensions is the number of values in the list. If this attribute is
set, then the ArrayLength attribute should not be set. This attribute implies that
values are multidimensional arrays of elements whose type is indicated by the Type
attribute.

OpenCPI Component Development Guide Page 38 of 150

6.4 Accessibility Attributes

The accessibility attributes of the Property element specify how and when properties
get their values. The boolean attributes that affect property accessibility are:
parameter, initial, writable, and volatile. They all have the default value of
false. When described as being “set”, it implies set to true. The attributes that
specify property values in XML are default or value. How all these attributes are
used is defined below and a summary of the valid combinations is in a table after that.

From the perspective of control-software (an ACI application or the ocpirun utility), the
initial value of a property can come from four sources:

Set by control software itself via:

1. command line arguments to ocpirun

2. the PValue argument to the C++/Python application constructor in the ACI

3. Set in the application XML (OAS)

4. Set in the the OCS XML property elements

Set by the worker

This list is in precedence order, with earlier mentioned sources overriding later ones
(with one exception mentioned below).

Property values may be set/established at three different times:

At build/compile time, based on values in XML files.

At just before applications are started

35. After an application starts, during execution

The parameter, initial and writable attributes specify where the value comes
from (its source) and when it may be set (its time). None or one of them may be set.

Parameter: the value is established in XML and has a constant, compile-time
value, either determined in the OCS or determined by the worker's XML.
Source is #1 and time is #1. No runtime changes are allowed.

Initial: the value is established when an application is initialized, before it is
started, according to the precedence rules. Sources are #1, #2, or #3, and
times are #1 or #2. No changes are possible during execution.

Writable: the value is established like initial, but may also be dynamically set
it any time during execution (adds time #3 to initial).

<None>: If none of the parameter, initial, or writable attributes is set, the
value is established by the worker (only source #4).

The volatile attribute specifies whether the worker may change the value after the
application starts (time #3). The volatile attribute may not be set with parameter.

OpenCPI Component Development Guide Page 39 of 150

The default attribute may specify a default value in the XML, when parameter,
initial, or writable is set. As an exception to the precedence rules, a parameter
with a default value may be overridden by the underlying worker, in its XML.

Finally, for parameters only, the value attribute may be used instead of the default
attribute when the value is fixed and may not be changed by precedence rules at all.

Reading Properties from the Control-Software Perspective

All properties are considered readable by control software. Parameter property values
are read as the constant value set in XML (by OCS or worker XML). The worker is thus
not involved in reading. Otherwise the following discussion applies.

If the property is indicated as volatile, the worker may change the value at any time
and the value control-software reads is what the worker provides at that moment, with
no caching. Even when the volatile property is specified as initial or writable, the
value read by control software is what the worker provides at that moment and not
necessarily what was written previously by control software.

If the property is not indicated as volatile, and it is specified as initial or
writable, control-software simply reads back what it last wrote, using a cache and not
involving the worker. If no boolean accessibility attributes are set, control software
reads back the constant value that the worker provided after its own initialization, using
a cache in the control-software after the first read.

6.4.1 The Order in which Properties are Written during Startup

This section only applies when properties are specified as initial or writable.
Initial values are written prior to workers being started but after they have been
initialized, with no inter-property ordering guarantees. To process multiple properties as
a group, a worker must wait until the start operation or the first time the worker is run,
since that is the only way to be sure all the properties that will be written, have been
written. I.e. if some startup action depends on a combination of the values of multiple
properties, this cannot be done prior to the start operation.

Property write notifications (telling the worker when a property has been written,
different in each authoring model) will still be made prior to the start operation, to allow
workers to know that a property has been written at the earliest possible time. However,
no assumptions on ordering between these early property writes can be made. A
worker may keep track of what properties have been written to determine when multiple
properties have been written based on write notifications. Otherwise, it should wait until
the start operation.

6.4.2 Initial Attribute of Property Elements

See the introduction above on the semantics of this boolean attribute. It precludes
setting the value by control software during execution, allowing an initial value to be
specified from any source but the worker itself.

The initial attribute setting in an OCS provides the most flexibility to workers
implementing the specification, and is the most common property accessibility setting.

OpenCPI Component Development Guide Page 40 of 150

It allows workers to choose whether to implement the property as compile-time (setting
parameter in the worker XML and perhaps building the worker for multiple compile-
time values) or runtime (leaving it unchanged from the OCS, allowing any value). The
initial setting allows there to be multiple workers that make this choice differently
(compile-time/fast/small for a fixed set of values vs. runtime and flexible for all values).

The initial setting provides another benefit that makes workers easier to write: the
worker does not have to deal with any changes in the property's value after the
application starts, allowing implementations to either:

 Have the property be configurable to any value at execution time
—or—

 Have the property value be fixed and compiled in to the implementation.

This enables some implementations to be flexible and allow different values at runtime,
while other implementations can fix the value at compile time. When the application
specifies a particular value, the worker with the compiled-in value can only be used if
the requested value matches the compiled-in value. Workers with the non-parameter
property can be used with any value. This second usage of the parameter attribute is
discussed further in the section on the OWD XML files.

6.4.3 Writable Attribute of Property Elements

See the introduction above on the semantics of this boolean attribute. It enables setting
the value by control software during execution.

Setting the writable attribute requires that the worker accept and implement dynamic
runtime changes in the property's value. This setting should only be used if this is a true
requirement of the component since it is more demanding on all workers that implement
the specification.

6.4.4 Parameter Attribute of Property Elements

See the introduction above on the semantics of this boolean attribute. It indicates that
the property's value is used at compile/build time when source code is processed into a
binary artifact to be loaded and executed at run-time.

There are two uses for properties designated as parameters using this attribute:

1. A convenience variable for defining other attributes like string and sequence
lengths or array dimensions, or as the basis for other property values when
those values use expressions which use parameter properties as variables.

Making this property's value available for all workers as a compile-time constant.

The convenience usage (1) allows properties defined as parameters to be used in
expressions for the value of stringlength, sequencelength, arraylength,
arraydimensions, value or default attributes. For the allowable syntax of such
expressions see the attribute expressions section below. An example is when multiple
properties are to have the same array dimensions, or to have array dimensions that
relate to each other, e.g. one twice as long as the other. An example is:

OpenCPI Component Development Guide Page 41 of 150

<property name='nbranches' default='14' parameter='true'/>
<property name='tree1' arraylength='nbranches'/>
<property name='tree2' arraylength='nbranches*2 – 1'/>

The second usage (2) makes the value for all implementations a compile-time value. If
the property has a value attribute, that value is the fixed value for the property. If the
property has a default attribute, that value is the value unless the worker specifies
otherwise (see the OWD and build.xml sections).

These parameter values are also made available to worker source code during the
compilation process, in a way specific to the authoring model and described in the
document for the authoring mode.

6.4.5 Expressions in Numeric Attributes

For attributes that take numeric values, such as StringLength, ArrayLength,
SequenceLength, and ArrayDimensions, the values can be non-negative numeric
values, and can be expressions that may use properties defined as parameters as
variables in the expression. They are parsed as the type Ulong. The full expression
syntax is described in detail in Property Value Syntax section. An example is above in
the Parameter Attribute section.

6.4.6 Default Attribute of Property Elements

The name of this attribute is default. This attribute provides a default value for the
property for all implementations and the initial value precedence rules described above.
It is parsed based on the data type specified in the Type attribute, and if a numeric type,
may be an expression (see the previous section). The format of the string value of this
attribute is described in the Property Value Syntax and Ranges section.

6.4.7 Value Attribute of Property Elements

The value attribute is similar to the default attribute described above, except that its
usage indicates that the value may not be overridden elsewhere (not by the application,
not by the worker). Its primary use is simply as a convenient constant value that may
be reused in other numeric expressions. It may only be used for parameter properties.

OpenCPI Component Development Guide Page 42 of 150

6.5 Port Element of ComponentSpec Elements

The component specification defines ports using the Port element. It specifies the
direction/role of the port, producer or consumer, and the message protocol used at that
port. For backward compatibility, DataInterfaceSpec can be used in place of Port.

The Port element has several attributes and one optional child element: the
Protocol. The protocol is usually specified using the protocol attribute, but can
also specified inline using the protocol element instead.

6.5.1 Name Attribute of Port Elements

This attribute specifies the name of this port of the component. The value of the name
attribute is a string that is constrained to be valid in various programming languages. It
must be unique and case insensitive within the component specification.

6.5.2 Producer Attribute of Port Elements

This Boolean attribute indicates whether this port has the role of a producer, when true,
vs. the default of false for a consumer. There is no Consumer attribute. This attribute
indicates whether the port acts as a consumer (input) when it is not set at all (which
defaults to false), or is explicitly set to false (not needed since it is the default).

All ports are considered input/consumer ports unless this attribute is set to true.

6.5.3 Protocol Attribute of Port Elements

Not be confused with the Protocol element, described in the OPS section, this string
attribute names an XML file containing the OPS for the port. The file is expected to
contain a Protocol element at its top level. If the port being described is permissive,
meaning it may produce/consume any protocol, then this attribute can be absent. An
example of a permissive component is a file writing component that logs any messages
as input, regardless of protocol.

As with all attributes that refer to an XML file, the .xml suffix is assumed if not present,
and the file is sought using the search path for XML files.

When a protocol is not specified, the following protocol summary attribute values are
implied:

OpenCPI Component Development Guide Page 43 of 150

Table 5: Protocol Summary Attribute Values when there is no Protocol

Name Value

DataValueWidth 8

DataValueGranularity 1

DefaultBufferSize system
default

DiverseDataSizes true

MaxMessageValues none

MinBufferSize 0

MinMessageValues 0

NumberOfOpCodes 256

UnBounded true

VariableMessageLength true

ZeroLengthMessages true

6.5.4 Optional Attribute of Port Elements

This is the attribute whose name is optional which is an optional attribute. This
Boolean attribute indicates whether the data port may be left unconnected in an
application. The default value of false indicates that workers implementing this
component require that this port have a connection to some other worker in the
application. When true, this port may be left unconnected and all workers implementing
this specification must support the case when the port is not connected to anything.

6.5.5 Component Specification Examples

Here is an example of a component specification that declares one float property that
can be set during initialization, but not during operation. It has one output producer port
that uses the protocol defined in the ushort_1k-proto.xml file.

<ComponentSpec
 <Property Name=”size” Type=”float” Initial='true'/>
 <Port Name="lvds_tx" Producer="true" Protocol='ushort_1K-proto'/>
</ComponentSpec>

OpenCPI Component Development Guide Page 44 of 150

7 Property Value Syntax and Ranges

This section describes how property values are formatted to be appropriate for their
data types. Property values occur in the default or value attributes of property
elements described above. This syntax is also used when property values are specified
in the worker Makefile described below. The type names presented are those
acceptable to the Type attribute of the property element in the OCS file.

Remember that attribute values in XML syntax are in single or double quotes. The
syntax described here is used inside these quotes. To have quotes inside attribute
values the other type of quotes is used to delimit the attribute value. In either case,
inside the quoted attribute value, the & and < characters must be escaped using the
official XML notions: & for &, < for <. If both types of quotes must be in an
attribute value, then the official XML escape sequences can be used: " for
double-quote, and ' for single quote.

Property values are also used when running applications. That usage is described in
the Application Development Guide, but the format is as described here.

7.1 Values of Unsigned Integer Types: uchar, ushort, ulong, ulonglong

These numeric values can be entered in decimal, octal with leading zero, or
hexadecimal with leading 0x. The limits are the typical ranges for unsigned 8, 16, 32, or
64 bits respectively.

The uchar type can also be entered as a value in single quotes, which indicates that
the value is an ASCII character, with backslash escaping as defined in the C language.
The syntax inside the single quotes is as described for the char type below.

7.2 Values of Signed Integer Types: short, long, longlong

These numeric values can be entered in decimal, octal with a leading zero, or
hexadecimal with a leading 0x, with an optional leading minus sign to indicate negative
values. The limits are the typical ranges for signed 16, 32, or 64 bits respectively.

7.3 Values of the Type: char

This type is meant to represent a character, i.e. a unit of a string. In software it is
represented as a signed char type, with the typical numeric range for a signed 8-bit
value. The format of a value of this type is simply the character itself, with the typical
set of escapes for non-printing characters, as specified in the C programming language
and IDL:

 \n \t \v \b \r \f \a \\ \? \’ \”

A series of 1-3 octal digits can follow the backslash, and a series of 1-2 hex digits can
follow \x.

OpenCPI adds two additional escape sequences as a convenience for entering signed
and unsigned decimal values of type char. The sequence \d may be followed by an
optional minus sign (–) and one to three decimal digits, limited to the range of -128 to

OpenCPI Component Development Guide Page 45 of 150

127. The sequence \u can be followed by one to three decimal digits, limited to the
range of 0 to 255.

These escapes can also be used in a string value. Due to the requirements of the
arrays and sequence values, the backslash can also escape commas and braces, i.e.:

\, \{ \}

7.4 Values of the Types: float and double

These values represent the IEEE floating point types with their defined ranges and
precision. The values are those acceptable to the ISO C99 strtof and strtod
functions respectively.

7.5 Values of the Type: bool

These values represent the Boolean type, which is logical true or false. The values can
be case insensitive: true or 1 for a true value, and false or 0 for a false value.

7.6 Values of the Type: string

These values are simply character strings, but also can include all the escape
sequences defined for the char type above. Due to the requirements of the arrays and
sequence values, the backslash can also escape commas and braces (\, and \{ and
\}). Double quotes may be used to surround strings, which protects commas, braces,
and leading white space. To be interpreted this way, the first character must be a
double quote. Two double quotes can represent an empty string.

7.7 Values in a Sequence Type

Values in a sequence type are comma-separated values. When the type of a sequence
is char or string, backslash escapes are used when the data values include
commas.

7.8 Values in an Array Type

When a value is a one-dimensional array, the format is the same as the sequence, with
the number of values limited by the size of the array. If the number of comma-
separated values is less than the size of the array, the remaining values are filled with
the null value appropriate for the type. Null values are zero for all numeric types and
the type char. Null values for string types are empty strings.

7.9 Values in Multidimensional Types

For multidimensional arrays or sequences of arrays, the curly brace characters ({ and
}) are used to define a sub-value. For example, a sequence of 3 elements, each
consisting of arrays of length 3 of type char, would be:

{a,b,c},{x,y,z},{p,q,r}

This would also work for a 3 x 3 array of type char. Braces are used when an item is
itself an array, recursively.

OpenCPI Component Development Guide Page 46 of 150

7.10 Values in Struct Types

Struct values are a comma-separated sequence of members, where each member is a
member name followed by white space, followed by the member value. A struct value
can be “sparse”, i.e. only have values for some members. If the struct type was:

struct { long el[2][3]; string m2; char c; }; // C pseudo code

A valid value would be:
el {{1,3,2},{4,5,6}}, c x

This struct value would not have a value for the m2 member.

7.11 Expressions in Property Values

Both numeric and string typed scalar values can be specified using an expression
syntax and operator precedence from the C language, where any parameter property
with a value can be accessed as a variable. All C expression operators can be used
except the comma operator, assignments or self-increments/decrements. The
conditional operator using ? and : is supported. Expressions can be used as elements
of arrays or sequences, or as structure member values.

For example, if the nbranches property was a parameter, a valid expression elsewhere
might be:

nbranches == 0x123 ? 2k-1 : 0177

7.11.1 Numeric Values

The numeric constant syntax is typical C language syntax (integer and floating point),
with the following additions:

 Integers with explicit radix after a leading 0 can use 0t for base 10 and 0b for
base 2, in addition to the normally used 0x for base 16 and no letter for base 8.
All these prefixes can be applied to the fraction and exponent for floating-point
syntax.

 Integers can use a letter suffix of K, M, or G, upper or lower case, indicating 2^10,
2^20 or 2^30 respectively. E.g. 2k-1 is 2047.

 All arithmetic is done using a numeric data type exceeding the range and precision
of uint64_t, int64_t and double, and then assigned to the actual data type of
the property whose value is being specified.

 The ** binary operator (pow) from the python and FORTRAN languages is also
supported.

When the value of the expression is assigned to the property value or numeric property
attribute (e.g. ArrayLength), it is range checked for validity. Boolean properties are
set to true if the value is non-zero. Fractions are discarded when assigning values to
integer types.

OpenCPI Component Development Guide Page 47 of 150

7.11.2 String Values

Within expressions, string constants (using double quotes as in C) and string-valued
parameter properties can be used. All comparison operators are case sensitive and
result in boolean numeric values (0 or 1). All operators requiring boolean values (!,
||, &&, ?:) use the length of the string (zero being false, otherwise true). The +
operator concatenates strings. There is no implicit or explicit conversion between
string values and numeric values. E.g. if sparam is a string-typed parameter with the
value abc, then this expression has the numeric value of 1:

sparam == "abc"

This expression would have the string value xyz_abc:

"xyz_" + sparam

Expressions used for string values

To distinguish when a string value is an expression, as opposed to a string that might
look like an expression, the string value must have a special prefix of \: (backslash
followed by colon). So if a property (or sequence/array element or structure member)
is a string type, any value assigned to it is considered not to be an expression by
default. To make the string value interpreted as an expression, use the \: prefix.

So if sparam is a parameter with value abc, then specifying the property's string value

sparam+”xyz”

would simply define that exact string (with plus sign and double quotes included) but if
the string value was:

\:sparam+”xyz”

then it would be interpreted as an expression, and the actual string value would be:
abcxyz

OpenCPI Component Development Guide Page 48 of 150

8 Worker Descriptions in OWD XML Files

Each worker directory contains an XML file describing the worker and references the
spec file typically located in the component library's specs sub-directory. This XML file
is referred to as the OpenCPI Worker Description (OWD). The generic, common
across authoring models, aspects of these implementation description files are
described in this section. The OWD files are specific to different authoring models.
These differences are described in the respective documents for each authoring model.
Some authoring models allow multiple workers to be implemented in one worker
directory. In these cases multiple OWDs may be in a single worker directory.

The worker description file adds non-default implementation information to the basic
information found in the spec file. Each authoring model defines what the worker-
specific information might be. An example would be the width of an FPGA data path for
a port. All OWDs have as the top-level XML element an XYZWorker element, where
XYZ is the authoring model of the worker.

If the worker has no non-default behavior, there is no need for an edited OWD. In this
case the framework (ocpidev) will generate a default one. This default OWD simply
contains a reference to the spec file and specifies the authoring model and language.
For example, if an RCC worker based on the spec file search-spec.xml only had
default implementation attributes, the OWD file would be:

<RccWorker spec='search-spec'/>

This section describes aspects common to the OWDs for all authoring models. Further
OWD content specific to authoring models is described in their respective documents.

The top level element must refer to an OCS by either:

 indicating an OCS file by using the spec attribute (preferred)

 containing a ComponentSpec child element, not shared with any other OWD (rare)

Below is an example OWD for an HDL worker, found in
fastcore.hdl/fastcore.xml. The fastcore implementation of the core-spec
specification is using the HDL authoring model. It references the component
specification found in the core-spec.xml file, probably in the specs directory of the
component library containing this worker:

<HdlWorker Spec='core-spec'
---other attributes---

 >
---other child elements---

</HdlWorker>

OWD files contain the information (metadata) that the OpenCPI build process and
runtime environment need to know about the worker that is not in its source code.

A second, optional, XML file in a worker's directory is its

OpenCPI Component Development Guide Page 49 of 150

8.1 XML Attributes of the Top-level XYZWorker Element in the OWD

8.1.1 Name Attribute of the XYZWorker Element.

The Name attribute defaults to the name of the OWD XML file itself without the directory
or extension and is normally omitted. The Name attribute of the component
implementation is constrained to be an identifier in several contexts It is sometimes
called the worker name or implementation name.

Worker names may include both upper and lower case for stylistic or programming
language purposes. The OpenCPI framework identifies workers in a case insensitive
manner. There should not be two workers using the same authoring model in the same
package namespace whose names differ in case.

The name of the implementation may be the same as the name of the OCS It is not
required to have a unique name for the OWD unless there are multiple implementations
of one OCS that use the same authoring model. I.e. OWD names are implicitly scoped
by authoring model.

8.1.2 Spec Attribute of the XYZWorker Element

This string attribute specifies the name of the file for the OCS for this worker. The build
scripts and makefiles automatically place the specs subdirectory, in the component
library's top-level directory, into the search path when these worker description files are
processed. The spec files need only be referenced by their name and not any directory
or pathname. If the spec file is outside the component library, it can be a relative or
absolute pathname. The .xml suffix is assumed and not needed.

8.1.3 Language Attribute of the XYZWorker Element

This string attribute specifies the source code language used in this worker. The valid
languages depends on the authoring model, and for each model there is a default
language. Some authoring models have only one valid language in which case this
attribute is not required.

8.1.4 Version Attribute of the XYZWorker Elements

This attribute has type UChar with a default value of zero if unspecified.

The interface between workers and their environment (control and data) evolves,
usually backward-compatibly. When there is an incompatible change, the worker
interface version is incremented, allowing the tools and runtime environment to continue
to support workers written to the older interface. Actual interface changes are described
in the authoring model documents (e.g. RCC, HDL etc.).

The worker interfaces where updated incompatibly in OpenCPI release 1.5, to version
2, which means that workers written to the new version 2 interface must explicitly set
this attribute to 2. While most changes are specific to authoring models, a significant
change to end-of-file indications and zero-length-message handling was made and is

OpenCPI Component Development Guide Page 50 of 150

described in the End-of-File (EOF) Indications section. New workers should be written
to version 2, and older workers that undergo significant revisions should too.

8.1.5 ControlOperations Attribute of the XYZWorker Element.

This attribute contains a comma-separated list of strings identifying the implemented
control operations. For operations that are mandatory for the authoring model, they are
assumed. The default implies a minimal implementation that only implements those
operations required by the authoring model. The control operations are listed in the
LifeCycle Control section. Control operations that are required by the authoring model
do not need to be mentioned. When only mandatory operations are implemented, this
attribute need not be specified.

8.1.6 OnlyPlatforms Attribute of the XYZWorker Element

This attribute can contain a list of platforms that are the only ones this worker should
ever be built for. This should be used to indicate a permanent characteristic of the
worker: that it is known to not be buildable or workable except for these. A (rare)
example would be if the code had plartform-specific code for a certain set of platforms.

To temporarily and frequently change the list of platforms to build for, use this same
attribute in the worker's build configuration file in Build Configuration Files.

8.1.7 ExcludePlatforms Attribute of the XYZWorker Element

This attribute can contain a list of platforms that this worker should never be built for.
This should be used to indicate a permanent characteristic of the worker: that it is
known to not be buildable or workable for these.

To temporarily and frequently change the list of platforms to build for, use this same
attribute in the worker's build configuration file in Build Configuration Files.

8.1.8 OnlyTargets Attribute of the XYZWorker Element

This attribute can contain a list of targets that are the only ones this worker should ever
be built for. This should be used to indicate a permanent characteristic of the worker:
that it is known to not be buildable or workable except for these. A (rare) example would
be if the code had target-specific code for a certain set of platforms.

To temporarily and frequently change the list of targets to build for, use this same
attribute in the worker's build configuration file in Build Configuration Files.

8.1.9 ExcludeTargets Attribute of the XYZWorker Element

This attribute can contain a list of targets that this worker should never be built for. This
should be used to indicate a permanent characteristic of the worker: that it is known to
not be buildable or workable for these.

To temporarily and frequently change the list of targets to build for, use this same
attribute in the worker's build configuration file in Build Configuration Files.

OpenCPI Component Development Guide Page 51 of 150

8.1.10 SourceFiles Attribute of the XYZWorker Element

This attribute contains a list of subsidiary files that should also be compiled and linked
together with the worker. For FPGA code, the files are guaranteed to be compiled
before the worker source file is compiled so that entities in these files can be directly
instantiated in the worker source code file witihout redundant component declarations.

8.1.11 Libraries Attribute of the XYZWorker Element

This attribute contains a list of primitive libraries that the worker requires when it is built.
RCC primitive libraries are not yet supported. When these libraries have slashes in
their names they are directly naming specific primitive libraries (perhaps standalone),
with either absolute or relative pathnames. With no slashes, they represent libraries
that are subject to the search rules for primiitive libraries, which is, in order:

 in the same project

 exported from projects the current project explicitly depends on

 exported by the ocpi.core project

8.1.12 IncludeDirs Attribute of the XYZWorker Element

This attribute contains a list of directories (via relative or absolute pathnames) that will
be searched when including files during building.

8.1.13 ComponentLibraries Attribute of the XYZWorker Element

This attribute contains a list a component libraries to be searched when building this
worker. Component libraries are needed when this worker refers to others that are not
in the same library.

8.1.14 Endian Attribute of the XYZWorker Element.

This attribute specifies the endian behavior of the worker code. When workers are built,
the build process may be run in three different modes to create three different types of
binaries:

 Little endian

 Big endian

 Dynamic endian based on an input supplied at runtime

The third way, dynamic, is generally not relevant for software since compilers only
generate code for a specific assumed endianness. But it is relevant to the FPGA build
process to support FPGA bitstreams that can operate in both modes. This OWD
attribute specifies how the worker's code will work in these three build scenarios ,as
specified by the ocpi_endian parameter which is present for all workers of all types.

OpenCPI Component Development Guide Page 52 of 150

Table 6 – Worker Endian Attribute Settings

Endian
Attribute

Description

Neutral
The worker code is unaffected by endian parameter settings and is correct
regardless of the setting. This is the default value, and is generally
correct for software workers.

Little
The worker code is unaffected by endian parameter settings and is will
only operate correctly in a little endian mode.

Big
The worker code is unaffected by endian parameter settings and will only
operate correctly in a little endian mode.

Static
The worker code will respect the endian parameter when set to “little” or
“big” and the resulting binaries will operate correctly according to the
compile-time parameter setting.

Dynamic

Worker code will respect all three values of the endian parameter. If the
parameter is little or big, the resulting binaries work in the requested
mode. If the parameter is dynamic, the resulting binaries will work in an
endian mode specified by an input signal or variable as specified in the
authoring model. Not all authoring models have this option.

OpenCPI Component Development Guide Page 53 of 150

8.2 Property and SpecProperty Child Elements in the OWD

Properties specified in the OCS indicate the external configuration interface for all
implementations of the same spec. Properties specified in the OWD define additional
worker-specific properties, beyond those in the OCS. The description of OCS
property elements in Property Elements in OCS applies when defining worker-
specific properties in the OWD, with some additional attributes described below that are
valid only in OWD properties.

The OWD can also provide additional attributes to properties already defined in the
OCS. E.g. the OWD might make an OCS property writable that was not writable in
the component spec. The accessibility added would result in the worker supporting a
superset of what was required by the component spec.

While a component spec can only contain Property elements, a worker description
can contain both Property and SpecProperty elements. The Property elements
in the OWD introduce new worker-specific properties unrelated to those defined in the
OCS. The SpecProperty elements add worker-specific attributes to the properties
already defined in the OCS.

There are a number of OWD-only attributes in the next section. They generally apply to
both Property and SpecProperty elements in the OWD. Property elements in the
OWD support all the attributes supported by Property elements in the OCS, plus the
OWD-only attributes below. SpecProperty elements in the OWD support all the OWD-
only attributes plus a small subset of the attributes supported in OCS Property
elements.

SpecProperty elements can add OWD-only attributes to a property and augment the
accessibility of the property, but cannot change the data type of the property.

8.2.1 Name Attribute for OWD Property or SpecProperty Elements

The Name attribute is the case insensitive name of the property. The Name attribute is
used in SpecProperty elements to indicate which OCS property is being referenced.
In the Property elements it indicates the name of the worker-specific property, which
must not be the same as any Property element in the OCS.

OpenCPI Component Development Guide Page 54 of 150

8.3 Attributes only Allowed in OWD Properties and SpecProperties

These attributes only exist in OWDs and never in OCSs and apply to both Property
and SpecProperty elements.

8.3.1 ReadSync and WriteSync for OWD Property or SpecProperty Elements

These Boolean attributes, defaulting to false, are used to indicate the properties that
require the worker to be notified when they are read or written by control-software. The
baseline behavior is that property accesses are directly made to property values in the
worker, with no specific synchronization or notification implied. The worker accesses
these values as local memory locations. When these attributes are true, the worker is
notified when the access is made by control software.

The exact mechanism used for such worker notification is specific to the authoring
model and is described in those documents. Some authoring models may not
implement or require this attribute, but where needed, this definition is valid.

8.3.2 ReadError/WriteError Attributes for OWD Property/SpecProperty Elements

These Boolean attributes , default is false, indicate properties that may return errors
when read, ReadError, or written, WriteError. If a worker does not return errors
and always succeeds when property values are read or written, then leaving these
values false allows control-software to avoid any error checking. In some models and
systems error checking can carry significant overhead. Most workers simply accept
new values using the default of false for this attribute.

The exact mechanism used for such worker error reporting is specific to the authoring
model and is described in those documents.

8.3.3 Padding Attribute for OWD Property but not SpecProperty Elements

Padding properties (its padding attribute is true), are those that only exist to force
subsequent properties to proper alignment or offsets. No other accessibility attributes
may be used with padding properties. The use case for this is when properties need to
match a register map and may require exact offsets for each property. These padding
properties are not accessible.

8.3.4 Readback attribute for OWD Property/SpecProperty Elements

This attribute specifies that the worker supports reading back values written to non-
volatile properties that are either parameter, initial or writable. It is never
necessary for normal operation since control-software always caches such values when
written, and provides those cached values when control-software reads the value.

This option allows such values to be read back directly from the worker when control-
software requests an uncached read access, or when property values are being read
directly from the worker and bypassing control-software altogether. An example of this
is the ocpihdl utility for HDL/FPGA platforms (described in the HDL Development
Guide) when a raw loaded bitstream is being examined directly.

OpenCPI Component Development Guide Page 55 of 150

8.4 Attributes Allowed in OWD SpecProperty Elements

In addition to OWD-only attributes described above, these are the attributes available in
SpecProperty elements that are also used in OCS and OWD property elements.
They are used to add accessibility or values beyond what is in the OCS.

8.4.1 Default Attribute for OWD SpecProperty Elements

In the SpecProperty element, this attribute is only valid for parameter properties and
when a value is not already specified in the OCS (via default or value attributes). It
might be used when the user provides its own default for the purposes of unit testing
and build configurations where other values may be specified. See section Build
Configuration Files for build configurations.

8.4.2 Value Attribute for OWD SpecProperty Elements

In the SpecProperty element, this attribute is only valid for parameter properties that
are defined as parameters in the OCS. but do not specify a fixed value there.

An example would be where a property is defined in the OCS as a parameter (and
possibly a default value) with the expectation that workers would provide a worker-
specific fixed value.

8.4.3 Parameter Attribute for OWD SpecProperty Elements

This boolean attribute in a SpecProperty element is used to convert a property
specified as initial in the OCS, to be a parameter property for this worker. The
initial setting in the OCS allows the worker author to decide whether to implement it
as a runtime property set at initialization time, or a parameter set at compile time. This
attribute makes the latter choice.

When a worker has initial (in the OCS) properties that are parameters in the
OWD, it means that the worker must be built for specific values of such properties. This
has three implications:

 An application can only use the worker if the worker is built for a property value that
matches what is requested as an “initial” value by the application.

 Binary component libraries may have multiple binary artifacts for the same worker,
but with different combinations of parameter values.

 The worker developer must decide which combinations of parameter values to
build, in order to make alternative settings of such parameters available.

This parameter feature allows workers to have compile time optimization for certain
parameter values, and also allow a single worker source code module to be optimized
for different values at compile time.

Parameter property values are applied to the build process as expected: e.g. by
preprocessor symbol definitions for software, generics for VHDL, and parameters for
Verilog.

OpenCPI Component Development Guide Page 56 of 150

8.5 Built-in Parameters of All Workers

OpenCPI automatically adds several properties to all workers. The values of these
parameters are usually set during the build process in various ways. Some of these
parameters are set to values by the build process and are not intended to be set
manually at all. Others may be set or overridden manually.

Each authoring model may also specify additional built-in parameters for all workers
using that authoring model. The built-in parameters that apply to all authoring models
are described below.

All built-in parameters use the ocpi_ prefix to avoid collisions with component and
worker developers.

8.5.1 The ocpi_debug built-in parameter property

This boolean parameter property, indicates whether a debug build is being done. The
default value is false. Setting this value to true indicates to worker source code that any
debugging instrumentation or behavior should be enabled, at a potential cost of some
resource usage and performance. This built-in parameter is always available, and
should be used in worker code to enable things like extra logging or statistics keeping.

Setting this parameter to true will also in some cases enable some introspection or
instrumentation capabilities of code that is in the OpenCPI infrastructure or is generated
code used implicitly by the worker.

Properties can be defined with a debug attribute value of true, which indicates that
those properties should only be present when the worker is built with this ocpi_debug
parameter set to true.

These features allow debug behavior and debug properties to be permanently in the
worker's source code and OWD while only being enabled as required.

8.5.2 The ocpi_endian built-in parameter property

[This feature is preliminary/untested, but mentioned here as a roadmap item]

This parameter property indicates to worker code which endian mode is being used
when the worker is being compiled. Its type is an enumeration of three values:

 little: The build is intended to generate binaries for little endian systems

 big: The build is intended to generate binaries for big endian systems.

 both: The build is intended to generate binaries that can be used in either little or
big endian mode, selected at initialization time in the runtime environment.

Software authoring models normally set this mode implicitly as compilers generate
binary code for a specific endianness based on the processor being targeted , e.g. little
for x86 and ARM, big for PPC.

However some authoring models, such as HDL, can support all three compilation
modes. The ability of a worker's code to support various endian modes is specified in
the worker's endian attribute at the top level of its OWD.

OpenCPI Component Development Guide Page 57 of 150

8.6 Port Elements of XYZWorker Elements

Ports are how workers communicate with each other. They define message-oriented,
data-plane communication. Each authoring model defines how workers
receive/consume and send/produce messages to or from other workers. This is
independent of whether workers are collocated in the same container or executing
elsewhere.

Each authoring model may have attributes and elements of this Port element specific
to that authoring model, but there are a number of aspects common to all worker
descriptions that are described here. A Port element in a worker description matches
the Port element in the component spec by name, and adds worker-specific
information about how the worker implements the port.

Some authoring models may use different names for port elements in order to imply
additional information, but the attributes described below apply in any case.

8.6.1 Name attribute of Port Elements

This string attribute is required and must match one of the names of the port elements
in the component spec. It indicates for which component port the worker is providing
additional implementation-specific information.

8.6.2 Protocol Summary Override Attributes of Port Elements

The OCS file on which the worker is based defines protocols for ports, and various
protocol summary attributes are derived from the protocol. These attributes may be
overridden where the protocol is defined (see Protocol Summary Attributes), but they
may also be overridden for a particular worker as attributes of the port element.

Care must be taken when doing such overrides since they may render a worker
incompatible with other workers that implement the same spec. This could make unit
testing of all such workers infeasible or difficult.

OpenCPI Component Development Guide Page 58 of 150

9 Worker Build Configuration XML Files

While the OWD file described above holds fundamental information about the source
code, and information required to build and run the worker, the optional build
configuration file describes the various ways it should be currently built.

Thus the build configuration file narrows down the perhaps large number of ways the
worker might be built (for different combinations of parameter values or targetting
different platforms), to what will actually get built. When it is not present, the worker is
built using the default values of parameter properties, and the platforms being targeted
is limited by the fundamental limitations on platforms expressed in the top-level
attributes of the OWD.

For portable workers with no parameters, this file is not recommended or needed.

The use cases for this file include:

 specify useful combinations of compile-time parameters for unit testing

 specify known currently required combinations of compile-time parameters for
applications

 limit platforms to build for, for temporary convenience rather than an expression of
“what platforms are viable”, which is specified in the OWD.

The name of this optional file is <worker>-build.xml, and the top level element is
build. The top level attributes controlling/limiting the build targets and platforms in the
OWD are also valid here. Limitations in the OWD override those in this file since the
OWD platform constraints are considered fundamental, while those in this file are
considered for convenience to further limit what platforms or targets get built.

These platform/target constraint attributes that are defined for the OWD and also valid
in the build file are: OnlyPlatforms, ExcludePlatforms, OnlyTargets,
ExcludeTargets. There are no other top-level attributes for this fie.

OpenCPI Component Development Guide Page 59 of 150

9.1 Build Configurations

We use the term build configuration to be a set of parameter property values to use
when building the worker. Each build configuration has an ID. When the build
configuration file does not exist, there is a single build configuration, with an ID of zero,
with default values of all parameters (from OCS or OWD).

The target-* directories mentioned above are used to separate the files that result
from building for different targets (e.g. centos7 vs. xilinx13_4, or [Xilinx] virtex6 vs
[Altera] stratix5). A different target-* subdirectory is in fact created for each build
configuration. If the ID is zero, the name of the directory is target-<platform>. If it
is not zero, then the directory name is target-<id>-<platform>.

There are two valid child elements in the top level build XML element, which together
determine the set of build configurations for the worker:

 parameter to specify parameter values for all configurations

 configuration to specify a build configuration.

If there are none of either element, a configuration with ID zero is generated using the
default values of all parameter properties. The same thing happens when there is no
file at all.

If there are parameter elements, but no configuration elements, then
configurations are generated for all combinations of values mentioned in all the
parameter elements, using default values for unmentioned parameter properties.
Since parameter elements can provide multiple values (see below), this means that
configurations are automatically generated for the cross-product of all parameter values.
E.g. if property A is specified with values 1 and 2, and property B is specified with values
10, 11, and 12, and property C is unmentioned but having a default value of 77, then
these build configurations will be generated:

ID A B C

0 1 10 77

1 1 11 77

2 1 12 77

3 2 10 77

4 2 11 77

5 2 12 77

The file in this example would be:
<build>
 <parameter name='a' values='1,2'/>
 <parameter name='b' values='10,11,12'/>
</build>

OpenCPI Component Development Guide Page 60 of 150

When a configuration element is specified with an id attribute, all parameter
properties unmentioned in the configuration element take on default values. Using the
above example we might have:

<build>
 <configuration id='0'>
 <parameter name='a' value='2'/>
 <parameter name='b' value='12'/>
 </configuration>
</build>

Which would result in A being 2, B being 12 and C being 77.

When a configuration element is specified without an id attribute, configurations are
generated that have the all the combinations mentioned in top-level parameter elements
as in the above example, but with the values for parameter properties mentioned inside
the configuration element taking those specific values. For example:

<build>
 <parameter name='a' values='1,2'/>
 <parameter name='b' values='10,11,12'/>
 <configuration>
 <parameter name='c' value='78'/>
 </configuration>
</build>

This would create 6 build configurations (like the table above), but with property C
having the value 78 rather than its default of 77.

OpenCPI Component Development Guide Page 61 of 150

9.2 Parameter elements in the <worker>-build.xml file

This element specifies one or more values for a parameter property. The name attribute
specifies which property, and must match the name of the parameter property in the
OWD or OCS (case insensitive). The values for the parameter can be specified using
one of these attributes:

 The value attribute can specify the single value.

 The values attribute can specify a comma-separated list of values.

 The valueFile attribute can specify a value in a file.

 The valuesFile attribute can specify multiple values in a file.

When the parameter element is at the top level of the <worker>-build file, it is
specifying values common to all configurations that do not have id attributes. If the
same parameter element is mentioned as a child element of a configuration
element, it overrides any top level value(s) for that parameter in that configuration. An
example <worker>-build file is:

<build>
 <parameter name='debug' value='true'/>
 <configuration id='1'>
 <parameter name='mode' value='lownoise'/>
 <parameter name='taps' valueFile='taps.txt'/>
 </configuration>
</build>

Since there is an id attribute present for the configurations, it would use the default
value of the debug parameter, not the value specified in the parameter element (which
in this case would be ignored).

OpenCPI Component Development Guide Page 62 of 150

9.3 Configuration Elements in the <worker>-build.xml File

The configuration element has a optional numeric id attribute which will appear as
the build configuration suffix in the name of the target directory for that configuration. If
the id attribute is zero, no suffix is added. The configuration element also has
parameter subelements indicating the specific parameter values for that configuration.

When there is no id attribute, the globally defined values for parameters are used to
generate build configurations.

OpenCPI Component Development Guide Page 63 of 150

10 Component Libraries

OpenCPI components are developed in libraries. OpenCPI component-based
applications are defined as a composition of components, and the components are
developed and built in component libraries.

A component library is a directory that contains:

 Component specifications, OCSs, OPSs in a specs subdirectory.

 Component implementations (workers), each in its own subdirectory.

 Component tests in *.test subdirectories.

 The Makefile for the component library.

 When built, a subdirectory call lib, which contains links the built binaries and
metadata files required to use components in the library from outside the library.

A component library has two forms: source and binary. The source form is for
component developers, and the binary form is for application developers and users.
The binary form is the result of building the source library and exporting the results as a
binary package. The package can then be installed onto a system such that the assets
can be found and used by applications.

The exported version of a component library contains a combination of binary artifacts
and XML files. The binary files can be a collection of heterogeneous built workers for
various technologies.

Distribution of a library to an application developer or user requires the contents of the
lib subdirectory. OpenCPI component libraries in binary form can contain compilations
for different operating systems, FPGAs, or CPUs all in the same binary directory tree.

For most development efforts it is recommended to use the process described in the
Developing OpenCPI Component in P roject s section. This defines a larger directory
structure containing a variety of OpenCPI assets, including component libraries and
applications.

OpenCPI Component Development Guide Page 64 of 150

The basic directory structure of a component library is shows in the figure below.

Figure 1: Component Library Directory Structure

OpenCPI Component Development Guide Page 65 of 150

10.1 The Component Library Makefile

The makefile in the top-level directory of the component library is usually generated
automatically by the ocpidev command. The last line in the file establishes it as a
makefile for an OpenCPI component library and should be:

include $(OCPI_CDK_DIR)/include/library.mk

The OCPI_CDK_DIR variable is set in the environment to point to the OpenCPI CDK
installation. An important variable in this file is Workers, which is a list of which worker
subdirectories to be built in this component library. When the Workers variable is not
set at all, it indicates that all subdirectories of the component library that contain workers
should be built. For example:

Workers=fft.rcc fft.hdl fft-for-xilinx.hdl fir.rcc

There are two reasons to set this variable at all rather than using the default.

1. If you want to temporarily avoid building some workers in the library, you can
set this variable to only the ones you want to build, so any others are
ignored.

2. If you want to specify the order in which the workers are built, you can set
this variable to the workers you want to build, in the order you want them to
be built. There are two situations where the order of building workers is
important. First, if a worker is a proxy (see the RCC Development Guide)
for another, the “slave” of the slave must be built before the proxy. Second, if
a subdevice supports another device, the supported device must be built
before the subdevice (see the Platform Development Guide).

The ExcludeWorkers variable can also be used to exclude certain workers from being
built when the Workers variable is unset.

In order to avoid name space collisions when using multiple component libraries, there
is also a Package variable that specifies what namespace should be used for the specs
and workers in this library. See the Package IDs section for complete information about
package IDs.

For each authoring model, there may be a (default) list of platforms to build for. I.e. for
the RCC authoring model, the variable RccPlatforms would be set to a list of
platforms to build all RCC workers for. For all software (not HDL) authoring models, the
default RCC platform, if none is specified, is the machine and operating environment of
the machine doing the building. Other software targets would use cross-compilers.
These target variables can always be overridden on the command line or in the project's
Project.mk file.

Other non-software authoring models (for processors that will never be the one running
the tools), have other default platforms (described in documents for the authoring
model).

Software targets use the software platform names. Examples are centos6, centos7,
macos10_13, xilinx13_4 (for Xilinx linux for Zynq).

OpenCPI Component Development Guide Page 66 of 150

HDL targets typically contain an architecturally compatible part family (e.g. virtex6 or
stratix4). See the HDL Development Guide for more details.

If all subdirectories containing workers should indeed be built, and the desired build
targets are the default ones (or specified on the command line), and the package name
is the default, then the single “include” line above is sufficient to build a component
library.

Creating a new component library mycl is accomplished by using the ocpidev tool,
using the create library command. This tool is described in the ocpidev section
below.

ocpidev create library <library-name>

OpenCPI Component Development Guide Page 67 of 150

10.2 The Library.mk File

If present, the Library.mk file in the component library's directory contains settings
that should apply to all the workers and tests in the library. This file is read as part of the
Makefile of all workers in the library.

The table below lists the variables settable in this file. They are also usable at the
project level in the project's Project.mk file which has a similar purpose.

Table 7: Variables in Library.mk files

Variable Name
in Makefile

Libraries A list of primitive libraries built elsewhere. If a name has no
slashes, it is searched in this project and in projects this
project depends on.

OnlyTargets
OnlyPlatforms

A list of the only targets/platforms for which this worker
should be built

ExcludeTargets
ExcludePlatforms

A list of targets/platforms for which this worker should NOT
be built

XmlIncludeDirs A list of directories elsewhere for searching for XML files.

IncludeDirs A list of directories elsewhere for searching for files indicated
by “include” directives in worker source files such as those in
C, C++ or Verilog.

ComponentLibraries A list of component libraries to search when the worker refers
to another worker. The need for this is specific to the
authoring model (e.g. proxies for RCC workers, or emulators
for HDL device workers).

OpenCPI Component Development Guide Page 68 of 150

11 Developing Workers

This section describes the aspects of the worker development process that is common
across all types of workers and authoring models. Previous sections above described
the files involved in worker development, including:

OCS XML files: component specifications, usually in ../specs

OPS XML files: protocol specifications, usually in ../specs

OWD XML files: worker descriptions

Worker Build Configuration files: XML files for specifying build configurations

Worker Source files: Programming language source code for the worker.

This section describes the development process using these files.

The worker development details for each authoring model are described in the
document for each authoring model. Some authoring models (e.g. RCC) support
creating a single binary file artifact that implements multiple workers. However, usually
a single worker implementation is in its own subdirectory, which when compiled results
in a single binary file for each build configuration (combination target and parameter
values).

11.1 Creating Workers

A worker is created, either standalone or in a component library, using the ocpidev
tool, with the command:

ocpidev create worker <name> [-S <spec>] [-L <language>]

The authoring model is inferred from the <name>, using the suffix of the name as the
authoring model. The optional <spec> argument specifies the name of the OCS file,
normally without any directory indicated (expected to be in the ../specs directory). If
<spec> is not specified, it is assumed to be <name>-spec.xml in the library's specs
directory. If the new worker will embed the component spec in its own OWD, then the
<spec> argument can be set to none. While rare, some specialized workers will be the
only implementation of a spec and there is no need for separate spec file.

The <language> is one of the programming languages allowed for the authoring
model (e.g. c, or c++ for RCC, vhdl or verilog for HDL). If not mentioned, the
default language for the authoring model will be used.

The ocpidev command is usually executed in the directory where the new workers's
directory will be created. Other options are fully described in the ocpidev section
below.

The command:
ocpidev delete worker <name>

will remove the worker, and is essentially equivalent to (after asking for confirmation)
rm -r -f <name>

OpenCPI Component Development Guide Page 69 of 150

When a worker is created, all the worker's XML, Makefile and source language files
are initially automatically generated by ocpidev. Several internal files (not for user
editing) are also placed in a gen subdirectory of the worker’s directory. When source
files are compiled, the resulting binary files are placed in subdirectories named:
target-<target>, where <target> is the hardware the compilation is targeting.
Cleaning (via ocpidev clean) a worker directory simply removes the gen and all
target-* subdirectories. In almost all cases, files in the gen subdirectory should be
considered read-only and not edited.

Creating a new worker creates initial versions of three files in the worker's directory;

1. the Makefile

2. the OWD file
3. the skeleton source file

These are the files the developer can edit as necessary. Although frequently the
Makefile and the OWD XML file do not need any further editing.

The initial source file is termed the skeleton, and is named
<worker-name>.<source-suffix>
 e.g.
xyz.c

It can be compiled, but has empty logic. The skeletal code allows the worker to be test-
built even before any editing is done. Each authoring model describes how and where
this skeleton source file should be edited and “filled out” with the logic that makes it
perform its intended function. A copy of this initial skeleton file is always put in the gen
subdirectory, with the name:

gen/<worker-name>-skel.<source-suffix>
 e.g.
gen/xyz-skel.c

This copy can always be examined to see what the skeleton was originally, before any
editing. It can also be useful to examine, after the OCS, OPS, or OWD has changed, in
case changes are require in the source file. After the initial skeleton (not the copy in
“gen”) is edited by the developer, it will never be overwritten or removed by ocpidev
clean or any other command.

OpenCPI Component Development Guide Page 70 of 150

11.2 The Worker Makefile

Each worker requires a Makefile. The default Makefile is simply:

include $(OCPI_CDK_DIR)/include/worker.mk

This makefile line indicates to the framework that this directory is for building a worker
whose name and authoring model are derived from the name of the worker's directory.
The directory must also contain a OWD and one or more source files for the worker's
functional code. These will be generated when the worker is created using the
ocpidev tool described in the ocpidev section.

For example if the name of the directory were search.rcc, then the simplest makefile
would assume that the worker description file is in search.xml. If no language was
specified in the OWD, the source code to compile for the worker would be search.c,
since C is the default language for the RCC authoring model. The ocpidev tool will
create the initial worker source file automatically as a skeleton of the implementation.
This initial empty worker does nothing, but compiles as a valid worker of the given
authoring model. This file can then be edited to add the logic to perform its function.

Several top level attributes in the OWD can also be set as variables in the Makefile.
This is deprecated: it is preferable to put these values in the OWD as top-level
attributes rather than as variables in the Makefile. The attributes in the OWD that
may also be expressed as variables in the Makefile are: Libraries, IncludeDirs,
ComponentLibraries, OnlyPlatforms, ExcludePlatforms, OnlyTargets,
ExcludeTargets, and SourceFiles. See section OWD Top-level Attributes.

If this worker directory is intended to build multiple workers into a single binary artifact
file (when supported), the Workers variable specifies the workers to be built into a
single artifact e.g.:

Workers=w1 w2
include $(OCPI_CDK_DIR)/include/worker.mk

The two files, w1.c, w2.c will be compiled together to form the worker binary file
implementing w1 and w2, as described by w1.xml and w2.xml.

In the normal case when there is only a single worker, the value of the Workers
variable is inferred from the name of the directory and is not specified.

The worker Makefile is commonly left as created by ocpidev, but there are a few
cases where some extra settings need to be present. The table below lists the
variables settable in the makefile that are common to all authoring models.

11.2.1 Parameter Properties in Worker Makefiles

Parameter values for building workers are normally set if needed in the worker's build
configuraion file described above. Setting them in the worker's Makefile as
described here is deprecated.

Build configurations are sets of parameter property value settings, and these values
may be set in the worker's Makefie.

OpenCPI Component Development Guide Page 71 of 150

To specify the value for a parameter, set a makefile variable whose name begins with
Param_ followed by the name of the parameter, such as:

Param_xxx=5

To specify multiple values for a parameter, makefile variables can be used to specify the
values for any parameter for which the worker should be built. A makefile variable of the
form:

ParamValues_xxx1=v1/v2/v3

specifies that the parameter whose name is xxx1, should be built for the values v1, v2,
and v3. The forward slash character is used to separate the values rather than
commas, since commas must be used within values when the parameter's data type is
an array and/or sequence. This variable specifies these values independent of the
values of any other parameter. In the case of the variables specified as:

ParamValues_p1=1/2/3
ParamValues_p2=abc/xyz

then the worker will be built for each target specified, for all these combinations:
p1=1, p2=abc
p1=1, p2=xyz
p1=2, p2=abc
p1=2, p2=xyz
p1=3, p2=abc
p1=3, p2=xyz

If the worker was built for two targets, this would result in the worker being built for
twelve different build configurations. These are inferred from the settings of parameter
variables and the target make command line settings and variables. These parameter
variables can be specified on the command line when calling the makefile and at higher
levels of makefiles. To build an entire component library with the p1 parameter set to 2,
simply specify this in the top level directory of a component library:

make Param_p1=2

The syntax of parameter values is the same as described for default values for
properties in the Property Value Syntax section, with the limitation that string values
cannot have spaces, quotes, commas or backslashes. If those are needed, the XML file
method of specifying parameter values must be used.

There are a number of limitations when using makefile variables to specify parameter
values:

 Different parameters are independent of each other creating the cross-product of
all combinations.

 The value syntax is not generally usable for string values with embedded spaces,
commas, quotes or backslashes.

 As with most makefile variable uses, misspelling the name of a makefile variable
does not result in any error.

OpenCPI Component Development Guide Page 72 of 150

11.3 Editing Workers

Often it is useful to break the worker's logic into supporting code modules in other
source files. Those files must be created manually and added to the SourceFiles
make variable in the worker's Makefile. In some authoring models and languages,
the files listed in the SourceFiles variable must be in dependency order, with lower
level modules/files preceding those that depend on them. The primary source file is
always considered the top level module for the worker and is essentially put at the end
of the list automatically.

Some changes to the OWD, OCS, OPS and even makefiles can result in changes that
require corresponding changes in the worker's primary source files, which was initially
generated as a skeleton. Since the developer has likely manually edited the primary
source file,, it is not touched when such changes are required. If it is clear to the
developer when these changes are required, they can do it before any building.
However, it is likely that the required changes will create build/compilation errors.

Examples would be such things are renaming ports or properties, adding or subtracting
access attributes to properties, converting properties to parameters, etc.

When any changes are made, the skeleton is regenerated properly during the next
build, and the result places in the file:

gen/<worker>-skel.<source-suffix>

The newly generated skeleton can be used as a guide when changes occur that might
require changes in the edited worker source code.

The authoring model documents also list common changes to the OCS, OPS, and OWD
files, and the corresponding changes required in the source file. An example is for
VHDL workers using the HDL authoring model. The skeleton lists the lower level
primitive libraries that the worker depends on. If such a primitive library is added to the
worker makefile, the library needs to be added to the list of libraries in the skeleton.

OpenCPI Component Development Guide Page 73 of 150

12 The Worker Source Files

The worker source files must be written according to the authoring model. As a starting
point OpenCPI provides the ocpidev tool to create an empty skeleton of a worker
implementation that will in compile, build and execute, doing nothing.

The file hierarchy of a component library mycl is outlined below. The library contains a
search component with RCC and HDL implementations, and a transform
component with only an HDL implementation:

mycl/Makefile
 /specs/search-spec.xml
 /transform-spec.xml
 /search.rcc/Makefile
 /search.xml
 /search.c (RCC C source file)
 /search.hdl/Makefile
 /search.xml
 /search.vhd (HDL VHDL source file)
 /transform.hdl/Makefile
 /transform.xml
 /transform.vhd

12.1 How Parameter Value Settings Appear in Source Code.

Parameter values are compile-time constants in all authoring models. The precise way
that parameters and their values appear in source code varies by authoring model and
programming language. In most cases, there are standard data types, see Data Types
for Properties, for the OpenCPI properties, and constants are defined that specify these
values. Examples are:

 C and C++: A static const variable is defined which is initialized to the
parameter value. The name of the variable is the property name prefixed with
PARAM_.

 VHDL: A generic with the parameter's name is set to the value.

 Verilog: A parameter with the parameter's name is set to the value.

12.2 Building Workers

Workers are normally built as part of building a whole component library, or as part of a
whole project. To simply compile new code and locate syntax errors, a worker can be
built in the worker's directory, by typing ocpidev build.

The target or platform of a worker build is specified in several ways. For software
authoring models the default target is always the local development machine on which
the building is taking place. For other authoring models, there is no default. On the
ocpidev command line targets and platforms use options of the form:

--<model>-target <target>
--<model>-platform <platform>

OpenCPI Component Development Guide Page 74 of 150

Some examples are:
--rcc-platform centos6
--rcc-platform xilinx13_4
--hdl-target virtex6
--hdl-platform zed

Default target and platform settings can also be set in project's Project.mk file or the
library's Library.mk file. In this case the syntax is setting Makefile variables of the
form:

<Model>Target(s)

Some examples are:
HdlTarget=virtex6
HdlTargets=zynq spartan6
HdlPlatforms=zed ml605
RccPlatforms=centos7 xiinx13_4

Note that the plural variable name must be used when multiple targets or platforms are
specified. These variables may also be set in the environment.

Workers can be built for multiple targets with one command. This can be useful to
check whether the source code is acceptable to all the different compilers.

The worker build process has make-style dependencies such that rebuilds will only
happen if any dependent files are changed, including the OCS/OPS/OWD XML files.

OpenCPI Component Development Guide Page 75 of 150

13 Unit Testing of Workers

OpenCPI supports unit testing where a <component>.test directory in a component
library is created to hold a test suite for all the workers in the library that implement the
same spec (OCS). The workers that are tested could be written to different authoring
models or languages or simply be alternative source code implementations of the same
spec.

E.g. if a library contained fft.hdl and fft.rcc and fft_xilinx_dsp.hdl workers
that all implemented the fft-spec.xml OCS file in the library's specs directory, a
single fft.test directory would be created to hold a test suite that tested them all.
Each <component>.test directory is associated with a single OCS, has a Makefile,
and has a test suite description XML file, called <component>-test.xml.

The OpenCPI unit test framework manages multiple dimensions of worker testing, with
automation to minimize test design and preparation efforts. The dimensions are:

 Test cases (individual parameterized tests, possibly using different runtime values)

 Execution platforms (HDL hardware and simulation platforms, RCC/OCL
Platforms)

 Workers (different source code implementations, different models)

 Worker build configurations (compiled in vs. runtime settable property values)

The unit test framework allows complex test scenarios while providing layered
complexity to keep simple test cases very simple to define and execute. Test inputs and
outputs can be pre-prepared data files (i.e. test vectors), or be developer-provided
scripts for input data generation and output data verification.

Unit testing in this unit test framework proceeds in five phases:

1. Generate — generate testing artifacts after finding the spec and the workers

2. Build — building HDL bitstream/executable artifacts for testing (for HDL
workers)

3. Prepare — examine available built workers and available platforms, creating
execution scripts to use them all for executing feasible tests.

4. Run — execute tests for all workers, configurations, test cases and platforms

5. Verify — verify results from the execution of test cases on workers and
platforms

OpenCPI Component Development Guide Page 76 of 150

13.1 The Phases of the Unit Test Process

The generate(1) phase performs the following tasks automatically without any
developer involvement:

 Discovers the OCS associated with this test directory.

 Discovers workers in the same library that implement that OCS.

 Discovers the build configurations (parameter values) for each worker.

 Derives a baseline for test cases based on all the build configurations that have
been used on any worker.

 Derives the actual tests appropriate for all parameter combinations vs. the actual
worker build configurations they apply to.

 Generates XML applications (OAS files) that perform unit tests on all workers

 Generates HDL test assemblies (subdirectories, Makefiles and OHAD files) that
can be built for HDL platforms (hardware and simulation).

Although there are many options described below, the default generated unit test
applications feed specified input data to input ports of the worker being tested and
cause a zero-length message to be send to input ports after the input data is sent.

The generated test application is considered finished when:

 The component being tested has a single output port and a zero length message
is received from that port.

 The component being tested has multiple output ports and a zero length message
is received from the first one.

 A specified time duration for the test has been exceeded.

After the test completes, the output data from all output ports as well as the final values
of all properties are available to the verification process for assessment.

All the above tasks in the generate(1) phase are done “off-line”, without regard to

 which worker artifacts are built

 which platforms are available on which to execute tests

 the availability of any build-related tools (compilers or FPGA synthesis tools or
simulators).

The build(2) phase is only necessary for testing HDL workers, and builds the generated
HDL test assemblies for whichever platforms (including simulators) are specified. When
building for hardware HDL platforms, this phase takes the longest. There must be tools
available to build the specified platforms, but this phase does not require those
platforms be available for execution.

The prepare(3) phase does the necessary work to prepare to actually execute test
cases and perform associated verification. In this phase the unit test framework
automatically does:

OpenCPI Component Development Guide Page 77 of 150

 Discovery of available execution platforms, local and remote (reachable via
network)

 Discovery of available built artifacts that can be executed on available platforms
(including generated HDL test assemblies generated in the generate(1) phase)

 Generation of test scripts to perform all feasible tests on all available platforms.

After preparation, the developer invokes the run(4) and verify(5) phases. These
phases can be sequential (all executions followed by all verifications), or interleaved
(each test subcase is executed and verified before executing the next one).

During execution and verification, there are various filtering capabilities to subset which
tests are run, which platforms should be tested, and whether a test case failure should
immediately stop the testing process.

The rest of this section will describe:

 what is required and possible in the test description XML file:
<component>-test.xml

 what can and should be specified in the Makefile for this directory

 how to provide data generation and verification scripts

 how to execute test cases and verify their results

A <component>.test directory can be created and initially populated using this
command:

ocpidev create test <component>

This will create the two necessary files: Makefile and <component>-test.xml.

OpenCPI Component Development Guide Page 78 of 150

13.2 Unit Test Concepts and Terminology

Here are the terms used in the OpenCPI unit test automation framework:

Test suite – as embodied in the <component>.test directory, is a suite of test
cases for testing all workers implementing a spec across all available platforms
for which the workers have been built

Test matrix —the virtual multidimensional space of testing, across:
Workers — the different source code or authoring model implementations
Worker configurations — different parameter value sets for worker builds
Initial property values — runtime property value configurations
Platforms — possible runtime environments
User-defined test cases — with property values, inputs and outputs

Test case – a parameterized test
Using a defined set of inputs or generation scripts
Using a defined set of outputs or verification scripts
Using a defined matrix of property values

Test subcase – a very specific test
Defined by and generated from a test case
Using a specific worker build configuration
Using a specific set of property values
Not bound to a specific platform or artifact

Generator — script to create input data files for ports or property value files
Called for a subcase, with all property values supplied.

Verifier — script to verify test output data produced by output ports
Called for a subcase, supplied with each port's output data file, with all property
values supplied, both initial and final (volatile)

Viewer — script to view the results of a subcase execution. (e.g. plot).

Default Test Case — the case that is automatically created when none are specified
Tests all parameter combinations as derived from all worker parameter/build
configurations or all workers
Developer can supply runtime property settings with multiple values for each,
resulting in the cross-product of subcases
One generation script and one verification script, per port, parameterized by
subcase property values

OpenCPI Component Development Guide Page 79 of 150

13.3 Unit Test Description XML File

The <component>-test.xml file specifies test cases and the defaults that apply to all
test cases. As with all OpenCPI XML files, element names and attribute names are
case insensitive. The top-level element in the file is <tests>, with the possible child
elements being:

<input> to define an input file or generator script usable by any test case

<output> to define an output file or verifier script usable by any test case

<property> to define property values for all test cases

<case> to define a non-default test case when needed

If no <case> element is defined, the default test case is used. This is a common
situation since the default test matrix is based on the parameters that workers are built
with, and the available workers that implement this component spec. Here is an
example file using the default test case for a component:

<tests>
 <input port='in' script='generate.py 16'/>
 <output port='out' script='verify.py 16384 16' view='view.sh'/>
 <property name='phs_inc' values='-4096'/>
 <property name='enable' values='0,1'/>
</tests>

It specifies that the default test case should be used (no <case> elements), the
“generate.py 16” command should be issued to generate test data for port in, the
“verify.py 16284 16” command should be issued to verify output data from port
out, the phs_inc property should always be tested set to -4096, and the enable
property should be tested with values 0 and 1. All scripts are run per subcase and have
access to the parameter properties as well as the runtime properties of the subcase
being tested.

Several attributes described below refer to scripts that will be executed by the unit test
framework. In all cases, scripts must properly return process/shell exit status, with zero
indicating success and non-zero indicating failure. This is true regardless of the
language used in the script.

13.3.1 Attributes for the Top-level Tests Element

The valid attributes for the top-level tests element apply to all test cases and are
Spec, UseHdlFileIO, ExcludeWorkers, OnlyWorkers, ExcludePlatforms,
OnlyPlatforms, TimeOut, and Duration. All are optional and are specified in
special situations.

13.3.1.1 Spec Attribute of the Top-level Tests Element

Normally the spec (OCS) for all the workers being tested is inferred from the name of
the <component>.test directory, and found in the file:

 ../specs/<component>-spec.xml

OpenCPI Component Development Guide Page 80 of 150

When this is not the case, this spec attribute can specify the name of the spec file for
this test suite, much like the same attribute can be used in a worker's OWD.

13.3.1.2 UseHdlFileIO Attribute of the Top-level Tests Element

This boolean attribute applies only when HDL workers are being tested on simulation
platforms. When true, it indicates that file I/O between the worker being tested and the
input and output test files is done in the simulator using VHDL/Verilog file operations
directly. When false (the default), the file I/O is being done by file reading and writing
RCC workers running outside the simulator, with the data flowing in and out of the
simulator. Both settings can be useful, but the true setting generally results in faster
simulation times since less logic is being simulated for this file I/O.

13.3.1.3 ExcludeWorkers Attribute of the Top-level Tests Element

This string attribute specifies a list of comma-separated workers (e.g. fft.hdl) that
should not be tested, even if they implement the spec of this test suite.

13.3.1.4 OnlyWorkers Attribute of the Top-level Tests Element

This string attribute specifies a list of comma-separated workers that should be the only
ones tested. Any others found to implement the same spec will be ignored.

13.3.1.5 ExcludePlatforms Attribute of the Top-level Tests Element

This string attribute specifies a comma-separated list of platforms that should not be
tested. Wildcard patterns may be used for any name. E.g. “*sim” would exclude any
platform that ended with the letters sim. Any other available platforms that have built
artifacts will be used.

13.3.1.6 OnlyPlatforms Attribute of the Top-level Tests Element

This string attribute specifies a comma-separated list of platforms that should be the
only ones tested. Wildcard patterns may be used for any name. E.g. “*sim” would test
only platforms that ended with the letters sim. Any other available platforms will be
ignored.

13.3.1.7 Duration Attribute of the Top-level Tests Element

Normally unit test cases execute until the test subcase application is done, which is
usually when an EOF is asserted on the first or only output port of the worker being
tested. See the EOF Assertion section.

When this default EOF behavior is not viable or desirable (e.g. when the workers being
tested have no output ports), the duration attribute can be set to an amount of time
the application should run before being considered successfully done.

The duration value is in seconds, and represents wall clock time for the execution. After
this amount of clock time, the execution is stopped, and the execution is considered
successful and any outputs or final property values are provided for verification.

OpenCPI Component Development Guide Page 81 of 150

This attribute is separate from the timeout attribute, which indicates when the
execution should be considered failed. Only one of these attributes may be set.

13.3.1.8 Timeout Attribute of the Top-level Tests Element

The timeout attribute indicates an amount of wall clock time in seconds after which the
execution of a test subcase is considered a failure. Setting this value prevents an
execution from hanging and preventing completion (but failure) of the subcase. This is
especially useful for non-interactive scripted regression testing. Only one of the
duration or timeout attributes may be set.

13.3.2 Input Element of Top-level Tests Element

An <input> element as a direct child of the top-level tests element specifies a source
of input data that can be used by test cases. It is not specific to a test case but may be
used by any test case for any input port. Its allowable attributes are: name, port,
file, script, messageSize, messagesInFile, suppressEOF, and
stressorMode.

13.3.2.1 Name Attribute of the Input Element

This optional string attribute specifies the name of this input source, so it can be
referenced by test cases that use it, by name. If it applies to all cases, it doesn't need a
name. If it applies only to a specific port, the port attribute can be set, which is more
common. One of name and port must be specified.

13.3.2.2 Port Attribute of the Input Element

This optional string attribute specifies the name of the port that this input source will
always apply to. It there is only one input source for a port, it will be used for all cases.
One of name and port must be specified.

13.3.2.3 Script Attribute of the Input Element

This string attribute indicates a command to execute to produce data. When data is
generated for a subcase and for a port, this command will be issued. The attribute
value is not just the name of a file to execute, but of a command, so it can have a
command name followed by some command arguments. When the command is
executed in order to produce data, it will be appended with the name of the file to be
written into; i.e. the script's job is to write into the file whose name is at the end of the
command. Thus if the value of this attribute was:

echo hello >

then the source of data would always be a line of text containing hello since the actual
command executed would be:

echo hello > <output-file-supplied-by-unit-test-framework>

The way these scripts become more useful is that all parameter and initial runtime
property values are supplied to the script as environment variables. Thus this script is
parameterized by these values for the subcase being generated. Accessing

OpenCPI Component Development Guide Page 82 of 150

environment values is easy for the scripts, whether they are written as shell scripts,
python, or C. When a script is executed for a subcase (and for a port), the value of
each parameter and runtime property is the value of an environment variable named:

OCPI_TEST_<prop>

So, if the property's name was myprop:

In C or C++, the value (as a string) would be: getenv("OCPI_TEST_myprop")

In python, it would be: os.environ.get("OCPI_TEST_myprop")

In bash/shell, it would be: $OCPI_TEST_myprop

Only parameter properties or runtime properties that are initial or writable are present.
Using scripts based on these values normally means one script can be applied to all
test cases.

The command is executed by the shell in the <component>.test directory, and must
have execute permissions.

13.3.2.4 File Attribute of the Input Element

This string attribute specifies the name of a file to be used as the source of data. It is
not affected by any property values and is thus a “constant”. This is useful if the same
input data should be used for a port for all test cases, or if the file is not easily generated
by a script, but is used for one test case.

13.3.2.5 MessageSize Attribute of the Input Element

This positive integer attribute specifies the size of messages to be supplied to the port
of the worker under test when this data source is being used. Since data flowing
between ports always consists of messages, this determines their size. The data from
this input source is split into messages of this size, in bytes. This attribute is the same
as the property of the file_read worker.

13.3.2.6 MessagesInFile Attribute of the Input Element

This boolean attribute indicates that the data produced by this input source has
message boundaries and opcodes embedded in the data. Each message in the input
file is preceded by a header consisting of two 32 bit unsigned integers (little endian),
with the first being the length of the message in bytes, and the second being the opcode
(with only the low-order 8 bits used). This attribute is the same as the property of the
file_read worker and is only valid for inputs.

13.3.2.7 SuppressEOF Attribute of the Input Element

This boolean attribute indicates no “EOF” message (zero-length message with opcode
zero) should be provided to the input port after all the data (messages) has been
provided as input. This attribute is the same as the property of the file_read worker
and is only valid for inputs. The default behavior is to provide such EOF messages.

OpenCPI Component Development Guide Page 83 of 150

13.3.2.8 StressorMode Attribute of the Input Element

This attribute only applies when testing HDL workers and is only valid for input ports.
The generated test benches for HDL workers include a stressor function at each input
port which varies the range of input behavior to provide coverage of what the worker
might see at its port in applications. This optional enumeration attribute specifies the
stressor behavior at this port. The term metadata is used here to indicate the signals
indicating message boundaries and whether the boundaries are separate from or
coincident with, the first or last data word of a message. These signals are som, eom,
and valid.

There are four modes available: bypass, throttle, metadata, and full. The
meanings are:

bypass — all messages are passed through to the worker under test without
change or delay.

throttle — the metadata of all received messages is passed through to the
worker under test without change, but data within the message will be withheld
at random intervals to create intra-message data starvation.

metadata — the stressor at this port will cycle through a pattern of all valid
metadata combinations, but the data will not be throttled.

full — the stressor will cycle through a pattern of all valid metadata combinations,
data within the message will be throttled at random intervals to create data
starvation, and idle cycles will be inserted between messages.

The default mode is bypass.

13.3.3 Output Element of Tests Top-level Element

An output element as a direct child of the top-level tests element specifies how the
output data from a port of the worker being tested may be verified for correctness. The
valid attributes are: name, port, file, script, stopOnEOF, view and
disableBackpressure. It may be applied to all test cases, be used as a default for
test case that do not mention an output element for a port, or be referred to by name
by some test cases.

It is very similar to the input element:

 The name attribute allows this element to be referred to in test cases.

 The port attribute specifies that this element should be used for a particular port.

 The file attribute specifies an existing file to compare the output data to for
correctness.

 The script attribute specifies a command that takes a file name as the data to
verify.

OpenCPI Component Development Guide Page 84 of 150

13.3.3.1 Script Attribute of the Output Element

This attribute is similar to the script attribute of input and property elements. The
major difference is that there are multiple arguments appended to the command instead
of one. The first is an input file that contains the output of the given output port as a
result of executing the worker in a subcase. After that first file name argument there are
file name arguments for each input port of the component that contain the input data
supplied to that port, in the order the ports are declared in the OCS. This allows the
script to not only access the resulting output data from an output port, but also access
the data supplied to each input port (if needed for the verification).

For example, if the component had input ports in1 and in2, and an output port name
out, and a script command <command>, in the script attribute, the actual command
executed would be:

<command> <output-from-port-out> <input-to-in1> <input-to-in2>

A second important difference for the output script vs. an input script is that the final
values of writable and volatile properties are available in the environment in addition to
the initial values of all other properties. For generated properties (those with a script
attribute in its property element), the name of the generated file is placed in the
environment variable named OCPI_TESTFILE_<property-name>, while the final
value is still in the OCPI_TEST_<property-name> environment variable.

The name of the test case is in the OCPI_TESTCASE environment variable and the
name (which is numeric) of the subcase is in the OCPI_TESTSUBCASE environment
variable. E.g. if the subcase being run was case43.03, the case name is case43 and
the subcase name is 03.

As with all other scripts, a process/shell exit status of zero indicates success, while a
non-zero exit status indicates failure. The script may write other informational
messages about the failure to stderr which will be logged. The script should not write
simple success and failure (PASS/FAIL) messages since the unit test framework does
that already, using green/red colors for PASS/FAIL, based on the exit status.

13.3.3.2 View Attribute of the Output Element

This optional string attribute operates similar to the script attribute, but has a different
purpose. It provides a convenient way for the developer to ask for a “view” of the data
for the port. Taking all the same arguments as the verification script (in the script
attribute) , it is expected to present the data is some useful way during test
development, typically in some viewing or plotting window.

13.3.3.3 StopOnEOF Attribute of the Output Element

This boolean attribute indicates that reception of an “EOF” message (zero-length
message with opcode zero) should stop the recording of output data from an output
port. The default value is true (which is unusual for a boolean attribute). This attribute
is the same as the property of the file_write worker and is only valid for outputs.
The reception of EOF messages on the first or only output port is used to indicate the

OpenCPI Component Development Guide Page 85 of 150

end of execution of a test subcase unless the duration attribute is set for the case (or
as a top-level default for all cases).

DisableBackpressure Attribute of the Output Element

This boolean attribute only applies to output ports of HDL workers under test and
specifies the backpressure (i.e. flow control) behavior the worker will see at this output
port during testing. Setting disableBackpressure to true will disable the
backpressure applied to this port. When false (the default) the test bench will apply
random backpressure to this port.

13.3.4 Property Element of Tests Top-level Element

This element specifies the default set of values for a property for all test cases, unless
overridden in particular test cases. When multiple values are specified, the implication
is that subcases should be generated that test each of the specified values.

For parameter properties, where the potential set of test values is normally derived from
the values used to build the workers being tested, the values specified in this element
act as a filter or subset of those values, since no tests can be performed for parameter
values that are not used in any worker's build configuration.

The allowable attributes for the property element are: name (required), test, value,
values, valueFile, valuesFile, generate, add, only, and exclude. Exactly
one of the value* attributes must be specified. The textual syntax for property values
is used, as described in Property Value Syntax.

13.3.4.1 Name Attribute of the Property Element

This required string attribute identifies a property defined in the OCS of the test suite or
in the OWD for a worker being tested. The values specified in other attributes are
applied to this specified property during testing (except when the test attribute is true –
see below).

13.3.4.2 Value Attribute of the Property Element

This attribute specifies a single value to be tested.

13.3.4.3 Values Attribute of the Property Element

This attribute specifies a comma-separated sequence of values to be tested.

13.3.4.4 ValueFile Attribute of the Property Element

This attribute specifies the name of a file containing a single value to be tested. Multiple
lines in the file are considered elements of a sequence or array value.

13.3.4.5 ValuesFile Attribute of the Property Element

This attribute specifies the name of a file containing multiple values to be tested.
Multiple lines in the file are considered separate values to be tested. Multiple values
can also be specified on a single line in the syntax of a sequence of values of the type

OpenCPI Component Development Guide Page 86 of 150

of the property. E.g., if the type is Ulong, the ValuesFile file could contain a single
line of 1,2,3,4 or four lines containing the four values.

13.3.4.6 Generate Attribute of the Property Element

This attribute specifies a command to execute to create a file containing a value to be
tested. An argument is added to the command for the name of the file to be written. All
parameter and initial runtime property values are available to the script as environment
variables. This feature is convenient when a property value depends on others in a
complex way. Note that expressions can be used in the value attributes of property
elements, so scripts are not necessary to perform simple arithmetic based on other
parameters.

13.3.4.7 Test Attribute of the Property Element

This optional boolean attribute, when true, indicates that this property is a test property
that is not a property of the workers being tested. It is a property whose value is
available to all input generation, output verification, output viewing and property
generation scripts. Its name must be different than all property names in the OCS or in
any of the workers' OWDs.

Values assigned to a test property are used to generate other test cases not defined
simply by the values of worker properties. When this attribute is true, other data type
attributes used in an OCS property element, such as type or arrayLength, may be
applied to this property element since it is in fact defining a property.

13.3.4.8 Exclude/Only/Add Attributes of the Property Element

These attributes limit certain values to certain platforms. The exclude and only
attributes provide value-specific restrictions on platforms similar to the effect of the top-
level excludePlatforms and onlyPlatforms attributes: they exclude certain
platforms from testing certain values or specify that some values should only be tested
on certain platforms. The add attribute specifies that the values should be added to the
set of tested values only for certain platforms.

The syntax of these attributes is the same as mentioned in the ExcludePlatforms
Attribute section above.

13.3.4.9 The set child element of the Property Element for Delayed Values

Normally any non-parameter initial property values are set before the test case
application is started (after initialize and before start). This means that such values
are stable during the life of the test. In some cases it is useful to set writable property
values during execution.

The set child element can be used to “schedule” the setting of a property value at
some time after the application is started. Delayed property settings in applications are
described in the Application Development Guide, and the syntax here is similar: the
set child element can occur more than once, and have delay and value attributes to
specify the delay after start (in seconds, floating point), and a value to set at that time

OpenCPI Component Development Guide Page 87 of 150

(relative to when the application is started). A delay of zero causes the value to be set
immediately after the application is started. The following example:

<property name='myctl'/>
 <set delay='1' value='10'/>
 <set delay='1.001' value='20'/>
</property>

ssets the myctl property to 10 one second after start, and sets the value to 20 one
millisecond later.

13.3.5 Case Element of Tests Top-level Element

The case element defines a non-default test case when required. It is necessary when
the automatic parameterization of the default test case is insufficient for testing the
worker(s).

The allowed attributes of a case element are: Name, OnlyWorkers,
ExcludeWorkers, OnlyPlatforms, ExcludePlatforms, Duration and Timeout.
All but Name have the same function as previously defined for the top level tests
elements, but only apply to this case.

If ExcludePlatforms is set at the top level, setting it again at the case level adds to the
list of platforms that will not be tested. Setting OnlyPlatforms at the case level if
ExcludePlatforms is set at the top level is valid, but OnlyPlatforms at the case level
cannot list a platform that has been excluded at the top level.

If OnlyPlatforms is set at the top level, setting it again at the case level narrows the list
of platforms that will be tested further, but it is not valid to set OnlyPlatforms at the
case level to a platform not in the top level OnlyPlatforms list. It is valid to set
ExcludePlatforms at the case level if OnlyPlatforms is set at the top level, but
excluding a platforms not in the top level list has no effect.

ExcludeWorkers and OnlyWorkers at the top and case levels interoperate in the same
way as ExcludePlatforms and OnlyPlatforms.

The allowed child elements under a case element are: input, output, and
property.

Each case can override or use the default inputs and outputs for each port, and each
case can override the property values tested for each property. If no input or output
is defined for an input/output port, then the default input/output is used (the
input/output defined for the port under the top-level tests element). If no
property element is present for a property under a case element, then the values
defined at the top level are used. For parameter properties, the default values tested
are derived from the values defined in all the workers' build configurations, but this
automatic default can still be overridden (limited) by a property element at the top
level or under a case element.

OpenCPI Component Development Guide Page 88 of 150

13.3.5.1 Name Attribute of Case Elements

This optional string attribute specifies the name of the test case. If not present, the
name of the case is case followed by a case number starting at zero, with at least 2
digits (i.e. the second case would be case01, and the 101st case would be case100).
The name of a case is listed in various reports, and can be used when specifying that
only certain cases (rather than all cases) should be executed or verified.

13.3.5.2 Input Element under Case Elements

This element specifies how input data is generated for a port, in a test case. If not
specified, the default input source for the port specified at the top level is used. The
port attribute of the input element specifies the port this input element applies to.
The name attribute, when present, indicates that a specifically named input source
defined at the top level should be used for this port. If the named input source at the top
level already has a port attribute, no port attribute need be supplied for this input
element.

When the name attribute is specified, none of the file, or script attributes are
allowed. If there was a top-level input element like this:

<input name='pulsegen' port='in' script='mygen.py'/>

then a case element could simply have:

<input name='pulsegen'/>

Similarly, it the top-level input element was this (with no port attribute, allowing it to
be used for different ports):

<input name='pulsegen' script='mygen.py'/>

then a case element could have:

<input name='pulsegen' port='in'/>

13.3.5.3 Output Element under Case Elements

The output element for a test case acts the same as the input elements. They refer
to a named output element at the top level or override the default, per port.

13.3.5.4 Property Element under Case Elements

The property element for a test case acts the same as the property elements at the
top level: it specifies values to be used for the named property for this test case. If a
property is not mentioned in a case element, the default top level values are used.

A single test case can have multiple values for any property. Subcases are
automatically generated for all combinations of property values specified for the test
case whether specified at the top level as default sets of values, or specified for the test
case in the case element.

Individual values for a property for a test case may be restricted to certain platforms as
described above in the Exclude/Only/Add Attributes section.

OpenCPI Component Development Guide Page 89 of 150

13.4 Unit Test Makefile Contents

The Makefile in a <component>.test directory is normally untouched after being
created with the ocpidev create test command. It is generated to contain only
one line:

include $(OCPI_CDK_DIR)/include/test.mk

Several make variables can be used either on the make command line or specified in
this Makefile to control the various phases of unit testing.

During the build phase, as with building projects, libraries and workers, these platform
variables are applied: HdlPlatform(s), OnlyPlatform(s), ExcludePlatform(s).

During later phases (prepare, run, verify) these platform variables apply:
OnlyPlatform(s), ExcludePlatform(s).

The View variable can be set to 1, which will cause the “view” script to be run whenever
verification is requested.

The TestVerbose variable can be set to 1, which will cause the execution and
verification logs to be included in the console/shell output, rather than just placed in
specific log files, per platform and per subcase.

The KeepSimulations variable can be set to 1 to cause the contents of the
simulations directory to be retained after successful executions on simulation
platforms. Successful verification for a platform normally causes the associated
simulations directory to be removed immediately. Keeping simulation output may
use lots of file system space (100s of GBs in some extreme cases).

The TestAccumulateErrors variable can be set to 1 to cause execution or
verification errors to accumulate (i.e. not immediately stop the run and/or verify process)
and simply be reported as they occur. The default is to stop on the first error either in
execution or verification. When accumulating errors, if any test executions or
verifications fail, the entire process will return an error condition after all cases have run
on all platforms. There is no option that will accumulate errors across multiple test
directories in a library or project.

The Cases variable is a wildcard pattern indicating which cases/subcases should be
executed or verified. Subcases are named <casename>.<subcase#>, so this
variable may be set to patterns that affect certain cases or subcases. Subcase
numbers are listed in the report in gen/cases.txt report produced by the generate
phase. The default case name is case00. For example, to only run subcases that end
in 3, you could specify: Cases='case*.*3'. Multiple patterns are allowed, such as:
Cases='case00.01 case00.03'. The quotes are not necessary in the Makefile, but
are necessary on the command line.'

OpenCPI Component Development Guide Page 90 of 150

13.5 Preparing Unit Test Inputs

An input element must be specified for each input port of the component, either at the
top level as a default for all cases, or for specific cases. It either specifies a pre-existing
data file to use (using the file attributes) or a command to execute to generate the
input data which can depend on the property settings for the specific subcase (using the
script attribute). While a specified input file applies to all subcases regardless of
property settings, a generator script can generate input data for each subcase that
depends on all its property settings.

The format of the data in the (possibly generated) file is a series of message payloads
as defined by the protocol for the port, as described in Message Payloads on Data
Ports. The data must be laid out according to the setting of the ocpi_endian built-in
parameter property, whose value is available to all data generation scripts. All platforms
currently supported use only little-endian data layout, but to test a worker that might be
built for different endian systems, the layout of the data must match this parameter
value.

The generator scripts for input ports are run for each subcase, with all property values
for the subcase available to the script. The script is responsible for writing a file whose
name is provided on the command line. Since the script command is executed as it
would be on shell command line, it can be written in any language, such as python,
bash, or even compiled C or C++. It is executed in the context of the development
system (not the target, potentially embedded system), so it can depend on any tools
installed on the development system. However, scripts that depend on tools not
installed or required as part of OpenCPI will make the project as a whole less portable.

An example input generator script written in the python language is below for a FIR filter
component. The script depends on two properties. The first COEFF_WIDTH_p is a
parameter specifying the bit-width of samples. The second NUM_TAPS_p is the number
of taps in the filter. The script generates in impulse, with a maximum value followed by
zeroes. The file is binary 16 bit signed fixed point data.

#!/usr/bin/env python2
import sys, os, struct
max_tap = pow(2,int(os.environ.get("OCPI_TEST_COEFF_WIDTH_p"))-1)-1
num_taps = int(os.environ.get("OCPI_TEST_NUM_TAPS_p"))
fo = open(sys.argv[1], 'wb')
for j in range(num_taps):
 fo.write(struct.pack('h', max_tap))
 for i in range(1,num_taps*2):
 fo.write(struct.pack('h', 0))

If the script was in the local file generate.py and made executable (e.g. with chmod a+x
generate.py), and the input port was named in, then the input specification that used
this script would be:

<input port='in' script='generate.py'/>

An input generation script must return exit status of zero/non-zero for success/failure.

OpenCPI Component Development Guide Page 91 of 150

13.6 Preparing for Unit Test Output Verification

An output element must be specified for each output port of the component, either at
the top level as a default for all cases, or for specific cases. It either specifies a pre-
existing file to compare test output data against (using the file attribute), or a
command that examines the data produced at an output port to decide whether the
execution of the subcase was successful (using the script attribute). Output
verification scripts have access to the output data produced, the input data provided to
all input ports, and the final values of all properties at the end of execution (in the
environment).

If the component had input ports in1 and in2, and an output port name out, and a
script command <command>, in the script attribute, the actual command executed
would be:

<command> <output-from-port-out> <input-to-in1> <input-to-in2>

The three filename arguments would be added by the unit test framework to run this
output verification script for a given subcase, providing the file names for the data
associated with the subcase (input and output). The script would run in the
development environment and not in the environment of a potentially embedded target
platform.

As with input data, the message payload formats must comply with the lay out as
described in Message Payloads on Data Ports, and also respect the value of the built-in
ocpi_endian parameter property.

An output verification script must return exit status of zero/non-zero for success/failure.

OpenCPI Component Development Guide Page 92 of 150

13.7 Off-line One-time Tasks Prior to Test Execution and Verification

After creating the test suite in the <component>.test directory using the ocpidev
create test command, the following steps are taken prior to running any tests.

 Making any necessary changes to the Makefile (rarely needed)

 Adding the elements (input, output, property, case) to the
<component>-test.xml file.

 Prepare any input data files or input data generator scripts.

 Prepare any output data files (for comparison) or output verification scripts.

 Run the generate phase (see next section)

 Examine the report created in gen/cases.txt to see the generated subcases.

 If any workers are HDL workers, run the build phase to build the
bitstream/executables.

After these steps, all applications, HDL assemblies, input data sets and verification
scripts have been generated (in the gen directory) and any required HDL assemblies
have been built for the desired HDL platforms. The generate phase does not depend
on which platforms any of the workers being tested have been built for. Prior to the
build phase no compilers or other build tools are required or used. The build phase
does require any HDL workers to have been built for the desired platforms.

The generate phase is accomplished using the
make generate

command, and the build phase is accomplished using the

make build

command (or simply make with no goal specified). When the build phase is invoked,
the generate phase may be re-invoked based on make dependencies. As mentioned
above, the platform variables HdlPlatform(s), OnlyPlatform(s), and
ExcludePlatform(s) may be used on the command line for building to modify
defaults specified in the project, library or environment.

OpenCPI Component Development Guide Page 93 of 150

13.8 Testing on Remote Systems

The default behavior of the unit test framework is to test on locally available platforms.
This usually means using the local CPU and any locally attached GPUs or FPGAs.
However, there are two methods to including non-local, network-reachable systems in
the set of available platforms for testing. The first is specific to unit testing and involves
defining possible remote systems using the OCPI_REMOTE_TEST_SYSTEMS
environment variable. This method is described in the next section.

The second method of using platforms on remote systems is to use the remote
container capability that generally supports OpenCPI applications executing on a mix
of local and remotely accessible platforms. This feature is fully described in the
Application Development Guide. In order to have the unit test execution framework
consider remote systems as test platforms, the remote and local systems have to be
enabled as described in that document.

To enable the unit test framework to discover and use such systems, you set one
environment variable: OCPI_ENABLE_REMOTE_DISCOVERY=1. This enables all such
systems to be included in the set of available platforms for testing. This variable can
also be set in the Makefile using: export OCPI_ENABLE_REMOTE_DISCOVERY=1.

Using remote containers requires no common network mounts between the local and
remote systems and no ssh enablement, but has some firewall-related limitations in
some environments.

13.8.1 Defining Remote Systems for Executing Tests

In order for the unit test framework to execute tests on platforms that are not available
on the development system, remote systems with additional platforms must be
specified. Such platforms are not discovered automatically but are specified in the
OCPI_REMOTE_TEST_SYSTEMS environment variable.

Remote systems are accessed using the ssh remote execution command, with an ssh
server capability required to be enabled on the remote system. This environment
variable is a colon separated list of remote system specifications, and each remote
system is specified by 5 fields separated by '='. The four fields are:

1. Remote Host name/IP address

2. SSH user name

3. SSH password (yes, this is not a secure solution)

4. Project directory mount path as seen on remote system

5. SSH Version (optional)

The remote system must meet the following requirements:

 SSH access from the development host, using the username and password in the
first three (and optional fifth) fields. If the remote system is set up for public/private
key access control from the development system, the password is not used, but
must still be non-empty.

OpenCPI Component Development Guide Page 94 of 150

then, after a successful SSH login from the development system

 The project's directory on the development system must be mounted (NFS or
equivalent) for access from the remote system, using the path of the fourth field.

 The OpenCPI kernel driver must be loaded on the remote system

 The OCPI_CDK_DIR environment must be set up properly consistent with the
development host. An OpenCPI CDK installation is assumed, with the remote
system and development system using the same OpenCPI release.

The project directory mount, the OpenCPI CDK installation, and the kernel driver may
either be established at boot time or at SSH login time on the remote system.

A remote system provides may support multiple platforms (e.g. both HDL and RCC).
Whatever platforms are available on the remote system will be discovered when the
remote system is contacted. Like local platforms, these discovered platforms are
subject to the filters specified by OnlyPlatforms and ExcludePlatforms.

Remote systems are frequently embedded systems which do not host a development
environment, but any system can be a remote system. E.g. if the development system
is running CentOS7, the remote system could be CentOS6 to run tests on that system
also. Of course the CentOS6 system will only run RCC artifacts build for CentOS6.

Remote systems may be defined in the project's Project.mk file so that they are
available for all test suites in the project, e.g.:

export OCPI_REMOTE_TEST_SYSTEMS:=10.0.1.16=root=root=/mnt/myproj

OpenCPI Component Development Guide Page 95 of 150

13.9 On-line Tasks for Test Execution and Verification

After the off-line steps described above, and any remote systems are defined, there are
four steps that relate to actually executing tests and performing verification, and these
steps are aware of available local and remote platforms on which to execute tests.

13.9.1 Preparing for Execution: Discovery and Execution Script Generation

The prepare phase is invoked by the make prepare command. It considers all
available platforms, local and remote, including available RCC, HDL hardware and HDL
simulators. The OnlyPlatform(s) and ExcludePlatform(s) make variables are
used to filter the set of available platforms.

This step also considers which RCC built artifacts are available in the component library
as well as which HDL bitstream/executable artifacts have been built locally from
generated HDL test assemblies in the build phase. From the combination of available
platforms and available artifacts it determines which subcases can be run on which
platforms, and generates execution scripts accordingly. These execution scripts are
generated in the run subdirectory of the test suite. The gen subdirectory captures the
results of the generate and build phases, and the run subdirectory captures the results
of the prepare and run phases. Both subdirectories are removed by make clean.

When determining available artifacts for test execution, it does not look at the prevailing
setting of the OCPI_LIBRARY_PATH, but forces a new environment value that limits the
artifact search to local artifacts in the component library, the gen/assemblies
directory and the installed CDK on the local and remote systems.

After determining available and appropriate test execution platforms, this phase
generates per-platform scripts that run all feasible subcases on that platform. These
scripts are placed in a subdirectory of the run directory named after the platform.

13.9.2 Executing Tests on Available Platforms

The run phase executes, for each available platform, filtered by OnlyPlatform(s) and
ExcludePlatform(s), test applications for all possible cases and subcases.

Three different make goals can be used to invoke the run phase:

make runonly — perform the prepare phase and then the run phase.

make runnoprepare — manually rely on a prepare phase that has already be
performed, and only perform the run phase. This has the benefit of avoiding
some setup overhead and time, but runs the risk of something changing in the
environment (e.g. a remote system becoming unavailable).

make run — perform the prepare, run and verify phases all together, with the run
and verify steps interleaved by subcase with each subcase being verified
immediately after it has been executed.

The run phase iterates through platforms (sequentially), executing all subcases on each
platform in turn, and recording the results for later verification. The recorded results are:

OpenCPI Component Development Guide Page 96 of 150

 the output data from output ports

 the final values of all properties, including volatile ones

 a log of the actual execution of the tests.

All these results are recorded in the platform's subdirectory of the run directory with
different files for different subcases. After the execution of each test on a given
platform, a console message will indicate whether the execution succeeded or failed. If
an execution fails, the execution of all tests for the platform is stopped, and the outputs
can be examined for the cause of the failure. In this failure case other platforms will still
be tested. If the TestAccumulateErrors variable is set to 1 (in the Makefile or on
the make command line), such failures will be reported, but the execution of test cases
will continue. This variable also applies to during verification of test cases. Setting this
variable to 1 is useful to solve each problem as it occurs, while leaving it unset allows all
errors to occur and be analyzed or examined later.

13.9.3 Verifying Test Results

The verify phase relies on the previous execution of appropriate subcases for all
platforms, and performs verification using the results recorded previously in the run
phase.

The make verify command performs verification for all platforms. The make run
command will perform both run and verify phases in an interleaved mode where each
subcase is verified after it is executed in order to show the results for subcases as they
are executed.

The verify phase by itself does not involve any execution or access to local or remote
execution platforms and thus can be performed offline. Whether the verify phase is
executed with the run phase or by itself, the view option will run the defined view scripts
with verification. The view option is enabled by specifying View=1 on the make
command line, and happens per subcase before each verification. When view scripts
typically put up a window to display the data, they may wait for user input or simply
return, allowing the data to be displayed while verification proceeds.

If the TestAccumulateErrors variable is set to 1 (in the Makefile or on the make
command line) the verify phase will immediately stop and return an error if any subcase
fails by returning non-zero exit status. If the variable is not set to 1, all subcases will be
verified with failures reported as they occur. The output of the verify phase makes it
clear whether each subcase PASSED or FAILED. The individual verification scripts are
required to return a standard shell command exit status of zero for success and non-
zero for failure.

13.9.4 Viewing Test Result Data

The make view command can be used to specifically run any view script defined for
output ports. If the View variable in the Makefile (or on the make command line) is
set to 1, this will always happen as a side effect of running the test, but when it is not,
make view can be used to view results on demand (assuming a view script was
defined).

OpenCPI Component Development Guide Page 97 of 150

13.10 Summary of Make Goals and Variables

The make command is used with the following goals to invoke the phases:

build — (the default goal if none is specified) build locally generated HDL
assemblies, implies generate if needed

run — perform execution and verification, interleaved per subcase

clean — clean all generated, built and execution directories and files

The following goals control the process at a finer granularity:

generate — perform all offline generation tasks: scripted input data and property
values, applications, HDL assemblies, generation report

prepare — discover platforms and artifacts and generate execution scripts per
platform, assumes required artifacts are built

runnoprepare — execute tests assuming a previous prepare was done

runonly — prepare and execute tests, but do not perform any verification

verify — perform verification for whatever platforms have been executed

view — run the view scripts and put the results in separate windows

cleanrun — clean all run results

cleansim — clean all simulation output (but not run results)

The View and KeepSimulations variables apply to verification.

The Case(s) variables apply to both execution and verification.

The OnlyPlatform(s) and ExcludePlatform(s) applies to preparation, execution
and verification.

The following make goals can be executed in a component library's directory to apply to
all <component>.test directories in the library, or at the project level to apply to all
component libraries in the project: test, cleantest, runtest, verifytest,
runonlytest. They perform the same function as the corresponding goal in the
<component>.test directory, without the test suffix. The cleanrun and cleansim
goals can also be used at the library and project levels without a test suffix.

OpenCPI Component Development Guide Page 98 of 150

14 Developing OpenCPI Assets in Projects

In OpenCPI a project represents a work area in which a variety of assets are created
and developed. Projects can contain all types of assets that are described fully either in
this document or in others. A project can contain:

 Component libraries with specs and workers.

 Applications (described in the Application Development Guide).

 HDL primitives and assemblies (described in the HDL Development Guide)

 HDL devices, cards, slots (described in the HDL Development Guide)

 Platform support assets (described in the Platform Development Guide)

A project is a standard directory structure that holds the various OpenCPI assets in both
source code form and built form, along with the makefiles that describe how they are
built. The project structure provides a means to bundle a collection of assets which may
have a logical relationship or be created for a specific application.

The ability to develop assets outside of a project (a.k.a. standalone) is also supported,
but is preliminary and subject to change, and not discussed further in this section.

The ocpidev tool is used to create and then populate a project directory structure with
the various asset types. The created skeleton directory structure is always buildable.

The structure of a project, and types of assets (shown enclosed in <>), is shown in the
following diagram (with the makefiles and other files omitted except at the project level).

Project.mk
Project.exports
Makefile
applications/<applicationXYZ>/
specs/
components/<componentlibXYZ>/<workerXYZ>/
 /specs/
---OR---
components/<workerXYZ>/
 /specs/
hdl/primitives/<primitiveXYZ>/
hdl/assemblies/<assemblyXYZ>/
hdl/platforms/<platformXYZ>/
hdl/devices/<device-workerXYZ>/
 /specs/
hdl/cards/<card-device-worker>/
 /specs/

The optional top level specs directory is separate from the specs directory in any
component library. It is a project-wide specs directory that is usable by all component
libraries in the project. It can exist in the project, for use by other projects, even if there
are no component libraries in the project.

OpenCPI Component Development Guide Page 99 of 150

Creation of a project (using ocpidev) creates a skeleton directory structure that is
buildable, but it will build nothing initially as it contains no assets. All the intermediate
directories are created by ocpidev as needed. If there are any component libraries
created in the project (using ocpidev create library <libname>) a
components directory is created, under which those component libraries will be
created. Alternatively, for simpler projects which only have a single component library,
the components directory is the single component library (created using ocpidev
create library components) and workers are created directly under
components. A project currently cannot easily be changed between the “flat”, single
library structure and the “hierarchical”, multiple library structure.

When creating a worker, if no library is specified and the current directory is not in a
component library already, it is placed directly in the components directory. It is an
error to create such workers if component libraries already exist under components.
Conversely, it is an error to create a component library under components if workers
already exist there or components was already explicitly created.

In addition to the various directories, three required files are generated at the top level
when the project is created by ocpidev:

Makefile: the top level Makefile for the project which supports building all assets
from the top level project directory.

Project.mk: the make file fragment that defines make variables and options that
are used project-wide, for all assets at all directory levels.

Project.exports: a file that specifies which assets and files should be visible
from outside the project, i.e. visible to other projects which use some of the
assets in this project.

These files are automatically created when the project is created, but may be edited
later as necessary. The Project.mk and Makefile files must exist; the
Project.exports is optional and created and edited manually.

OpenCPI Component Development Guide Page 100 of 150

14.1 Managing Project Assets.

The ocpidev tool described in detail later is used to manage all the asset types in a
project. It is used to create, delete or test assets. Once created, the assets are based
on text files that must be edited. Assets are created using the ocpidev create
command and they are deleted using the ocpidev delete command. Most assets,
including projects themselves, are based on a directory, with a Makefile in that
directory. These include:

 Component libraries

 Workers

 Unit Test Suites

 HDL device workers

 HDL platforms

 HDL primitives (cores and libraries)

 HDL assemblies

 Applications (except the simplest ones)

When an asset is created, the appropriate directories are also created, an initial
Makefile is created in the new directory, and in some cases other initial files are also
created. The Makefile contents indicate which type of asset is in that directory.

Some assets are simply files and when created, an initial version of the file is created in
the appropriate directory in the project. This type of asset includes:

 Component Specs

 Protocol Specs

 HDL card definitions

 HDL slot definitions

 Applications (simple XML based applications with no ancillary files)

When creating specs, protocols, workers and unit tests, a library option (-l
<library>) may be supplied to ocpidev indicating which component library the asset
should be added to. If the project has a single library in the components directory, this
option is not used. For hardware-specific HDL workers, the -h <library> option
specifies a directory under the project's hdl/ subdirectory where the device worker
should be created (usually hdl/devices).

When adding a platform-specific device worker or device proxy, a platform option (-P
<platform>) may be supplied to indicate which platform-specific device library to add
the device worker to. Portable device workers that are not platform-specific do not use
this option.

OpenCPI Component Development Guide Page 101 of 150

14.2 Package IDs

A package-ID is the globally unique identifier of an OpenCPI asset. A project's
package-ID is used when it is depended on by other projects. A component's package-
ID is used to reference it in applications or workers. While all assets have package-IDs
(either explicitly specified or inferred from the directory structure), only certain assets
are actually identified by their package-IDs in the current OpenCPI release. Eventually,
package-IDs will be used uniformly and universally.

A package-ID is a hierarchical sequence of names separated by periods. This OpenCPI
package naming scheme follows the Java package naming conventions, which are
roughly based on a reversed Internet domain name with the top-level domain first, and
the more specific or local names after that. Thus if CNN had an OpenCPI project full of
news-related components, its package-ID might be com.cnn.news.

Warning: When changing the PackageName or PackagePrefix of an existing project the
project needs to be both unregistered and re-registered then cleaned and rebuilt. This
also includes cleaning and rebuilding any projects that depend on this project.

14.2.1 Package-ID Usage and Structure

Package-IDs are divided into two parts, the package-prefix and the package-name.
The package-prefix is the string before the last period, and the package-name is the
name after the last period. Generally the package-ID of an OpenCPI asset consists of
the package-prefix from its containing environment (e.g. the project of a library, or the
library of a worker). Its package-name is simply the name given when the asset was
created (using ocpidev). Thus the package-prefix acts as the name scope for the
asset. This package naming scheme (from Java) provides for globally unique identifiers
that are human readable (and type-able) and already administered by a globally known
organization. A package-ID consists of <package-prefix>.<package-name>.

OpenCPI defines two reserved top level package prefixes: ocpi and local. The
ocpi prefix is managed by the OpenCPI maintainers and is used for assets that are
located at the OpenCPI github repository. Projects that are maintained there all have
names with this prefix (currently the three projects in use are ocpi.core,
ocpi.assets, and ocpi.inactive). The second reserved prefix (local) is the
default packageID for all projects that are created with no explicit package-ID. This
means that basic development projects (or tutorial examples) are not required to have a
global identity to simply get started. As soon as other projects need to use or depend
on a project, it should have a more explicitly assigned package-ID.

The package-ID of a component specification is generally prefixed with the package-ID
of its containing library or project (followed by a period). This prefix is the name scope
in which the component is defined. This allows components to be specified and
implemented by different organizations, while still allowing any implementation found in
a library to satisfy any (other) organization’s component specifications. E.g., my project
can have an additional, alternative implementation of a component specified in another
organization's library, or can define its own specification for a component with the same
package-name with a different package-prefix (name scope).

OpenCPI Component Development Guide Page 102 of 150

14.2.2 Package-ID attributes in XML files.

There are several cases where attributes are set in XML files to help specify package-
IDs. In an application XML file, the top level package attribute provides a default
package-prefix for all components mentioned in the file (that do not have periods in their
name).

A component spec XML file can specify a package-prefix in a top-level package
attribute, This would override the default, which is the package-ID of the library in which
the spec is defined. If the spec is not in the library, but rather in the top level specs
directory of a project, this would override the default prefix from the project's package-
ID.

14.2.3 Package-ID Variables in Makefiles

The package-ID of an asset is normally inferred from the name it was created with
serving as package-name with the package-ID of its containing asset serving as
package-prefix. When this inferred package-ID is not what is needed, certain variables
in the asset's <Asset-type>.mk file can override this default behavior. The
PackagePrefix variable can override the default package-prefix supplied from the
package-ID of the containing asset.

The default package-prefix for projects is local. As soon as this default is not what is
wanted, the PackagePrefix variable can be set in the project's Project.mk file in
the top level project directory. Similarly, a component library in a project could override
its prefix (which would normally be the package-ID of its project) using the
PackagePrefix variable in the library's Library.mk file.

In the unusual case where the package-name should be different than the name the
asset was created with (which is also the name of its directory), the PackageName
variable can be used to override that part of the package-ID.

When it is required to simply set the entire package-ID for an asset, the Package
variable (which should be named PackageID) can be used. This overrides any logic for
combining the package-prefix and the package-name.

14.2.4 How to Determine an Asset's Parent (and thus Default Package-Prefix)

The parent of a component library, any of:
components/
components/<library>
hdl/devices/
hdl/cards/
hdl/adapters/
hdl/platforms

is the project itself.

An HDL platform's parent is the hdl/platforms directory.

A hdl/platforms/<platform>/devices library's parent is the containing platform.

OpenCPI Component Development Guide Page 103 of 150

A project has no parent, and so its package-prefix defaults to local.

The default package-prefix of a component (which does not have its own directory) is
<parent's package-ID>.<component-name>.

14.2.5 Package-ID examples

Within the ocpi.assets project the Project.mk file contains:

PackagePrefix=ocpi

Thus the package-ID for the project is: ocpi.assets.

The dsp_comps library in the same project (located at
assets/components/dsp_comps) has no variables set in its Library.mk file, so:

 The package-prefix defaults to package-ID of parent (project): ocpi.assets

 The package-name defaults to library's directory name: dsp_comps

 Thus the package-ID is: ocpi.assets.dsp_comps

 If we had Package=full_package in the file dsp_comps/Library.mk, the
package-ID of the library would be, entirely, full_package

The assets project has an HDL platform (matchstiq_z1) with its own devices library
in:

assets/hdl/platforms/matchstiq_z1/devices

 With no package variables set, the package-name defaults to the directory:
devices

 The package-prefix defaults to the package-ID of parent (the matchstiq_z1
platform), which is: ocpi.assets.platforms.matchstiq_z1

 Thus the package-ID for the library is:
ocpi.assets.platforms.matchstiq_z1.devices

The fir_real_sse component spec in assets project's dsp_comps library would be
referenced in an application as:

ocpi.assets.dsp_comps.fir_real_sse

This is because a spec's parent is the library it is in.

OpenCPI Component Development Guide Page 104 of 150

14.3 The Project Registry: How Projects Depend on and Find Each Other

Every project depends on some other projects. At a minimum all projects depend on
the core project provided as part of OpenCPI. Its package-ID is ocpi.core.

When assets in a project depend on assets in other projects, the project must declare
that it depends on such other projects. Here are some examples of how assets can
depend on other assets, and thus how an asset in one project may depend on assets in
other projects.

 A worker may depend on a spec (OCS), whether in the same library as the worker,
a different library in the same project or in a different project.

 An HDL assembly may depend on workers in any library in the same project or
workers from libraries in other projects.

 An HDL worker may depend on an HDL primitive library in the same project or in a
different project.

A project declares its dependency on another project by either specifying the
dependency when the project is created (using ocpidev), or adding the dependency to
its Project.mk file later. In either case the dependency is declared by providing the
package-ID of the other project. As mentioned above, the dependency on the
ocpi.core project is always assumed.

A project is visible to other projects by being registered under its package-ID. A project
can only depend on another if that other project is registered with the OpenCPI
installation. The default condition of a project, when created, is to be unregistered and
thus not visible to others. When a project is in a suitable condition to be depended on
by others (i.e. it contains assets that are ready to be used by other projects), it can be
registered at that time (using the ocpidev register command). This action can be
reversed using the ocpidev unregister command.

14.3.1 Projects That Implement Platforms

While platform assets (sometimes called platform support packages) are one of many
types of OpenCPI assets, they are special in two ways:

 they enable other assets to be built (compiled, synthesized, etc.) targeting their
platform

 when they are in a registered project, they are usable for asset building for all
other projects regardless of whether those other projects declare a dependency on
the project containing the platform asset

A project A does not have to explicitly depend on project B simply to build A's assets
targeting a platform implemented in project B. This allows building for platforms without
knowing which project they are implemented in. For any other dependency between
assets in one project and another, the project dependency must be declared when the
project is created or later in the project's Project.mk file.

OpenCPI Component Development Guide Page 105 of 150

14.3.2 Project Registries for Sandboxed Project Development

Projects depend on other projects, and make themselves visible to other projects via a
project-registry that is part of the OpenCPI installation. The registry includes a
mapping between package-IDs and the pathname of registered projects. This mapping
is shown using the ocpidev show registry --table command.

There are two different relationships between projects and registries:

 Every project is automatically associated with a project registry upon creation
and thus can view and depend on other projects registered there.

 A project can be registered in its associated project registry, and thus be visible to
other projects associated there. Projects are not initially registered.

In cases when these three things are true:

 multiple versions of some projects are developed simultaneously

 those projects are depended-on by others

 the different project versions all use the same OpenCPI installation

it is useful to create an additional registry as a sandbox for that set of copies or versions
of projects. To create or delete an alternative registry, the ocpidev create|delete
registry command can be used. This establishes a registry in a user-specified
directory. To use such an alternative registry as the new default or to use platforms
defined and/or built in projects there (e.g. HDL simulators), the
OCPI_PROJECT_REGISTRY_DIR environment variable must be set point to it. This
overrides the default registry that is part of the OpenCPI installation.

Any projects created with this environment variable set will be associated with the
alternative registry. This association of a project to its registry is persistent. This
association does not depend on the current setting of the environment variable. To
change an existing project's association with its registry, the ocpidev set registry
command can be used. It can either specify an alternative registry directly or if none is
specified, the default (possibly from the environment variable
OCPI_PROJECT_REGISTRY) will be used. The association can be undone using the
ocpidev unset registry, in which case the default registry will be used when
needed (and that new association will persist).

So there are four uses of the relationship between projects and a registries:

1. A project's associated registry, set at creation or by ocpidev set registry, is
the way a project depends on others. Normally this association is automatic and
unchanged.

2. A project being registered in its registry, is the way for other projects,
associated with the same registry, to depend on it.

3. A project depends on another explicitly, by the declaration in its Project.mk file,
enabling assets in one project to depend on assets in other projects.

4. A project can be built for platforms implemented by any registered project in
its associated registry, without an explicit dependency.

OpenCPI Component Development Guide Page 106 of 150

14.4 Project Makefiles

Most of the directories in a project contain a file named Makefile, which is created by
ocpidev and used when building all the assets in the project. The ocpidev tool is
used to actually build, clean and test assets, using the build or clean verb. The
Makefile does not need to be examined or edited in most cases.

The generated Makefile has the same form for all asset types, setting optional make
variables, and including a standard makefile fragment from the OpenCPI CDK. The
Makefile can be left unmodified, with the default behavior usually being adequate and
appropriate or can subsequently be edited by the developer to specify additional
optional variable settings or add customized make targets etc in advanced cases. Each
Makefile has an initial single line of content, and for the top-level Makefile in a
project, it is:

include $(OCPI_CDK_DIR)/include/project.mk

This project.mk file included from inside the CDK is not related to the Project.mk
file mentioned above.

When a Makefile is in a directory with a number of subdirectories for the same type of
asset, a variable can be set which lists the assets to build. This variable is optional, and
when not specified, all such assets are built. For example, in a component library
where all the subdirectories contain workers, the default Makefile is simply:

include $(OCPI_CDK_DIR)/include/library.mk

This implies that all worker subdirectories should always be built. If there are workers
that should not be built, or they should be built in a particular order, then the Workers
variable can be specified to list the explicit set of workers that should be built, in order,
e.g.:

Workers=fft.rcc fft.hdl
include $(OCPI_CDK_DIR)/include/library.mk

Alternatively, if there are a few workers that should not be built, the ExcludeWorkers
variable can list them, in which case all workers except those listed will be built.

This same idea applies to directories in a project that contain HDL assemblies, HDL
platforms, HDL primitives, applications, devices, cards, and slots, etc. The exact name
of this variable, and other optional variables, are described in the section for each asset.

The makefiles for directories that hold multiple assets of the same type are
automatically created by ocpidev and have makefiles that indicate this by including the
appropriate makefile fragment from the CDK:

 The components directory makefile, when there are multiple libraries, contains:

include $(OCPI_CDK_DIR)/include/libraries.mk

 The applications directory makefile contains:

include $(OCPI_CDK_DIR)/include/applications.mk

 The hdl/platforms directory makefile contains:

OpenCPI Component Development Guide Page 107 of 150

include $(OCPI_CDK_DIR)/include/hdl-platforms.mk

 The hdl/assemblies directory makefile contains:

include $(OCPI_CDK_DIR)/include/hdl-assemblies.mk

 The hdl/primitives directory makefile contains:

include $(OCPI_CDK_DIR)/include/hdl-primitives.mk

The variables in the top level project Makefile apply when make is invoked in that top-
level project directory. The variables set in the Project.mk file in the top-level project
directory apply anywhere in a project, when make is invoked in any of the project's
directories.

OpenCPI Component Development Guide Page 108 of 150

14.5 The Project.mk File for Project-wide Variable Settings

This file is required in the top level directory of a project. It contains variable settings
that apply to all levels of a project. Its existence indicates that the directory is in fact a
project. In all directories under a project, this file is found by looking in parent
directories until the Project.mk file is found. This is similar to how the git tool finds
the top level of a git repository by searching for a directory named .git.

This top level project file is included in all the makefiles in the project automatically (by
the included standard CDK makefile fragment at each level). It is not the (lower case)
file in the CDK that is included via the directive at the end of the project's top-level
Makefile using

include $(OCPI_CDK_DIR)/include/project.mk

Variable settings in the project's Project.mk file are used even when the developer
runs make (or ocpidev build|clean) in subdirectories of the project (i.e. not running
make in the top level project directory). Within an OpenCPI project, the ocpidev
build command can be run directly in any asset's directory with the exception of HDL
primitives, which must be built from the hdl/primitives directory or the top level
project directory.

Variable settings that apply only when running ocpidev build from the top-level
project directory can be put in the Makefile in the top-level directory rather than in
Project.mk. Variable settings in this Project.mk file can either override settings
made in a given Makefile, add to lists, or conditionally set the variables if not already
set. For example putting the following lines in Project.mk:

ifndef HdlPlatforms
 HdlPlatforms=zed
endif

indicates that when any level of the project is built, if HdlPlatforms has no value, use
this definition.

The project variables that may be set in a Project.mk file are in the following table
and are all optional. This file must be present, but may be empty.

OpenCPI Component Development Guide Page 109 of 150

Table 8: Variables set in the Project.mk file

Variable Name
in Project.mk

Default Description

PackageName Project directory's
name

The name used for this project.

PackagePrefix local The package-prefix for all assets in the
library. The default, local, is appropriate
when the assets are intended to be used
only in the local organization or prior to
registration.

Package <prefix>.<name> The package-ID of the project, overriding
PackageName and PackagePrefix

ProjectDependencies "" A list of the package-IDs of other registered
projects that this project depends on.

In order to avoid name space collisions when using multiple projects or component
libraries (e.g. spec names and worker names), the project's package-ID is the default
namespace for all named assets in the project.

The ProjectDependencies variable should be used to declare other projects that
this project depends on. This will automatically use these other projects when
searching for assets that are subject to search paths, such as:

 OCS files (when building workers)

 HDL primitives (when building HDL workers)

 Component libraries when building workers (for slaves of proxies, or devices of
emulators)

While project dependencies should generally be the package-IDs of registered projects,
they may also be relative or absolute pathnames of other projects. However using such
direct pathnames is deprecated and may not be supported in the future.

Other useful make variables that can be specified in the Project.mk file include
variables providing default lists of build targets and platforms:

HdlTargets
HdlPlatforms
RccPlatforms
RccHdlPlatforms

Search list variables may also be put in this file, although care should be taken to not
unduly pollute search spaces for all assets in the project. These variables include:

ComponentLibraries
HdlLibraries

OpenCPI Component Development Guide Page 110 of 150

Such variables may be better placed in Library.mk files in component library
directories.

OpenCPI Component Development Guide Page 111 of 150

14.6 Project Exports

When a project's assets are used by assets outside the project, they use the project's
assets via its exports. Exports of a project are the files within the project that are
explicitly made visible and usable from outside the project. I.e., without exports, nothing
in a project is intended to be visible outside the project. A project's complete directory
structure contains source files and artifacts of the build process. The exports are the
files needed by users of the project, and can be thought of as the installable and
deliverable subset of the files in the project after it is built.

When other projects depend on a project, as specified in those projects' Project.mk
file ProjectDependencies setting, that means they use project exports from those
projects they depend on. The projects they depend on must be registered.

The exports tree is a directory containing the project's exports, and is constructed as a
tree of symbolic links, under the directory named exports at the top level of a project.
The structure of the exports tree is not necessarily the directory structure of the project
itself, but is a structure appropriate and convenient for users of the project's assets. By
constructing the exports tree using symbolic links, the exported view of a project uses
no extra space (no copies). The assets are therefore used externally exactly where
they exist in source form or where they are built (although indirectly via the symbolic
links in the exports tree).

Much like there is a standard directory structure for OpenCPI projects, there is an
implied standard exports tree based on the contents of a project. At the top level of a
project, the make target exports creates the exports tree. i.e.:

make exports

The exports tree has two different uses. One is to allow the project's intended
deliverable results to be used in-place, without any copying or “installing”. The other is
to provide an implicit recipe or bill-of-materials for creating an installable package for
users of the project. In this latter case a simple single file deliverable package can be
created (see below).

14.6.1 The Exports Tree

The top level directory exports, is created and populated automatically based on the
file Project.exports. This exports directory can always be deleted and recreated.
It is never manually constructed or changed. If the Project.exports file is empty or
does not exist no exports are created. The default export tree is created based on the
assets in the project. It is the set of exports when the Project.exports contains the
single line containing the single word: all.

The next sections describe the default exports tree and the format of the
Project.exports file that can be used to add or subtract from the default exports.

Here are the rules used to populate the default exports tree when make exports is
invoked at the top level of a project and the Project.mk file contains the single line:
all.

OpenCPI Component Development Guide Page 112 of 150

For an example of how the exports tree works:

Note: This structure is subject to change between Major releases of OpenCPI and
should not be depended on by any end user developed code

component library deliverables are made available in the exports tree under the lib
directory, using the name of the library. If there is a component library in the project in
the directory components/util_comps, where its own locally built deliverables are in
its lib subdirectory (components/util_comps/lib), then these deliverables are
available in the exports tree using lib/util_comps, which is a symbolic link to
components/util_comps/lib, i.e.:

exports/lib/util_comps -> ../../../components/util_comps/lib

This directory structure is subject to change but creates an export view of the
deliverables of the project using a sparse set of symbolic links. Users of the project,
seeing only the exports tree, see lib/util_comps for this library.

All assets have a default place in the exports tree where other projects that depend on
them can find them, if the project owner decides to export them.

14.6.2 The Project.exports file

The Project.exports file specifies which assets and files in the project should be
made visible, usable, and accessible from outside the project (usually by other projects).
If the file is missing or empty (or only contains blank lines or # comments), the project is
not intended to be used by others outside the project.

This nothing-is-exported condition is appropriate for projects in development before
anything is ready for use by others (and before a package-ID is assigned). It is also
appropriate for projects that contain end products like applications for test purposes.

At the other end of the “visibility” spectrum, the Project.exports file can contain a
single line containing the word all, which indicates that all assets in the project should
be visible/usable from outside the project.

Between these two extremes we can selectively export assets and/or files in the project.

14.6.2.1 Exporting Assets by Type or Name

To export assets, we simply provide their type and name, or in some cases the plural
form of their type to indicate all assets of that type. Here is a list of the lines you can
use to export assets by listing their types and names. When <name> is missing, it
indicates that all the assets of the indicated type should be exported.

OpenCPI Component Development Guide Page 113 of 150

all
spec <name> # a spec in the top level specs/ directory
specs # all specs in the top level specs/ directory
libraries # all component libraries under "components"
library <name> # <name> can also be a path within the project
hdl platforms
hdl platform <name>
platforms # all possible platforms
rcc platforms
rcc platform <name>
hdl primitives
hdl primitive library <name>
hdl primitive core <name>
hdl assemblies
hdl devices

14.6.2.2 Exporting Individual Files and Directories

The Project.exports file may also contain lines that add and subtract files from the
asset exports of a project. This capability it rarely used but covers some edge cases to
augment or prune the exports tree created based on asset exports. File additions are
lines that start with a plus sign (+), and subtractions are lines that start with a minus sign
(-). White space (spaces or tabs) can precede the -, +, or # characters.

The format of addition (+) lines is two fields separated by white space. The first field is
the relative pathname within the project for the file to be exported, and the second field
is the location in the export tree where the file should be linked. If the second field ends
in a slash, then the filename part of the first field is used as the file name in the exports
tree. Pathnames or other names with embedded spaces are not currently supported.

The line:
+special_dir/special_file include/ # this exports my special file

would export the file in the project named special_dir/special_file as:

include/special_file

If the name of the exported file should be different, it can be included in the second field,
e.g.

+special_dir/special_file include/different-file

If the second field is blank (doesn't exist), then the project file or directory is exported in
the same place is it exists,

+special_dir # export this directory where it is in the project

would simply make special_dir a top level directory in the exports tree.

Any directory that is exported implicitly exports all files underneath it.

The first field can also have wildcard patterns using normal sh/bash wildcard patterns.
A special string, <target>, indicates the software target that is currently being
exported. When “make exports” is executed in the project directory, it is done in the
context of a particular software target. The line below

OpenCPI Component Development Guide Page 114 of 150

+applications/myapp/target-<target>/myspecial_exe bin/<target>/

exports a secondary executable in the application.

Subtraction lines start with a minus sign (-). As with addition lines, the first field is the
pathname within the project, with possible wildcards and <target> strings.

In both additions and subtractions the first field can actually be an extended regular
expression if the field starts with a vertical bar (|). For example, an addition line might
be:

+|^(abc|xyz) special_dir/

which would export anything starting with abc or xyz in the directory special_dir.

OpenCPI Component Development Guide Page 115 of 150

14.7 Exporting a Project to be used Elsewhere

A project can be exported and used elsewhere in source form or in built form without
source files. In both cases a tar file is created from the current project.

From the top level directory of the project to be exported, create the single tar file using
one of the two commands below. To export the project in source form, use the
command:

$ tar -czf ../my-project.tar.gz --exclude=exports --exclude=imports

This creates the tar file with every file in the project regardless of what is exported. To
export the project in built form, which only includes exported assets and files, use the
command:

$ make exports
$ tar -czf ../my-project.tar.gz -C exports --exclude=imports

The make exports command ensures that exports are ready, and the second makes
the tar file consisting only of exported assets and files.

The above commands will create the tar file my-project.tar.gz in the directory
above and outside of the project's directory. At the destination where the project should
be installed, make a directory for the project and extract the tar file there:

$ mkdir my-project
$ cd my-project
$ tar -xvf ../my-project.tar.gz

If you are using the default registry (or setting the default in the environment) you can
set the registry for the project using the ocpidev set registry command. Make
sure that the registry contains any projects this exported project depends on.

If you want other projects to use or depend on this project, you can register it using the
ocpidev register project command.

OpenCPI Component Development Guide Page 116 of 150

14.8 Using Other Projects that Exist Outside the Project Being Developed

The convenient and recommended way to use a project A from another project B is to
add the package-ID of A to the ProjectDependencies variable in the project B's
Project.mk file. This declares the dependency without using any environment
settings or pathnames. The dependency is persistent (in Project.mk) and stays with
the project even if it copied or moved. Since the other project is specified in
ProjectDependencies by its package-ID, it can also be moved (and re-registered)
and the dependency is still valid.

The actual directories searched within a project depends on the type of asset being
sought. E.g., if a component library is being sought, the search will look for that
component library within all projects mentioned in ProjectDependencies. E.g.:

ProjectDependencies=local.utils ocpi.assets

would indicate that this project depends first on the local.utils project and then also
depends on assets in the ocpi.assets project (as well as ocpi.core which is added
to the dependency list). Any component library being sought might be in either one, and
if found in local.utils, the ocpi.assets project will not be used.

When a more dynamic setting is needed, e.g. for temporarily using one version of a
project vs. another, the OCPI_PROJECT_PATH environment variable can be used. This
variable specifies a colon-separated set of other projects (by pathname) to be searched
in order. These are searched before projects mentioned in the
ProjectDependencies variable to allow the environment variable to temporarily
override what is declared persistently in the project. Projects in OCPI_PROJECT_PATH,
are examined by looking in their exports subdirectory if it exists.

To summarize searching at the project level, the order is:

1. Use assets in projects in OCPI_PROJECT_PATH to temporarily override
anything later in this list.

2. Use assets in the local project.

3. Use assets in ProjectDependencies, in the order given in that variable
(with ocpi.core automatically added at the end, as previously mentioned)

In cases where a standalone component library or application is being developed
outside the project structure, the OCPI_PROJECT_PATH variable can also be used
when these non-project assets depend on projects other than ocpi.core.

OpenCPI Component Development Guide Page 117 of 150

15 The ocpidev Tool for Managing Assets

The ocpidev command line tool is used to perform various development-related tasks
inside projects as well as retrieving information about the environment. When used in
projects, it may be invoked at the top level of a project, or in lower level directories of
the project as appropriate to the particular command being used. The ocpidev
command has full tab completion for its options and arguments.

The general usage of the ocpidev command is:

ocpidev [<options>] <verb> [<noun> [<name> [<arguments>]]]

The options can in fact occur anywhere in the command for the user's convenience.
The general usage concept is:

perform the <verb> operation on the <noun> asset type whose name is <name>.

The verbs are:

create — create the named asset, creating files and directories as required, and
creating any skeleton files for future editing.

delete — remove all directories and files associated with this named asset

build — build the asset(s), running appropriate tools to create the binary files

clean — remove all the generated and compiled files for the asset(s)

show — display information about assets in registered projects and the current build
environment (preliminary)

[un]register — register/unregister a project in its registry

[un]set — set/unset the registry used by the current project

run — execute the unit-test or application

refresh — manually regenerate the metadata associated with the project

Most options are only valid for specific verbs or nouns, but some are general purpose
and described in the table just below. As each option is described, it is it also indicates
whether it takes a value from the following argument (under the V? column), and
whether the option may appear more than once (under the M? column). Options are
either single letters following a hyphen or complete words or acronyms following two
hyphens and separated by hyphens.

OpenCPI Component Development Guide Page 118 of 150

Table 9: General Purpose Options for the ocpidev command

Option V? M? Description

--help ? N Display help information; may be used in conjunction with a verb to display
verb-specific information, e.g.: ocpidev --help show

-v
--verbose

N N Be verbose, describing what is happening in more detail

-d <dir> Y N Specify the directory in which this command should be run. Analogous to the -C
option in the POSIX make command.

OpenCPI Component Development Guide Page 119 of 150

15.1 Create/Delete Assets

The create and delete verbs create/delete OpenCPI assets in/from a project
specified by the noun arguments that follow the verb.

ocpidev [options] create|delete <noun> <name>

15.1.1 Asset Types for Create and Delete

project — create/delete a project which holds and organizes OpenCPI assets

registry — create/delete a registry that enable projects to depend on each other

application — create/delete an application; XML or ACI as specified by options

spec — create/delete a component specification in a library or project

protocol — create/delete a protocol in a library or project

test — create/delete a component unit test in a library

library — create/delete a component library

worker — create/delete a worker in a library based on a component specification

hdl — a prefix to denote an HDL asset, in the hdl subdirectory of a project

assembly — create/delete HDL assembly

card — create/delete a HDL card definition

slot — create/delete a HDL slot definition

device — create/delete an HDL device worker, possibly in a specified platform

platform — create/delete a HDL platform

primitive —create/delete an HDL primitive; type needs to be follow

library — a set of HDL primitive modules to use in workers as a library

core — a primitive a single module, perhaps presynthesized (i.e. from
coregen or megawizard)

All HDL assets should avoid having names that are Verilog or VHDL reserved
identifiers, such as “reg”, etc.

15.1.2 Options for Create and Delete

The options for these verbs are usually specific to the asset type that is being created or
deleted. When deleting an asset, ocpidev will ask for confirmation. This can be
overridden by using the -f option to force the deletion without confirmation. When
creating an asset, if creation fails all partially created directories and/or files are
removed unless the -k (keep) option is specified.

The following table shows all creation and deletion options and which asset types the
options apply to.

OpenCPI Component Development Guide Page 120 of 150

Table 10: Creation/Deletion Options for the ocpidev command

Option V? M? Description

Option when creating any asset type

-k N N Keep files and directories created after a creation fails. Normally all such
files and directories are removed upon any failure.

Option when deleting any asset type

-f N N Force deletion, do not ask for confirmation when deleting an asset.
Normally, the user is asked to confirm a deletion.

Options when creating projects

-D <pkg-ID> Y Y Indicate another project that the project being created will depend on. The
value is the package-ID of that other project.

--register N N Register the project as it is created.

Options when creating projects or libraries

-N <pkg-name> Y N Specify the package name of the created project or library. The default is
the name argument after the create verb.

-F <pkg-prefix> Y N Specify the package prefix of the created project or library. The default is
local for projects, and <package-ID of parent> for libraries.

-K <pkg-ID> Y N Specify the package-ID directly. The default is:
 <package-prefix>.<package-name>.

Options when creating projects, libraries, workers, hdl devices, or hdl platforms

-A <dir> Y Y Specify a directory to search for XML include files.

-y <comp-lib> Y Y Specify a component library to search for workers/devices/specs that this
asset (or assets it contains) references.

-I <dir> Y Y Specify a directory to search for include-files (C, C++, Verilog).

-Y <prim-lib> Y Y Specify a primitive library this asset (or assets it contains) depends on.

Options when creating specs

-t N N Indicate that when creating a spec ,also create the unit test for it.

-n N N Indicates that the created spec should have no control interface. This is
rarely used or recommended, but is required for certain infrastructure
specs. Only applies to specs with only HDL implementations.

Option when creating or deleting specs or protocols

-p N N Indicates the protocol or spec will be (create) and is (delete) in the
specs directory of the project, and not in any library's specs directory.

OpenCPI Component Development Guide Page 121 of 150

Option V? M? Description

Options when creating or deleting specs, protocols, workers or hdl devices

-l <library> Y N Indicate that the asset should be created in or deleted from the specified
library.

--hdl-library
<hdl-library>

N N Indicates that the asset should be created in or deleted from the library
under the hdl directory of the project. Valid values are only one of:
devices, cards, adapters.

Options when creating workers of all types, as well as when creating tests

-S <spec> Y N Indicate the spec to be implemented by the created worker. The default is
<name>-spec or <name>_spec depending on what is found in the
specs directory of the library or project (or libraries indicated by the -y
option or other projects indicated by the -D option).

Options when creating workers of all types

-L <language> Y N Specifies the source language for the worker being created. Defaults to
the default language for the authoring model. It must be C or C++ for
RCC workers and VHDL for HDL workers.

-P <platform> Y N Indicates that the worker being created should be created in the devices
library for the specified HDL platform (in this project).

-O <file> Y Y Specify a source code file to compile when building this worker that is not
included by default (i.e. in addition to the <worker>.[c|cc|vhd] file).

Options when creating RCC workers

-V <slave-wkr> Y N Indicates that the RCC worker being created is a proxy for the slave
worker identified by the value of this option.

-W <worker> Y Y Specify one of multiple workers implemented in this RCC worker's
directory when a single RCC worker directory is creating a multi-worker
artifact. This is supported but rarely required or recommended.

-R <prereq-lib> Y Y Specifies that the worker being created depends on and should be
statically linked with a prerequisite library. See RccStaticPrereqLibs.

-r <prereq-lib> Y Y Specifies that the worker being created depends on and should be
dynamically linked with a prerequisite library. See
RccDynamicPrereqLibs

Option when creating HDL workers, devices and platforms

-C <core> Y Y Specifies a HDL primitive core that this worker depends on and should be
built with.

Options when creating HDL devices

-E <hdl-device> Y N Indicates that the worker being created should be an emulator worker, and
specifies the HDL device worker associated with the device being
emulated.

OpenCPI Component Development Guide Page 122 of 150

Option V? M? Description

-U <hdl-device> Y Y Indicates that the worker being created is a subdevice, and specifies one
of the HDL device workers that this subdevice supports.

Options when creating HDL platforms

-g <part> Y N Specify the part (die-speed-package, e.g. xc7z020-1-clg484) for HDL
platform.

-q <frequency> Y N Specify the time server frequency for this platform.

-u N N Indicates the platform will not support the SDP (the scalable data plane).
This is for legacy platforms and not recommended.

Options when creating any buildable asset

-T <target> Y Y Only build the asset for the specified target (see OnlyTargets)

-Z <target> Y Y Do not build the asset for the specified target (see ExcludeTargets)

-G <platform> Y Y Only build the asset for the specified platform (see OnlyPlatforms)

-Q <platform> Y Y Do not build the asset for the specified platform (see ExcludePlatforms)

Options when creating HDL primitives libraries

-H N N Indicates that this primitive does not depend on any other primitive
libraries. By default hdl primitive libraries are assumed to depend on the
built-in primitive libraries (currently bsv, fixed_float, ocpi, and util).

-J N N Indicates that this primitive library should not be elaborated when building,
which results in a slight time savings at the cost of catching elaboration
errors earlier in the build process.

Options when creating HDL primitives cores

-M <module> Y N Specifies the name of the top module of the core. The default is the name
of the core specified in the <name> argument after create.

-B <file> Y N Indicates that the core is prebuilt (e.g. from coregen) and specifies the
name of the prebuilt core file (e.g. an .ngc or .qxp file).

Options when creating applications

-X N N The application being created will simply be an XML file in the
applications directory of the project.

-x N N The application has its own directory but it will only be an XML file.
The default creates an application with an ACI C++ file. Cannot
use with the -X option.

OpenCPI Component Development Guide Page 123 of 150

15.1.3 Examples of Create/Delete

Create a project with name my-project. This project's package-ID will be local.my-
project.

ocpidev create project my-project

Create a project with package-prefix org.my_organization and name my_project.
This project's package-ID will be org.my_organization.my_project.

ocpidev create project my-project -F org.my_organization

Create a project-registry ~/workspace/my-registry. Note that a new registry will
not have a core project registered, so the next thing to do is locate and register a core
project. Finally, ocpidev set registry ~/workspace/my-registry can be
used from within a project to tell that project to use the new registry. None of this is
necessary if using the default project-registry in the OpenCPI installation.

ocpidev -d ~/workspace create registry my-registry

Create the default components library for the project. If a name other than
components is provided, it will be created underneath the components directory.

ocpidev create library components

Create a component spec with name mycomp. It will be placed in the default location,
which is components/specs. Provide -l <library-name> if there are sub-libraries
underneath components.

ocpidev create spec mycomp

Create an HDL worker named myworker that implements the mycomp spec. If the
worker was instead named mycomp.hdl, the -S mycomp-spec argument can be
omitted because the default spec is <worker-name>-spec.xml.

ocpidev create worker myworker.hdl -S mycomp-spec

Create a C++ RCC worker named mycomp that implements the mycomp spec.

ocpidev create worker myworker.rcc -L c++

Create an HDL assembly named myassy that will only be used on the isim platform.

ocpidev create hdl assembly myassy -G isim

OpenCPI Component Development Guide Page 124 of 150

15.2 Build/Clean Assets

These verbs compile/clean the OpenCPI assets specified by the noun used in the
command. If no nouns are provided, ocpidev will compile/clean the current directory.
When the plural version of the nouns are used, no name is specified and all assets of
that type are built/cleaned. Usage is as follows:

ocpidev [options] build|clean [<noun> [<name>]]

15.2.1 Asset Types for Build and Clean

The asset types that are valid with the build and clean verbs are:

project – build/clean all assets in a project

application(s) — build/clean all (applications) or a specified ACI
application. This includes any custom building/cleaning specified by a
customized application Makefile.

test — build/clean (but do not run) the unit test with the specified <name> in the
specified library

library — build/clean all workers in a library

worker – build/clean a specific worker in a specified library (using -l <library>)

hdl – specifies the HDL subdirectory of a project
assembl(y|ies) — build/clean all or a specified assembly
device – build/clean a specified device in a specified library similar to worker
platform(s) — build/clean all or a specified platform (also builds primitives

and devices for specified platform)
primitive(s) — build/clean all or a specified primitive. If specifying a primitive

you also need to specify if it is a library or a core
library — build/clean a primitive that results in a library of modules
core — build/clean a primitive that results in a synthesized core/netlist

15.2.2 Options for Build and Clean

The valid options with the build and clean verbs are in the following table. The
options are primarily used to limit what is built (focus the build process on specific
assets of interest), or specify the platforms and targets to build the assets for.

OpenCPI Component Development Guide Page 125 of 150

Table 11: Build and Clean Options for the ocpidev command

Option V? M? Description

Options when operating on projects

--no-assemblies N N Do not build or clean HDL assemblies in the project. Building HDL
assemblies (and their containers) can be slow.

--hdl-assembly
 <assembly>

Y Y Limit the assemblies being built/cleaned to assemblies specified by this
option. May also be used in the hdl/assemblies directory.

Options when operating on projects or libraries

--rcc N N Limit the assets being built/cleaned to RCC workers.

--hdl N N Limit the assets being built/cleaned to HDL primitives, workers,
platforms or assemblies.

--worker <wkr> Y Y Only operate on workers whose names are specified by this option.

Options when building projects, libraries, tests, RCC workers or ACI applications

--rcc-platform
 <platform>

Y Y Build RCC/ACI assets for the RCC platforms specified by this option. If
this option is not used at all (and --hdl-rcc-platform is also not
used), the current development software platform is used as the single
RCC platform used for building.

--hdl-rcc-platform
 <hdl-platform>

Y Y Build RCC/ACI assets for the RCC platforms associated with the HDL
platforms specified by this option. If this option is not used at all (and
--rcc-platform is also not used), the current development software
platform is used as the single RCC platform used for building.

Options when building projects, libraries, tests (with HDL workers) or other HDL assets

--hdl-target
 <target>

Y Y Build HDL assets for the HDL targets specified by this option. If only
HDL targets are specified (and no HDL platforms), containers will not
be build for assemblies or unit tests.

--hdl-platform
 <hdl-platform>

Y Y Build HDL assets for the HDL platforms specified by this option.

OpenCPI Component Development Guide Page 126 of 150

15.2.3 Examples of Build and Clean

15.2.3.1 Build Examples

Build the current asset/directory and those underneath it for the zed HDL platform and
the xilinx13_3 RCC platform.

ocpidev build --hdl-platform zed --rcc-platform xilinx13_3

Build the assets project for the zed HDL platform and xilinx13_3 RCC platform.
Omit the name assets if inside the project.

ocpidev build project assets --hdl-platform zed
 --rcc-platform xilinx13_3

Inside the assets project, build the complex_mixer.hdl worker in the dsp_comps
library for the zed HDL platform and xilinx13_3 RCC platform. The -l dsp_comps
can be omitted if operating in a project with only a single top-level components library.

ocpidev -l dsp_comps build worker complex_mixer.hdl
 --hdl-platform zed
 --rcc-platform xilinx13_3

Inside the assets project, build the dsp_comps library located at
components/dsp_comps for the zed HDL platform and xilinx13_3 RCC platform.
(Note: that the library noun differs from the -l option in that the noun is used when
building the library itself, and the option is used when building an asset inside the
library.)

ocpidev build library dsp_comps --hdl-platform zed
 --rcc-platform xilinx13_3

Inside the assets project, build the dsp_comps library, but limit the build to the
complex_mixer.hdl and cic_dec.hdl workers. Note that the --worker option
differs from the worker noun in that the noun is used to build a single worker, while the
--worker option is used when building a library to limit the build to an individual worker
(or a list of workers if --worker is specified multiple times). If building a library without
the --worker option, all workers will be built.

ocpidev build library dsp_comps --worker complex_mixer.hdl
 --worker cic_dec.hdl

 --hdl-platform zed

15.2.3.2 Clean Examples

Clean the current asset/directory and those underneath it.
ocpidev clean

Cleans the assets project. Omit the name assets if inside the project.

ocpidev clean project assets

Inside the assets project, this will clean the fir_real_sse.hdl worker in the
dsp_comps library.

OpenCPI Component Development Guide Page 127 of 150

ocpidev -l dsp_comps clean worker fir_real_sse.hdl

Inside the assets project, clean the dsp_comps library located at
components/dsp_comps.

ocpidev clean library dsp_comps

15.3 Show Assets

The show verb is slightly different than other verbs since the command currently is not
associated with a project, but with the operating environment by default. There are two
scoping options to associate with the command by default the --global-scope option
is set and it will look in all registered projects (and the current project if applicable). The
registry used is the one in the OpenCPI installation unless overridden using the
OCPI_PROJECT_REGISTRY_DIR environment variable. The second mode to run the
command in to use with just the current project use the --local-scope option.

Usage is as follows:

ocpidev show [options] <noun>

15.3.1 Asset Types for Show

The nouns that are valid with this verb are:

registry — display information on the registry

project — display information on the registry

tests — display information on the unit tests in the current scope

libraries — display information on all the libraries in the current scope

projects — display all registered projects

worker — display information on the specified worker

workers — display all workers in registered projects

components — display all components in registered projects

component — display information on the specified component

platforms — display all platforms that assets that can be built for

targets — display all targets that assets that can be built for

The keywords rcc and hdl can be used to scope what is displayed for the platforms
and targets nouns. E.g.:

ocpidev show rcc platforms

only shows the available rcc platforms.

15.3.2 Options for Show

The options that are valid with this verb are:

OpenCPI Component Development Guide Page 128 of 150

--table — default display format used if --simple or --json are not set, the output in
an easy-to-read table

--simple — format the output as simple as possible

--json — format the output in json format, for integration with other software

(see Apendix A for more information)

--global-scope — default scope used if --local-scope is not set, show assets
from all registered projects and the current project if applicable

--local-scope — Only show assets in the local project

--very-verbose —Be very verbose with output

--very-very-verbose —Be very very verbose with output

 -l LIBRARY, --library LIBRARY —

 Specify the component library in which this operation will be performed.

 --hdl-library HDL_LIBRARY —

Specify the hdl library in which this operation will be performed.

 -P HDL_PLAT_DIR —Specify the hdl platform subdirectory to operate in.

15.3.3 Examples of Show

List all RCC and HDL platforms that assets can be built for.
ocpidev show platforms

List all HDL platforms that HDL assets can be built for.
ocpidev show hdl platforms

List all components in any registered projects (omits components at the top level of
project due to a defect)

ocpidev show components

Print a table of the registered projects and their locations.
ocpidev show --table registry

15.4 Run

Utility for running component unit-tests and applications. Applications that are simply a
application xml are not yet implemented using ocpidev.

Component unit-tests have 5 phases:

 Generate: generate testing artifacts after finding the spec and the workers

 Build: building HDL bitstream/executable artifacts for testing

 Prepare: examine available built workers and available platforms, creating
execution scripts to use them all for executing feasible tests.

 Run: execute tests for all workers, configurations, test cases and platforms

OpenCPI Component Development Guide Page 129 of 150

 Verify: verify results from the execution of tests on workers and platforms

Based on these 5 phases there are modes for a run command that can be set with the –
modes option as follows:

all- execute all 5 phases

gen- execute generate phase

gen_build- execute generate and build phases

prep_run_verify- execute prepare, run, and verify phases

prep- execute prepare phase

run- execute run phase

prep_run- execute prepare and run phases

verify- execute verify phase

view- execute the view script (view.sh) on a already executed run

clean_all- clean all generated files

clean_run- clean all files generated during the run phase

clean_sim- clean all simulation files

There are 2 types of variables for setting platforms. The first type (--rcc-platform and
--hdl-platform) that causes the command to build (generate and build phases) for the
specified platforms. The second type (--only-platform --exclude-platform) are used to
limit the run time available platform (prepare, run, and verify phases) where the
command is executed.

Usage is as follows:
ocpidev [options] run <noun>

15.4.1 Associated nouns

test — run the unit test that is specified

tests — run all the tests in the given project or library

library — run all the unitests in the given library

application — run the application that is specified

applications — run all the applications in a project

project — run all unit tests and applications in the specified project

15.4.2 Associated options

Valid for both Unit tests and applications:

--rcc-platform —

OpenCPI Component Development Guide Page 130 of 150

Specify which RCC platform from the list of buildable platforms to use with unit
test. Only valid in generate and build phases. For application specifies which
RCC platform to build ACI applications.

Valid for only Unit tests:

--keep-simulations —

Keep HDL simulation files regardless of verification results. By default,
simulation files are removed if the verification is successful. Warning:
Simulation files can become large!

--accumulate-errors —

When enabled, execution or verification errors are accumulated (i.e. not stop
the process) and simply be reported as they occur, rather than ending the test
upon first failure detected.

--only-platform —

Specify which platforms to use with a unit test from the list of runtime platforms.
(-G is another way to specify this functionality)

--exclude-platform —

Specify which platforms not to use with a unit test from the list of runtime
platforms. (-Q is another way to specify this functionality)

--mode —

Specify which phase(s) of the unit test to execute. Valid modes are : all, gen,
gen_build, prep_run_verify, prep, run, prep_run, verify, view, clean_all,
clean_run, clean_sim

--remotes —

Specify remote systems to run the test(s) by setting the
OCPI_REMOTE_TEST_SYS variable. See section
OCPI_REMOTE_TEST_SYS for more information.

--view —

When set the view script (view.sh) for this test is run at the conclusion of the
test's execution.

--hdl-platform —

Specify which HDL platform from the list of buildable platforms to use with unit
test. only valid in generate and build phases.

--case —

Specify which test case(s) that will be run/verified. Wildcards are valid, ex.
case*., case0.0*, case00.01

Valid for only Applications:

--before —

OpenCPI Component Development Guide Page 131 of 150

Argument(s) to insert before the ACI executable or ocpirun, such as
environment settings or prefix commands.

--after —

Argument(s) to insert at the end of the execution command line

--run-arg —

Argument(s) to insert immediately after the ACI executable or ocpirun.

15.4.3 Examples

run a single application:

 ocpidev run application <app_name>

run all applications in a project:

 ocpidev run applications

run a single test:

 ocpidev run -l <library_dir> test <test_name>

run all tests in a library:

 ocpidev run library <library_name>

run generate and build stages of a single test:

 ocpidev run -l <library_dir> --mode gen_build test <test_name>

15.5 Refresh

Projects have some metadata associated with them. This metadata is used by ocpidev
show and can be used by other programs can use it to interface with projects. If
ocpidev is used throughout usage of the project metadata is automatically updated this
verb is only required if something outside of ocpidev operates on a project. Usage is as
follows:

ocpidev [options] refresh project

15.5.1 Associated nouns

project — the only valid noun, indicating the the current projects metadata to be
refreshed.

15.5.2 Associated options

No verb specific options

15.5.3 Examples

Manually regenerate the project’s metadata.
ocpidev refresh project

OpenCPI Component Development Guide Page 132 of 150

15.6 Utilization

Utility for displaying/recording FPGA resource utilization for HDL OpenCPI assets. In
order to display any utilization information about a hdl asset for a given platform the
asset needs to be built for that platform. Usage is as follows:

ocpidev [options] utilization [<noun> [<name>]]

15.6.1 Associated nouns

project — Indicating the the current project to display all utilization information for all
built containing workers, platforms, and assemblies.

worker — Display all utilization information for the indicated hdl worker

workers — Indicating the the current project to display all utilization information for
all built containing workers.

library — Indicating a component library to display all utilization information for all
built containing workers.

hdl — a prefix to denote an HDL asset, in the hdl subdirectory of a project

platform — Display all utilization information for the indicated hdl platform

platforms — Indicating the the current project to display all utilization
information for all built containing platforms.

assembly — Display all utilization information for the indicated hdl assembly

assemblies — Indicating the the current project to display all utilization
information for all built containing assemblies.

15.6.2 Associated options

 --format {table,latex}

Format to output utilization information. "latex" results in silent stdout, and all
output goes to "utilization.inc" files in the directories for the assets acted on.

--hdl-platform HDL_PLAT

Specify which HDL platform from the list of buildable platforms to show utilization
for.

--hdl-target HDL_TGT

Specify which HDL target from the list of buildable targets to show utilization for.
Only valid for workers (not assemblies)

-l LIBRARY, --library LIBRARY

Specify the component library in which this operation will be performed.

--hdl-library HDL_LIBRARY

Specify the hdl library in which this operation will be performed.

OpenCPI Component Development Guide Page 133 of 150

-P HDL_PLAT_DIR

Specify the hdl platform subdirectory to operate in.

15.6.3 Examples

show utilization for a single worker (using build results from all platforms):

ocpidev utilization worker <worker-name>

show utilization for a single worker (using build results from a single platform):

ocpidev utilization worker <worker-name> --hdl-platform <hdl-platform>

show utilization for a single worker (using build results from a single target):

ocpidev utilization worker <worker-name> --hdl-target <hdl-target>

show utilization for all workers (in the current project/library/etc):

ocpidev utilization workers

show utilization for a single worker in a named library:

ocpidev utilization worker <worker-name> -l <library>

show utilization for a single HDL Platform:

ocpidev utilization hdl platform <platform-name>

show utilization for all HDL Platforms (in the current project):

ocpidev utilization hdl platforms

show utilization for a single HDL Assembly:

ocpidev utilization hdl assembly <assembly-name>

show utilization for all HDL Assemblies (in the current project):

ocpidev utilization hdl assemblies

record utilization for a single HDL Assembly in LaTeX format:

ocpidev utilization hdl assembly <assembly-name> --format=latex

show utilization for all supported assets in a project:

ocpidev utilization project

record utilization for all supported assets in a project in LaTeX format:

ocpidev utilization project --format=latex

OpenCPI Component Development Guide Page 134 of 150

15.7 Register/Unregister

These verbs are used to add or remove the current project to/from its registry. If the
OpenCPI installation is RPM-based, and the current registry is the one in the OpenCPI
installation, the user must be in the opencpi group to use these commands.

When registering a project, if the project has no associated registry, the default one is
used and becomes persistently associated with the project. The default registry is the
one in the OpenCPI installation unless overridden by the
OCPI_PROJECT_REGISTRY_DIR environment variable. Registering a project makes
its exports visible and usable to other projects using the same registry. Unregistering a
project removes that visibility.

The usage of the command is the following:
ocpidev [options] [un]register project

When registering, this command also creates exports for the currently available and
built assets in the project. If the project is already registered, the exports are still
recreated.

15.7.1 Asset Types for Register/Unregister

project – only valid noun which is the project to add or remove from its registry

15.7.2 Options for Register/Unregister

The general purpose options (-v and -d <dir>) options may be used, and in
particular, the -d <dir> option may be used to specify the pathname of the project
being registered or unregistered.

15.7.3 Examples

Register the current project to its registry (or the default if it doesn't have one yet):
ocpidev register project

Unregister the current project.
ocpidev unregister project

15.8 Set/Unset

Projects are automatically associated with the current registry when they are created or
used. A project can be manually associated with or disassociated from a particular
registry. This command must be run from within a project. The <dir> argument only
applies to the set verb (not unset), and specifies the registry's directory path. Usage
is as follows:

ocpidev [options] [un]set registry [<dir>]

15.8.1 Associated nouns

registry — the only valid noun, indicating that the current project's registry is being
set/unset.

OpenCPI Component Development Guide Page 135 of 150

15.8.2 Associated options

No verb specific options

15.8.3 Examples

Set the current project's registry to the default.
ocpidev set registry

Set the current project's registry to the directory called my-registry located at
~/workspace/.

ocpidev -d ~/workspace set registry my-registry

Unset the current project's registry. The next time this project is built, the default
registry will be used.

ocpidev unset registry

OpenCPI Component Development Guide Page 136 of 150

15.9 Assets Managed by ocpidev
Below are two tables summarizing all the types of assets that the ocpidev command

operates on, and which nouns apply to it. The first table is for assets that are not HDL
specific. The second is for HDL specific assets located under the hdl sub directory.

Table 12: Non-HDL Asset Types (Nouns) for the ocpidev Command

Name/
Noun

In
Library

Description

application no A component application, specified either in XML or C++

applications no All applications in a project, in its applications directory

library no A component library.

project no A project containing all other asset types.

properties yes A properties XML file, which can be at the project or library level.

protocol yes A protocol specification XML file, which can be at the project or library
level.

registry no A registry for projects to import/export dependencies from/to.

component yes A component specification XML file (OCS), which can be at the project
or library level.

test yes A unit test suite for a component specification.

worker yes A worker, that implements a component spec.

OpenCPI Component Development Guide Page 137 of 150

The following table describe HDL asset types. When these assets are described as
being in an HDL library, it means in one of the fixed HDL libraries in a project

(hdl/adapters, hdl/cards, and hdl/devices) or the devices library within an

HDL platform's directory.

Table 13: HDL Asset Types (Nouns) for the ocpidev Command

Name/
Noun

In
Library

Description

hdl assembly no An assembly of HDL workers, used to build HDL containers

hdl assemblies no All the assemblies in the project or in an HDL assemblies
directory.

hdl card yes A card specification XML file, which can be at the project or HDL
library level.

hdl device yes A HDL device worker, in an HDL component library (adapters,
cards, devices or a HDL platform's devices).

hdl platform no An HDL platform worker, in an HDL platforms directory,
including its platform configurations.

hdl platforms no All HDL platforms in a project or in its hdl/platforms
directory.

hdl primitive core no A HDL primitive core in a project or in its hdl/primitives
directory

hdl primitive library no A HDL primitive library in a project or in its hdl/primitives
directory

hdl primitives no All HDL primitives (cores or libraries) in a project.

hdl signals no A signals specification XML file, which can be at the project or
HDL library level.

hdl slot no A slot type specification XML file, which can be at the project or
HDL library level.

hdl subdevice yes An HDL subdevice worker, that supports other HDL device
workers, in an HDL devices library.

OpenCPI Component Development Guide Page 138 of 150

16 Environment Variables used in Component Development

While any make variable can be set in the environment, only those specifically
mentioned as usable in the environment should be set, since setting arbitrary make
variables in the environment can lead to unpredictable/undefined behavior.

All OpenCPI environment variables start with the prefix OCPI_. While some defined
variables apply only to certain authoring models or targets, a master list is kept here.
Some may be described as documented elsewhere.

There also may be environment variables starting with OCPI_ that are used internal to
OpenCPI and not documented for users.

In the table below, environment variables that are boolean options have the value 0 or
1. When they are unset, or set to the empty string, it is equivalent to the value 0.

In the table below a list means a white-space-separated list of items. A path means a
colon-separated list of directories. All these variables have commonly used defaults so
that most users have very few settings.

Most of the items are set at installation time, several are simply convenience variables
derived from others. The ones that a developer might actually set during development
are shaded.

OpenCPI Component Development Guide Page 139 of 150

Name When
set?

Data
type

Description

OCPI_ALTERA_DIR install directory Top level directory for all Altera tools. Default: ~/altera or /opt/Altera

OCPI_ALTERA_VERSION install directory Directory under OCPI_ALTERA_DIR for current/desired Altera tools version.
Default is highest numeric version present under $OCPI_ALTERA_DIR

OCPI_ALTERA_TOOLS_DIR install directory Directory for using Altera tools.
Default: $OCPI_ALTERA_DIR/$OCPI_ALTERA_VERSION

OCPI_ALTERA_LICENSE_FILE install file Altera license file. Default: $OCPI_ALTERA_DIR/Altera-License.lic

OCPI_ALTERA_KITS_DIR install directory Directory for Altera development kits.
Default is $OCPI_ALTERA_TOOLS_DIR/kits

OCPI_ASSERT build boolean Enable assertions in any language (when != 1, for C and C++, sets NDEBUG). Default: 1

OCPI_CDK_DIR install directory The root of the installed CDK. Default: /opt/opencpi/cdk

OCPI_CFLAGS build list Flags when compiling C code. Default set per target, but may be overridden.

OCPI_CXXFLAGS build list Flags when compiling C++ code. Default set per target, but may be overridden.

OCPI_DEBUG build boolean Controls debug logging, etc. For C and C++, enables “-g” also, or if not set, -O2.
Is defined as a preprocessor macro for core software or executables. Default: 1

OCPI_DYNAMIC build boolean For main programs and software libraries: use dynamic linking and dynamic libraries. For
software components, build for use in dynamic executables. Currently only 0 is supported.

OCPI_LIBRARY_PATH run path Runtime search path for binary artifacts.
Default: $OCPI_CDK_DIR/lib/components/rcc

OCPI_PREREQUISITES_DIR install directory Location for using prerequisites, default locations for building and installing prerequisites.
Default: /opt/opencpi/prerequisites

OCPI_PROJECT_REGISTRY_DIR build directory Location of current project registry, overriding the default in the OpenCPI installation.

OCPI_SMB_SIZE run number To override size in bytes of data plane endpoints. Default: 100000000.

Component Development Guide Page 140 of 150

Name When
set?

Data
type

Description

OCPI_TOOL_PLATFORM build string The platform on which the current environment is executing.
Automatically determined by the platforms/getPlatforms.sh script.

OCPI_TARGET_PLATFORM build String The default target software platform to build for.

OCPI_XILINX_DIR install directory Top level directory for all Xilinx tools. Default is from Xilinx: /opt/Xilinx

OCPI_XILINX_VERSION install directory Directory under OCPI_XILINX_DIR for current/desired Xilinx tools version.
Default is highest numeric version present under $OCPI_XILINX_DIR.

OCPI_XILINX_TOOLS_DIR install directory Directory for using Xilinx tools.
Default: $OCPI_XILINX_DIR/$OCPI_XILINX_VERSION

OCPI_XILINX_LICENSE_FILE install file Xilinx tool license file. Default is: $OCPI_XILINX_DIR/License.lic

OCPI_XILINX_LABTOOLS_DIR Install directory Where a Xilinx Lab Tools installation is, default is $OCPI_XILINX_TOOLS_DIR.

Component Development Guide Page 141 of 150

17 Tools Used in Component Development

The most commonly used tools used during OpenCPI component development are
make, ocpidev, and ocpirun. The latter is used for executing component-based
applications, and is fully described in the Application Development Guide. The make
tool invokes a variety of other tools to build workers, all behind the scenes. When there
are errors or anomalies during the build process, the logs from the various tools used
can be examined to understand what went wrong. The ocpidev tool is used to create
and delete various OpenCPI assets, usually within a project. The make command
should only be used for the small number of development tasks not yet supported by
ocpidev, such as executing unit test suites.

OpenCPI Component Development Guide Page 142 of 150

18 Appendices

OpenCPI Component Development Guide Page 143 of 150

18.1 Appendix A - ocpidev JSON

All nouns (asset types) used with the ocpidev show command have the option to
output information in a JSON format and the format of the JSON output will be different
for each noun. This appendix details the format of JSON output for each noun.

If the data type of an asset in the JSON file is a JSON String this will be the directory of
the asset, otherwise it will be a dictionary with an entry of directory that is the
directory of the asset. (It is possible that Strings may be changed to dictionaries as
needed as the interface matures.)

Libraries can override the default package-id and this can cause multiple libraries within
the same project to have the same package-id. In order to express this in a JSON file,
numbers are added to the string of the package-id if there are more than one library with
the same package-id. E.g. the core project has two libraries (hdl/adapters and
components) with the package-id of ocpi.core. The libraries are named
ocpi.core and ocpi.core:1 in the JSON file for thge project. It is up to the JSON
data consumer to parse these package-ids and use them in the correct way.

Levels of verbosity are used to ask ocpidev for more information, the default being
less information. The rule of thumb for what is output when showing the minimal
information for an asset is to not include anything about the assets that are contained by
it (i.e. a library contains components etc.). Each verbosity level that is added will show
the information for one more level of contained assets. E.g. very verbose (-vv) for a
project will show information on the project, libraries in the project, and
workers/components/test in each library but verbose (-v) will not show
workers/components/test in each library.

18.1.1 ocpidev show project --json
{
 "project": {
 "package": <String – Project package-id>,
 "dependencies": <Array of strings – package-ids of projects to
 depend on>,
 "directory": <String – Project directory>
 }
}

OpenCPI Component Development Guide Page 144 of 150

18.1.2 ocpidev show project -v --json
{
 "project": {
 "directory": <String – Project directory>,
 "package": <String – Project package-id>,
 "dependencies": <Array of strings – package-ids of projects to
 depend on>,
 "libraries": {
 <String- package id of library>: <String- directory of
library>,
 … more libraries
 },
 "components": {
 <String- name of component>: <String - directory of library>,
 … more components
 },
 "platforms": {
 "rcc": {
 <String- name of rcc platform>: <String - directory of rcc
 platform>,
 … more rcc platforms
 },
 "hdl": {
 <String- name of rcc platform>: <String - directory of hdl
 platforms>,
 … more hdl platforms
 }
 }
 }
}

OpenCPI Component Development Guide Page 145 of 150

18.1.3 ocpidev show project -vv --json
{
 "project": {
 "directory": <String – Project directory>,
 "package": <String – Project package-id>,
 "dependencies": <Array of strings – package-ids of projects to
depend on>,
 "libraries": {
 <String- package-id of Library>: {
 "package": <String- package-id of Library>,
 "directory": <String – Library directory>,
 "components": {
 <String- component name>: <String – Components directory>,
 … more components
 },
 "tests": {
 <String- test name>: <String – Test directory>,
 … more tests
 },
 "workers": {
 <String- worker name>: <String – Worker directory>,
 … more workers
 }
 },
 … more libraries
 },
 "primitives": {
 <String – name of primitive>: <String – Primitive directory>,
 … more primitives
 },
 "components": {
 <String- name of component>: <String - directory of library>,
 … more components
 },
 (Continued on next page)
(Continued from previous page)
 "platforms": {
 "rcc": {
 <String- name of rcc platform>: <String - directory of rcc
platform>,
 … more rcc platforms
 },
 "hdl": {
 <String- name of rcc platform>: <String - directory of hdl
platforms>,
 … more hdl platforms
 }
 }
 }
}

OpenCPI Component Development Guide Page 146 of 150

18.1.4 ocpidev show tests --local-scope --json

The --local-scope option will act upon the project that the command is executed in
so this command shows all the tests in the specified project.

project": {
 "libraries": {
 <String-Library name>: {
 "directory": String – Library directory>,
 "package": String – Library package-id>,
 "tests": {
 <String - Test name>:<String - Test directory>,
 … more tests
 }
 … more libraries
 }
}

18.1.5 ocpidev show platforms/registry --json
{
 "rcc": {
 <String-platform name>: {
 "target": <String-target associated with this platform>,
 "package_id": <String - platform package-id>,
 "directory": <String - platform directory>
 },
 … more rcc platforms
 }
 },
 "hdl": {
 "xsim": {
 "target": <String - target associated with this platform>,
 "package_id": <String - platform package-id>,
 "directory": <String - platform directory>,
 "part": <String-part associated with platform>,
 "built": <Boolean - if this platform is built>,
 "tool": <String - FPGA tool associated with this platform>,
 "vendor": <String - FPGA vendor associated with this platform>
 },
 … more hdl platforms
 }
 }

OpenCPI Component Development Guide Page 147 of 150

18.1.6 ocpidev show targets --json
{
 "rcc": {
 <String - platform name>: {
 "target": <String-target name>
 },
 … more rcc targets
 },
 "hdl": {
 <String - vendor name>: {
 <String - target name>: {
 "tool": <String - FPGA tool associated with this target>,
 "parts": <Array of Strings - FPGA parts associated with this
 target>
 },
 … more hdl targets
 },
 … more hdl vendors
}

18.1.7 ocpidev show component --json
{
 "directory": <String - directory of component>,
 "name": <String - name of component>,
 "package_id": <String - package-id of component>,
 "ports": {
 <String- name of port>: {
 "protocol": <String - name of protocol for port>,
 "producer": <String - “0” or “1” for direction of port>
 },
 … more ports
 },
 "properties": {
 <String - name of property>: {
 "accessibility": {
 "volatile": <String - “0” or “1”>,
 "readback": <String - “0” or “1”>,
 "parameter": <String - “0” or “1”>,
 "initial": <String - “0” or “1”>,
 "writable": <String - “0” or “1”>,
 "padding": <String - “0” or “1”>
 },
 "name": <String - name of property>
 "type": <String - data type of property>
 },
 … more properties
 }
}

OpenCPI Component Development Guide Page 148 of 150

18.1.8 ocpidev show worker --json
{
 "directory": <String - directory of worker>,
 "name": <String - name of worker>,
 "package_id": <String - package-id of worker>,
 "ports": {
 <String- name of port>: {
 "protocol": <String - name of protocol for port>,
 "producer": <String - “0” or “1” for direction of port>
 },
 … more ports
 },
 "properties": {
 <String - name of property>: {
 "accessibility": {
 "volatile": <String - “0” or “1”>,
 "readback": <String - “0” or “1”>,
 "parameter": <String - “0” or “1”>,
 "initial": <String - “0” or “1”>,
 "writable": <String - “0” or “1”>,
 "padding": <String - “0” or “1”>
 },
 "name": <String - name of property>
 "type": <String - Datatype of property>
 },
 … more properties
 }
 "slaves": {
 <String - name of slave worker>: {
 "name": <String - name of slave worker>
 }
 … more slaves
 }
}

18.1.9 ocpidev show registry/projects --json
{
 "registry_location": <String - directory of registry>,
 "projects": {
 <String - package-id of project>: {
 "exists": <Boolean - if project exists on the file system >,
 "real_path": "<String - directory of project>
 },
 … more projects
}

OpenCPI Component Development Guide Page 149 of 150

18.1.10 ocpidev show workers --global-scope --json
{
 "projects": {
 "ocpi.assets": {
 "package_id": <String - package-id of project>,
 "directory": <String - directory of project>,
 "libraries": {
 <String - package-id of library>: {
 "package_id": <String - package-id of library>,
 "directory": <String - directory of library>,
 "workers": {
 <String - name of worker>:<String - directory of
 worker>,
 … more workers
 }
 … more libraries
 },
 },
 … more projects
}

18.1.11 ocpidev show components --global-scope
{
 "projects": {
 "ocpi.assets": {
 "package_id": <String - package-id of project>,
 "directory": <String - directory of project>,
 "components": {
 <String - name of component>: <String - directory of
 component>,
 … more components
 }
 "libraries": {
 <String - package-id of library>: {
 "package_id": <String - package-id of library>,
 "directory": <String - directory of library>,
 "components": {
 <String - name of component>: <String - directory of
 component>,
 … more components
 }
 … more libraries
 },
 },
 … more projects
}

OpenCPI Component Development Guide Page 150 of 150

	1 References
	2 Overview
	3 Introduction to Worker Development
	3.1 A Simple Example Worker

	4 Authoring Models
	4.1 Requirements for All Authoring Models
	4.2 Control Plane Introduction
	4.2.1 LifeCycle State Model
	4.2.2 LifeCycle Control Operations
	4.2.3 Configuration Properties
	4.2.4 Properties that are build-time parameters

	4.3 Software Execution Model
	4.3.1 Run Conditions
	4.3.2 Sending or receiving messages via ports
	4.3.3 Buffer management

	5 Protocol Specifications (in OPS XML files)
	5.1 Protocol Element as Top-level Element.
	5.1.1 Name attribute of Protocol elements
	5.1.2 Protocol Summary Attributes
	5.1.3 Operation element of Protocol elements
	5.1.3.1 Name attribute of Operation elements
	5.1.3.2 Argument element of Operation elements

	5.2 Protocol Specification (OPS) Examples
	5.3 Message Payloads on Data Ports
	5.4 End-of-File (EOF) Indications on Data Ports
	5.4.1 EOF Processing Prior to Release 1.5
	5.4.2 EOF-related Compatibility Measures for Pre-1.5 Workers.

	6 Component Specifications (typically in OCS XML files)
	6.1 ComponentSpec Top-level Element
	6.1.1 Name Attribute of the ComponentSpec element
	6.1.2 NoControl Attribute of ComponentSpec elements

	6.2 Properties Element of ComponentSpec Elements
	6.3 Property Element of ComponentSpec or Properties Elements
	6.3.1 Name Attribute of Property (and Member) Elements
	6.3.2 Type Attribute of Property (and Member) Elements
	6.3.3 StringLength Attribute of Property Elements
	6.3.4 Enums Attribute of Property Elements
	6.3.5 ArrayLength Attribute of Property Elements
	6.3.6 SequenceLength Attribute of Property Elements
	6.3.7 ArrayDimensions Attribute of Property Elements

	6.4 Accessibility Attributes
	6.4.1 The Order in which Properties are Written during Startup
	6.4.2 Initial Attribute of Property Elements
	6.4.3 Writable Attribute of Property Elements
	6.4.4 Parameter Attribute of Property Elements
	6.4.5 Expressions in Numeric Attributes
	6.4.6 Default Attribute of Property Elements
	6.4.7 Value Attribute of Property Elements

	6.5 Port Element of ComponentSpec Elements
	6.5.1 Name Attribute of Port Elements
	6.5.2 Producer Attribute of Port Elements
	6.5.3 Protocol Attribute of Port Elements
	6.5.4 Optional Attribute of Port Elements
	6.5.5 Component Specification Examples

	7 Property Value Syntax and Ranges
	7.1 Values of Unsigned Integer Types: uchar, ushort, ulong, ulonglong
	7.2 Values of Signed Integer Types: short, long, longlong
	7.3 Values of the Type: char
	7.4 Values of the Types: float and double
	7.5 Values of the Type: bool
	7.6 Values of the Type: string
	7.7 Values in a Sequence Type
	7.8 Values in an Array Type
	7.9 Values in Multidimensional Types
	7.10 Values in Struct Types
	7.11 Expressions in Property Values
	7.11.1 Numeric Values
	7.11.2 String Values

	8 Worker Descriptions in OWD XML Files
	8.1 XML Attributes of the Top-level XYZWorker Element in the OWD
	8.1.1 Name Attribute of the XYZWorker Element.
	8.1.2 Spec Attribute of the XYZWorker Element
	8.1.3 Language Attribute of the XYZWorker Element
	8.1.4 Version Attribute of the XYZWorker Elements
	8.1.5 ControlOperations Attribute of the XYZWorker Element.
	8.1.6 OnlyPlatforms Attribute of the XYZWorker Element
	8.1.7 ExcludePlatforms Attribute of the XYZWorker Element
	8.1.8 OnlyTargets Attribute of the XYZWorker Element
	8.1.9 ExcludeTargets Attribute of the XYZWorker Element
	8.1.10 SourceFiles Attribute of the XYZWorker Element
	8.1.11 Libraries Attribute of the XYZWorker Element
	8.1.12 IncludeDirs Attribute of the XYZWorker Element
	8.1.13 ComponentLibraries Attribute of the XYZWorker Element
	8.1.14 Endian Attribute of the XYZWorker Element.

	8.2 Property and SpecProperty Child Elements in the OWD
	8.2.1 Name Attribute for OWD Property or SpecProperty Elements

	8.3 Attributes only Allowed in OWD Properties and SpecProperties
	8.3.1 ReadSync and WriteSync for OWD Property or SpecProperty Elements
	8.3.2 ReadError/WriteError Attributes for OWD Property/SpecProperty Elements
	8.3.3 Padding Attribute for OWD Property but not SpecProperty Elements
	8.3.4 Readback attribute for OWD Property/SpecProperty Elements

	8.4 Attributes Allowed in OWD SpecProperty Elements
	8.4.1 Default Attribute for OWD SpecProperty Elements
	8.4.2 Value Attribute for OWD SpecProperty Elements
	8.4.3 Parameter Attribute for OWD SpecProperty Elements

	8.5 Built-in Parameters of All Workers
	8.5.1 The ocpi_debug built-in parameter property
	8.5.2 The ocpi_endian built-in parameter property

	8.6 Port Elements of XYZWorker Elements
	8.6.1 Name attribute of Port Elements
	8.6.2 Protocol Summary Override Attributes of Port Elements

	9 Worker Build Configuration XML Files
	9.1 Build Configurations
	9.2 Parameter elements in the <worker>-build.xml file
	9.3 Configuration Elements in the <worker>-build.xml File

	10 Component Libraries
	10.1 The Component Library Makefile
	10.2 The Library.mk File

	11 Developing Workers
	11.1 Creating Workers
	11.2 The Worker Makefile
	11.2.1 Parameter Properties in Worker Makefiles

	11.3 Editing Workers

	12 The Worker Source Files
	12.1 How Parameter Value Settings Appear in Source Code.
	12.2 Building Workers

	13 Unit Testing of Workers
	13.1 The Phases of the Unit Test Process
	13.2 Unit Test Concepts and Terminology
	13.3 Unit Test Description XML File
	13.3.1 Attributes for the Top-level Tests Element
	13.3.1.1 Spec Attribute of the Top-level Tests Element
	13.3.1.2 UseHdlFileIO Attribute of the Top-level Tests Element
	13.3.1.3 ExcludeWorkers Attribute of the Top-level Tests Element
	13.3.1.4 OnlyWorkers Attribute of the Top-level Tests Element
	13.3.1.5 ExcludePlatforms Attribute of the Top-level Tests Element
	13.3.1.6 OnlyPlatforms Attribute of the Top-level Tests Element
	13.3.1.7 Duration Attribute of the Top-level Tests Element
	13.3.1.8 Timeout Attribute of the Top-level Tests Element

	13.3.2 Input Element of Top-level Tests Element
	13.3.2.1 Name Attribute of the Input Element
	13.3.2.2 Port Attribute of the Input Element
	13.3.2.3 Script Attribute of the Input Element
	13.3.2.4 File Attribute of the Input Element
	13.3.2.5 MessageSize Attribute of the Input Element
	13.3.2.6 MessagesInFile Attribute of the Input Element
	13.3.2.7 SuppressEOF Attribute of the Input Element
	13.3.2.8 StressorMode Attribute of the Input Element

	13.3.3 Output Element of Tests Top-level Element
	13.3.3.1 Script Attribute of the Output Element
	13.3.3.2 View Attribute of the Output Element
	13.3.3.3 StopOnEOF Attribute of the Output Element

	13.3.4 Property Element of Tests Top-level Element
	13.3.4.1 Name Attribute of the Property Element
	13.3.4.2 Value Attribute of the Property Element
	13.3.4.3 Values Attribute of the Property Element
	13.3.4.4 ValueFile Attribute of the Property Element
	13.3.4.5 ValuesFile Attribute of the Property Element
	13.3.4.6 Generate Attribute of the Property Element
	13.3.4.7 Test Attribute of the Property Element
	13.3.4.8 Exclude/Only/Add Attributes of the Property Element
	13.3.4.9 The set child element of the Property Element for Delayed Values

	13.3.5 Case Element of Tests Top-level Element
	13.3.5.1 Name Attribute of Case Elements
	13.3.5.2 Input Element under Case Elements
	13.3.5.3 Output Element under Case Elements
	13.3.5.4 Property Element under Case Elements

	13.4 Unit Test Makefile Contents
	13.5 Preparing Unit Test Inputs
	13.6 Preparing for Unit Test Output Verification
	13.7 Off-line One-time Tasks Prior to Test Execution and Verification
	13.8 Testing on Remote Systems
	13.8.1 Defining Remote Systems for Executing Tests

	13.9 On-line Tasks for Test Execution and Verification
	13.9.1 Preparing for Execution: Discovery and Execution Script Generation
	13.9.2 Executing Tests on Available Platforms
	13.9.3 Verifying Test Results
	13.9.4 Viewing Test Result Data

	13.10 Summary of Make Goals and Variables

	14 Developing OpenCPI Assets in Projects
	14.1 Managing Project Assets.
	14.2 Package IDs
	14.2.1 Package-ID Usage and Structure
	14.2.2 Package-ID attributes in XML files.
	14.2.3 Package-ID Variables in Makefiles
	14.2.4 How to Determine an Asset's Parent (and thus Default Package-Prefix)
	14.2.5 Package-ID examples

	14.3 The Project Registry: How Projects Depend on and Find Each Other
	14.3.1 Projects That Implement Platforms
	14.3.2 Project Registries for Sandboxed Project Development

	14.4 Project Makefiles
	14.5 The Project.mk File for Project-wide Variable Settings
	14.6 Project Exports
	14.6.1 The Exports Tree
	14.6.2 The Project.exports file
	14.6.2.1 Exporting Assets by Type or Name
	14.6.2.2 Exporting Individual Files and Directories

	14.7 Exporting a Project to be used Elsewhere
	14.8 Using Other Projects that Exist Outside the Project Being Developed

	15 The ocpidev Tool for Managing Assets
	15.1 Create/Delete Assets
	15.1.1 Asset Types for Create and Delete
	15.1.2 Options for Create and Delete
	15.1.3 Examples of Create/Delete

	15.2 Build/Clean Assets
	15.2.1 Asset Types for Build and Clean
	15.2.2 Options for Build and Clean
	15.2.3 Examples of Build and Clean
	15.2.3.1 Build Examples
	15.2.3.2 Clean Examples

	15.3 Show Assets
	15.3.1 Asset Types for Show
	15.3.2 Options for Show
	15.3.3 Examples of Show

	15.4 Run
	15.4.1 Associated nouns
	15.4.2 Associated options
	15.4.3 Examples

	15.5 Refresh
	15.5.1 Associated nouns
	15.5.2 Associated options
	15.5.3 Examples

	15.6 Utilization
	15.6.1 Associated nouns
	15.6.2 Associated options
	15.6.3 Examples

	15.7 Register/Unregister
	15.7.1 Asset Types for Register/Unregister
	15.7.2 Options for Register/Unregister
	15.7.3 Examples

	15.8 Set/Unset
	15.8.1 Associated nouns
	15.8.2 Associated options
	15.8.3 Examples

	15.9 Assets Managed by ocpidev

	16 Environment Variables used in Component Development
	17 Tools Used in Component Development
	18 Appendices
	18.1 Appendix A - ocpidev JSON
	18.1.1 ocpidev show project --json
	18.1.2 ocpidev show project -v --json
	18.1.3 ocpidev show project -vv --json
	18.1.4 ocpidev show tests --local-scope --json
	18.1.5 ocpidev show platforms/registry --json
	18.1.6 ocpidev show targets --json
	18.1.7 ocpidev show component --json
	18.1.8 ocpidev show worker --json
	18.1.9 ocpidev show registry/projects --json
	18.1.10 ocpidev show workers --global-scope --json
	18.1.11 ocpidev show components --global-scope

