
OpenCPI
Application Development Guide

OpenCPI Application Development Guide Page 1 of 82



Revision History

Revision Description of Change Date

1.01 Creation, in part from previous Application Control Interface document 2012-12-10

1.1 Add package naming and ocpirun flags that apply to all, not one, instance. Also the 
DumpFile attribute.  Also some clarifications about property value formats (struct etc.).

2013-02-11

1.2 Add container ordinal and platform options for ocpirun, clarify array value format.  Add a 
few missing Worker methods.

2013-02-28

1.3 Major update. 2015-01-15

1.4 Change to ODT, update for current capabilities and template 2016-02-23

1.5 Improve ocpirun issues, property value syntax, add project and HDL assembly sections 2016-04-28

1.6 Remove draft notation, add some improvements from CDG 2016-05-20

1.7 Update for 2017Q1 2017-02-12

1.8 Update for 2017.Q2, utilities, typed get/setPropertyValue, improved externalPort text 2017-06-20

1.9 Update for 2018.Q1 file I/O options, ocpirun/ACI/OAS consistency table,python,projects
Remote containers, more ocpidev

2018-02-21

1.9.1 Initial/partial update for 2018.Q3 2018-08-29

2.0 Update for 1.4.0, string expressions, remote container env vars, ACI Makefile options 2018-08-29

2.1 Update for 1.5, slave attributes/elements, EOF update 2019-04-29

OpenCPI Application Development Guide Page 2 of 82



Table of Contents

1 References........................................................................................................................5

2 Overview..........................................................................................................................6

3 OpenCPI Applicaion Speciicaion (OAS) XML Documents...............................................10

3.1 Quick XML Introducion.......................................................................................................11

3.2 Top Level Element in an OAS: applicaion............................................................................12

3.3 Instance Elements within the Applicaion Element..............................................................14

3.4 Property Elements within the Applicaion Element (opional).............................................20

3.5 Connecion Elements within the Applicaion Element (opional).........................................21

4 The ocpirun Uility Program for Execuing XML-based Applicaions.................................24

4.1 General Opions for ocpirun................................................................................................25

4.2 Funcion Opions for ocpirun..............................................................................................27

4.3 Instance Opions for ocpirun...............................................................................................28

4.4 Simulaion Opions for ocpirun...........................................................................................31

5 Property Value Syntax and Ranges..................................................................................32

5.1 Values of Unsigned Integer Types: uchar, ushort, ulong, ulonglong.....................................32

5.2 Values of Signed Integer Types: short, long, longlong..........................................................33

5.3 Values of the Type: char......................................................................................................33

5.4 Values of the Types: loat and double.................................................................................33

5.5 Values of the Type: bool......................................................................................................33

5.6 Values of the Type: string....................................................................................................33

5.7 Values in a Sequence Type..................................................................................................34

5.8 Values in an Array Type.......................................................................................................34

5.9 Values in Mulidimensional Types.......................................................................................34

5.10 Values in Struct Types.........................................................................................................34

5.11 Expressions in Property Values............................................................................................34

6 Uility Components for Applicaions................................................................................37

6.1 File_Read Component that Reads Data or Messages from a File.........................................38

6.2 File_Write Component that Writes Data or Messages to a File............................................40

7 API for Execuing XML-based Applicaions in C++/Python: ACI.........................................42

7.1 Class OA::Applicaion..........................................................................................................44

7.2 Class OA::ExternalPort........................................................................................................54

7.3 Class OA::ExternalBufer.....................................................................................................56

7.4 Class OA::Property..............................................................................................................58

7.5 Class OA::PValue: Named and Typed Parameters................................................................61

7.6 Building ACI Programs.........................................................................................................61

7.7 Using the ACI with Python...................................................................................................63

8 Using Remote Containers: Network-Connected Processors..............................................64

8.1 Using ocpirun with Remote Containers...............................................................................65

8.2 ACI Funcions for Using Remote Containers........................................................................65

8.3 Environment Variables for Using Remote Containers..........................................................66

8.4 Using ocpiserve to Ofer Remote Containers to Clients.......................................................67

OpenCPI Application Development Guide Page 3 of 82



8.5 Remote Containers Setup Requirements.............................................................................69

9 Preparing HDL Assemblies for Use by Applicaions..........................................................70

10 Developing Applicaions in OpenCPI Projects..................................................................71

10.1 The ocpidev Tool as Used for OpenCPI Applicaions in Projects...........................................72

10.2 Applicaions in Projects.......................................................................................................73

10.3 HDL Assemblies in Projects.................................................................................................77

11 Deploying Applicaions in a Runime Environment..........................................................78

12 Glossary..........................................................................................................................82

OpenCPI Application Development Guide Page 4 of 82



1 References

This document depends on the OpenCPI Overview.  For information on component 
development, which is not a prerequisite of this document, see the OpenCPI 
Component Development Guide (CDG).

Table 1 - Table of Reference Documents

Title
Published 
By

Link

OpenCPI Overview OpenCPI
Public URL:

https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCP
I_Overview.pdf

OpenCPI Component
Development Guide

OpenCPI
Public URL:

https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI
_Component_Development.pdf

OpenCPI RCC 
Development Guide

OpenCPI
Public URL:

https://opencpi.github.io/releases/1.5.0.rc/doc/OpenCPI
_RCC_Development.pdf

OpenCPI Application Development Guide Page 5 of 82

https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_RCC_Development.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_RCC_Development.pdf
http://opencpi.org/
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Component_Development.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Component_Development.pdf
http://opencpi.org/
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Overview.pdf
https://opencpi.github.io/releases/1.5.0.rc/doc//OpenCPI_Overview.pdf
http://opencpi.org/


2 Overview

The purpose of this document is to specify how applications can be created and 
executed in OpenCPI.  The OpenCPI framework supports Component-Based 
Development, where applications are composed of pre-existing components that may 
exist in ready-to-run binary form before the application is even defined.

An OpenCPI component is a functional abstraction with a specifically defined control 
and configuration interface based on configuration properties, and zero or more data 
ports, each with a defined messaging protocol.  An OpenCPI Component 
Specification (OCS) describes both of these aspects of a component, establishing 
interface requirements for multiple implementations (workers) of the component.  
Workers are developed and coded based on an OCS, and when built, are available for 
applications that are defined in terms of components that meet a spec.  An application 
identifies the components it uses by the name of their spec.

Having one or more libraries of prebuilt, ready-to-run component implementations 
(a.k.a. workers) is a prerequisite for running OpenCPI applications.  The syntax and 
semantics of component specifications (OCS), and how component implementations 
are developed, are defined in the OpenCPI Component Development Guide (CDG).  
Creating and running applications for OpenCPI does not require the knowledge of how 
components are developed, but it does require some knowledge of how they are 
specified.  Component specifications are discussed briefly in this document, and 
described in detail in the CDG.

OpenCPI applications are defined as assemblies of component instances with 
connections among them.  They can be specified two different ways:

1. A standalone XML document (text file).

2. An XML document embedded in, and manipulated by, a C++ program.

This document specifies:

 The format and contents of the XML documents that define applications

 A utility program that directly executes the applications defined in XML files

 A C++ and Python API for manipulating and executing XML-based applications

There are also related sections describing:

 How to use other network-attached systems when executing applications, a.k.a. 
remote containers.

 How to develop and run applications in OpenCPI projects, which are 
development work areas for groups of assets like components and applications.

 How create FPGA artifacts which are HDL assemblies of workers that can 
implement a subset of an application for execution on an FPGA container.

OpenCPI uses several terms when describing component-based applications.  In 
particular:

OpenCPI Application Development Guide Page 6 of 82



Component:  a specific function used to compose applications.  Components are 
described by an XML document called a component specification.

Instance:  the use of a component in an application (a part of an application).

Application:  the composition of instances

Worker:  a concrete implementation of a component, in three contexts:  source code, 
compiled code for some target platform, runtime object executing the compiled code.

Container:  the OpenCPI execution environment on some platform that will execute 
workers (i.e. where they execute).

Port:  a communication interface of a component or worker, with which they 
communicate with other components/workers.

Property:  a configuration value applied to a component to control its function.  
Components have defined properties with defined data types, and workers implement 
those properties.  Workers (specific implementations) may have additional properties 
beyond those defined by the component (spec) being implemented.

Platform:  a particular type of processing hardware and/or software that can host a 
container for executing OpenCPI workers.

Artifact:  a file containing binary code for one or more workers, built for a platform.

Library:  a collection of artifacts in a hierarchical file system directory structure.

PackageID:  a globally unique identifier for OpenCPI assets, in this case used to 
identify component specifications.

System:  a collection of platforms usually in a box or on a system bus or fabric.

The OpenCPI execution framework for component-based applications is based on 
workers executing in containers (on platforms), communicating via their ports, and 
configured via their properties.  The runtime workers are instances of component 
implementations realized in artifact files.  The term artifact is used as a technology 
neutral term which represents a compiled binary file that is the resulting artifact of 
compiling and linking (or for FPGAs, synthesizing etc.) some source code that 
implements some components.  We use the term worker both for a specific (coded) 
implementation of a component, as well as the runtime instances of that 
implementation.

The component development and build process results in artifacts that can be loaded 
as needed and used to instantiate the runtime workers.  Typical artifacts are “shared 
object” or “dynamic library” files on UNIX systems for software workers, and “bitstreams”
for FPGA workers.  While it is typical for artifacts to hold the implementation code for 
one worker, it is also common to build artifact files that contain multiple worker 
implementations.

OpenCPI applications are created by specifying which components should be 
instantiated (using some artifacts), how the resulting workers should be connected, 
and how they should be configured via their properties.  Specifying an instance is based
on the package ID of the component specification.

OpenCPI Application Development Guide Page 7 of 82



The runtime software uses this name to search the available artifact libraries for 
available implementations in artifacts, and matches those (binary) implementations to 
the available containers (processors of various types), running on platforms in the 
system.  The result of the search is a set of potential candidate workers for each 
instance.  To be a candidate, an implementation must be able to execute in some 
available container.

The package ID of a component specification is generally prefixed with a package 
name (followed by a period).  This package name is the name scope in which the 
component is defined.  This allows components to be specified and implemented by 
different organizations, while still allowing any implementation found in a library to 
satisfy any (other) organization’s component specifications.  E.g., my project can have 
an additional, alternative implementation of a component specified in another library, or 
can define its own specification for a component with the same name in a different 
package name scope.  OpenCPI package naming follows the Java package naming 
conventions, with the addition of two top-level packages:  local and ocpi.

To actually run the application, the deployment decision is made for each instance in 
the application:

 which implementation/artifact should be used, and

 which container (running on some platform) should it run in.

A set of mutually feasible deployment decisions results in the overall deployment of the
application.

Unless a specific implementation is indicated, the OCPI_LIBRARY_PATH environment 

variable is used to indicate a list of colon-separated directories or files, which are 
searched to locate artifact files containing component implementations.  The directories 
are searched recursively.  During this search, when the deployment decisions are 
made, there may be multiple possible deployments.  Each possible deployment is 
scored and the first deployment among those with the best score is used.  If two 
artifacts are considered equivalent, the one found earlier in OCPI_LIBRARY_PATH will 

be used.  OCPI_LIBRARY_PATH is used similar to the LD_LIBRARY_PATH on Linux 

systems except that it descends recursively into directories when doing the search.

The relationships between applications, artifacts, containers, workers, platforms etc. is 
shown in the following diagram:

OpenCPI Application Development Guide Page 8 of 82



Figure 1:  An Application of Components Deployed on a System

OpenCPI Application Development Guide Page 9 of 82



3 OpenCPI Application Specification (OAS) XML Documents

This section defines the XML document format for describing OpenCPI applications. 
Such XML documents may be held in files or in text strings within a program. They 
describe a collection of component instances, along with their interconnections and 
configuration properties. An OAS may be directly executed using the ocpirun utility 

program described below. An OAS may also be constructed and/or manipulated 
programmatically and dynamically, and executed using an API described in the later 
section:  Application Control Interface (ACI)

The primary contents of the OAS are component instances. When the author of an 
OAS specifies a component instance, they are referring to a component specification. 
They are saying: I need a component implementation that meets this specification. 
Normally, the OAS says only that, and does not say which particular implementation of 
that component spec (i.e. which worker) should be used. This allows the OAS to be 
used in a variety of different configurations of hardware and different libraries of 
component implementations.

A very simple example of an OAS is below, showing an application that reads data from 
a file, adds 1 to each data value, and writes the result.

<application>
  <instance component='file_read' connect=’add1’>
    <property name='filename' value='test.input'/>
  </instance>
  <instance component='add1' connect=’file_write’/>
  <instance component='file_write'>
    <property name='filename' value='test.outputwrong'/>
  </instance>
</application>

Each instance specifies the component, some properties, and a connection.

OpenCPI Application Development Guide Page 10 of 82



3.1 Quick XML Introduction

XML documents are text files that contain information formatted according to XML 
(EXtensible Markup Language) syntax and structured according to a particular 
application-specific schema.  The textual XML information itself is formatted into 
elements, attributes, and textual content.  The OAS XML schema does not use or 
allow textual content at this time.  XML elements have attributes and child elements
(forming a hierarchy of elements).  XML elements take two forms.  The simpler one is 
when an element has no child (embedded) elements and no textual content.  It looks 
like this (for element of type xyz, with attribute abc):

<xyz abc=’123’/>

Thus the element begins with the < character and the element type, and is terminated 

with the /> characters.  Attributes have values in single or double-quotes.  Any white 

space, indentation, or new lines can be inserted for readability between the element 
name and attributes or between attributes.  Thus the above example could also be:

<xyz
  abc=”123”
 />

When the element has child elements (in this case a child element of type ccc with 

attribute cat), it looks like:

<xyz abc=”123”>
  <ccc cat=”345”/>
</xyz>

In this case the start of the xyz element (and its attributes), is surrounded by <>, and 

the end of the xyz element is indicated by </xyz>.  An XML schema defines which 

elements, attributes, and child elements the document may contain. Every XML 
document has a single top-level element that must be structured (attributes and sub- 
elements) according to the schema.  A <extension> child element is always legal and 

always ignored.  It can be used when tools want private embedded elements that are 
unknown to OpenCPI.

An element can be entered directly (as above) or by referring to a separate file that 
contains that element. So the example above might have a file ccc1.xml containing:

<ccc cat=”345”/>

And then a top-level file called “xyz1.xml” containing:

<xyz abc=”123”>
  <xi:include href=”ccc1.xml”/>
</xyz>

However, the schema specifies which elements are allowed to be top-level elements in 
any file.  All element and attribute names used in OpenCPI are case insensitive.

All attributes are defined with specific data types and formats. When an attribute is 
defined as the boolean type, the default value (used when the attribute is not specified) 
is “false” unless otherwise noted. All element and attribute names are case insensitive.

OpenCPI Application Development Guide Page 11 of 82



3.2 Top Level Element in an OAS:  application

The top-level element in every OAS document (file or string) is the application 

element.  Application elements contain child elements that are either instance or 

connection, and have attributes that are name, done, package, and 

maxprocessors.  These are described below.

3.2.1 Name attribute (optional)

The name attribute of an application is simply used in various error messages and other 

debug log messages.  It has no functional purpose, only documentation and labeling.

3.2.2 Done attribute (optional)

The done attribute identifies the instance within the OAS that is used to determine when

the application is “done” executing.  When the indicated instance is “done”, then the 
whole application is considered “done”.  If this attribute is not supplied, the application is
considered “done” when all its instances are “done”.  The value of this attribute must 
match the name attribute of one of the instance elements, described below.

For some applications, and some components, there is no definition or functionality of 
being “done”. In this case whatever mechanism started the application must decide 
when to stop it and shut it down.

3.2.3 Package attribute (optional)

The package attribute of an application is used as a default package prefix for all 

instances in the assembly. Any instance’s component attribute that does not have a 

package prefix is assumed to be in the package indicated by this attribute. When not 
specified, the default package prefix for all components mentioned in the assembly is 
local. The prefix of the core OpenCPI component library is ocpi.core.  If you are 

using mostly components in that library, you might include package=’ocpi.core’ as 

an attribute.  If you are using only components specified in your own library of 
components (which has a default prefix of local), you could ignore this attribute and 

use no prefixes at all. See the component attribute of the instance element below.

3.2.4 MaxProcessors attribute (optional)

The MaxProcessors attribute indicates the maximum number of processors 

(containers) that should be used to run the application.  When instances are allocated to
processors, an algorithm decides which processor runs each instance.  If this attribute is
not set, the default behavior is to spread the instances across available processors, and
use a “round-robin” assignment policy when there are more instances than processors.

If this numeric parameter is set, it limits the number of processors used, if possible.  If 
more are necessary to host the necessary workers, more will indeed be used in any 
case.  An example of when this attribute is not effective is when the availability of 
implementations of each instance dictate that more processors are needed, such as 

OpenCPI Application Development Guide Page 12 of 82



when the only implementation available for an instance is for a particular processor, 
which must then be used.

OpenCPI Application Development Guide Page 13 of 82



3.3 Instance Elements within the Application Element

The instance element is used as a child of the application element to specify a 

component instance in the application.  It may have property or slave child 

elements, and may have component, name, connect, selection, from, to, slave 

and external attributes.  For example:

<instance component='file_read' connect=’add1’>
  <property name='filename' value='test.input'/>
</instance>

The order of instance elements is significant for the purpose of assigning names to each
instance when the instance element does not specify a name.  When applications are 
started, the instances in the application are started using ordering rules that do not 
depend on the ordering of instance elements in the OAS.  The detailed ordering rules 
are outside the scope of this document, but in general instances with no input ports 
(typically sources of data) are started last to avoid startup overrun conditions.

3.3.1 Component attribute (required)

The component attribute of an instance specifies the component being instantiated.  

The value is a string used to find implementations for this instance, by searching in the 
available artifact libraries. It is the name assigned by the component developer to the 
component specification used as the basis for implementations.  Component 
specifications are themselves XML documents/elements called OCS (OpenCPI 
Component Specification). They have names (used to match this attribute’s value), and
describe the ports and properties that apply to all implementations of that component.

This attribute is required, and answers the question:  what function should this instance 
perform?  The process by which OpenCPI searches for implementations based on this 
attribute is described above.

This attribute may have a package prefix (ending in a period) to indicate which package 
contains the component specification indicated. If there is no prefix, the package prefix 
is taken from the default for the whole assembly, which is specified using the package 

attribute of the top-level application element.  If there is no package attribute in the 

application, and the component prefix is not present, the prefix “local.” is used.

This attribute provides the PackageID of the component by combining any prefix from 
the application's package attribute with its value if the value contains no periods.  

Package IDs are meant to be global identifiers constructed similar to Java package 
names.

3.3.2 Name attribute (optional)

The name attribute of an instance is optional, and provides a unique identifier for the 

instance within the application. If it is not supplied, one is assigned to the instance. If 
there is only one instance in the application for a type of component (i.e. the component
is used only once), the assigned instance name is the same as the component name 
(without package prefix).  If more than one such instance (of the same component) 

OpenCPI Application Development Guide Page 14 of 82



exists in the application, the assigned name is the component name (without package 
prefix) followed by the decimal ordinal of that instance among all those for the same 
component.  Such ordinals are assigned starting with 0.

For example, in the example application above, there is one instance of the file_read

component, and thus its instance name would be file_read.  If the application used 

file_read twice (e.g. two different components were taking data from different files), 

the two instances would be named file_read0 and file_read1, in the order they 

occurred in the OAS.

3.3.3 Connect attribute (optional)

Connecting instances together in an assembly can be done one of two ways.  Using the
connect attribute of an instance is the simplest, but cannot express all connections. 
The connection child element of the application element can be used to express 

all types of connections.  It is described later.

The connect attribute defines exactly one connection from an output port of this 
instance to an input port of another instance. Its value is the name of the other 
instance.  If this instance only has one output port and the other instance only has only 
one input port, then these are implied.  The optional from attribute specifies the name 

of the output port of this instance if needed (if there are more than one), and the 
optional to attribute specifies the name of the input port of the other instance (if there 

are more than one). An example using all three attributes is:

<application>
  <instance component=“psd"
            connect=’demod’ from=’myout’ to=’demod_in’/>
  <instance component=“demod" selection=’model==”rcc"’/>
</application>

This simple connection method is useful for the many components that have only one 
output port.

3.3.4 Selection attribute (optional)

This attribute optionally specifies how to choose among alternative implementations 
when more than one is available. This capability also provides a way for the application
to specify minimum conditions on the candidate implementations found in the library.

The attribute value is an expression in the syntax of the C language, with all the normal 
operators, including the ?: ternary operator.  Logical expressions (e.g. “a == 1”) return 1

on true and 0 when false.  The variables that may appear in the expression are either:

 Property names that have fixed (not runtime variable) values

 Built-in identifiers that indicate well-known attributes of the implementation. The 
built-in identifiers are:

• model:  the name of the authoring model of the implementation, e.g. rcc.

• platform:  the name of the platform the implementation is built for, e.g. 

centos7 or ml605

OpenCPI Application Development Guide Page 15 of 82



• os: the name of the operating system the implementation is built for, e.g. 
linux

The value of the selection expression is considered an unsigned number, where a 
higher number is better than a lower number, and zero is considered unacceptable.  I.e. 
if the expression when evaluated for an implementation has a zero value, that 
implementation is not considered a candidate. A simple example might be:

model=="rcc"

This indicates that the model must be rcc since otherwise the expression’s value will 

be zero. The example:

error_rate < 5 ? 2 : 1

indicates that the error_rate property is relevant, and if less than 5, it is better than 

when greater than or equal to 5, but the latter is still acceptable.

If there is no selection expression, the “score” of the implementation is 1, unless it has 
hard-wired connections to other collocated workers (e.g. on an FPGA). In this case its 
value is 2.

An example of using the selection attribute is:

<application>
  <instance component="psd" selection=’latency < 5’/>
  <instance component="demod" selection=’model=="rcc"’/>
</application>

It indicates that the psd instance needs an implementation with latency less than 5, and

the demod instance must have an implementation with an authoring model of rcc.

3.3.5 From attribute (optional)

This attribute is used to specify the name of the output port of this component instance 
in conjunction with using the connect attribute described above.

3.3.6 To attribute (optional)

This attribute is used to specify the name of the input port of the other component 
instance in conjunction with using the connect attribute described above.

3.3.7 External attribute (optional)

This string attribute is used to specify a port of the instance that is to be considered an 
external port of the entire application.  Its value is the name of this instance’s port that 
should be externalized.  The external application-level name of the port is the same as 
its own name on this instance.  To specify a different name, use the connection 

element described below.  Note that the name of this attribute is singular and distinct 
from the externals attribute described next.

3.3.8 Externals attribute (optional)

This boolean attribute is used to specify that all unconnected ports of the instance are to
be considered external ports of the entire application.  The external application-level 

OpenCPI Application Development Guide Page 16 of 82



names of the ports are the same as their own name on this instance.  To specify 
different names, use the connection element described below.  Note that the name of

this attribute is plural and distinct from the external attribute described previously.

3.3.9 Worker attribute (optional)

This string attribute is used to specify a particular worker to use for this instance.  Usage
of this attribute is rare and generally not recommended in the OAS since it bypasses the
automatic selection algorithm for choosing the worker based on available 
implementations and available containers.  The string value is the name of the worker, 
without any suffix for “authoring model” or package name prefix.

3.3.10 Slave attribute (optional)

This string attribute specifies the name of another instance in this application that acts 
as a slave to this instance.  This attribute implies that any worker used for this 
component must be a proxy and that the worker used for the identified slave instance 
must be an appropriate slave worker for the worker chosen for this proxy .  This attribute
is used when there is a single slave for this instance.  If there are multiple slaves for the 
instance, the slave element described in Slave Elements must be used.  More 

information about slaves and proxies is in that section.

3.3.11 Buffersize attribute (optional)

This numeric attribute specifies the size of message buffers for the connection on the 
output port in conjunction with using the connect attribute described above.  For more 

details on message buffers, see the description of the connection element.

3.3.12 Property Elements within the Instance Element (optional)

The property element is used as a child of the instance element to specify 

configuration property values that should be configured in the worker when the 
application is run, prior to the application being started. Within an instance element, 

some examples of property (child) elements are:

<instance component=”psd”>
  <property name=”size” value=”17”/>
  <property name=”symmetric” value=”true”/>
</instance>

Properties can only be set if they are specified in the spec (OCS) with access as initial 
or writable.  Properties labeled in the OCS as initial can only be assigned values 
before the application runs, while those labeled as writable can be specified before the 
application runs (like initial properties) but can also be changed during execution, 
dynamically.

Property values may also be set outside the OAS (on the command line or as a runtime-
parameter).  Using these mechanisms outside the OAS makes the OAS more reusable 
since it can be used with different property values settings.

OpenCPI Application Development Guide Page 17 of 82



3.3.12.1 Name attribute (required)

The name attribute of a property element must match the name of a property of the 

specified component.  I.e., it must be one of the defined configuration properties of the 
component.  Component specifications define properties that are common to all 
implementations of a component.  Component implementations (workers) can also 
define additional properties that are specific to that implementation, but mentioning such
properties will only be accepted if the selected implementation has them.  Otherwise an 
error results.

3.3.12.2 Value attribute (one of  value or valueFile is required)

The value attribute is the value to be assigned to the configuration property of the 

worker just before being started.  The attribute’s value must be consistent with the data 
type of the property in the component specification.  I.e. if the type of the property is 
ulong, then the attribute’s value must be numeric and not negative.

The complete syntax of property values is described in the Property     Value     Syntax   
section.

3.3.12.3 ValueFile attribute (one of  value or valueFile is required)

The ValueFile attribute is the name of a file containing the value to assign to the 

property.  Using this attribute, rather then the value attribute, is convenient when the 

value is large, such as when the property’s value is an arrays of values.  When 
valueFile is used, all new lines in the file are interpreted as commas.

The complete syntax of property values is described in the Property     Value     Syntax   
section.

3.3.12.4 DumpFile attribute (optional)

The DumpFile attribute is the name of a file into which the value of the property will be 

written after execution (when using the ocpirun utility program described below).  

When DumpFile is used, all commas in the value are replaced by new lines in the 

written file. The complete syntax of property values is described in the Property     Value     
Syntax section.

3.3.12.5 Delay attribute (optional)

Normally property settings are made before the application starts, but it is possible for a 
property value to be set after the application starts.  This delay attribute specifies when

the property value should be set after the application starts.  A value of zero means as 
soon as possible after the application starts.  Any value greater than zero indicates the 
amount of time to wait (in seconds) after the application starts, before setting the value. 
The delay values are in units of seconds, and may be floating point.  Thus 5e-6 would 

indicate 5 microseconds.

Multiple delays and values may be specified for a property to indicate a timed sequence
of property settings.  This is done by inserting multiple set elements as child elements 

of the property element.  Each set element may have its own delay and indicate the 

OpenCPI Application Development Guide Page 18 of 82



value to be set using the value or valuefile attributes.  Here is an example that sets

a property's value 5 seconds after the application starts, and then sets a different value 
10 seconds after the application starts.

<application>
  <instance component='mycomp'>
    <property name='control'>
      <set value='123' delay='5'/>
      <set value='345' delay='10'/>
    </property>
    <property name='other' delay='20' value='789'/>
  </instance>
</application>

3.3.13 Slave Elements within the Instance Element (optional)

This element is used to specify one or more slave instances that act as slaves to this 
instance.  This element implies that any worker used for this instance must be a proxy 
and that the worker used for the identified slave instance must be an appropriate slave 
worker for the worker chosen for this proxy instance.  Each slave element must have a

name attribute whose value is the name of the other instance in the assembly that will 

act as a slave to this instance.

Workers can have a proxy/slave relationship where a one worker (a proxy) is allowed to 
control other workers (slaves).  A proxy worker is designed and coded to control specific
other workers as slaves, and this worker-to-worker relationship is declared by the proxy 
worker.  Workers identified as slaves by proxies have no special declaration themselves
and they do not need a proxy worker to function properly.  This relationship is used by 
the code in the proxy worker

An example of using the elements is:

<instance component=”device1”/>
<instance component=”device2”/>
<instance component=”device_controller”>
  <slave name=”device1”/>
  <slave name=”device2”/>
</instance>

This slave element exists to allow slaves to be parameterized and connected within the 
application.  In a future release the slaves will be included in the application 
automatically if a worker used for an instance is a proxy.

OpenCPI Application Development Guide Page 19 of 82



3.4 Property Elements within the Application Element (optional)

Property elements at the top level of an application (rather than under an instance 

element), represent properties of the application as a whole.  They are essentially a 
mapping from a top-level property name to a property of some instance in the assembly.

This provides a convenient way to expose properties to the user of an application 
without requiring them to know the internal structure of the application.  For example:

<application>
  <property name='infile' instance='file_read' property='filename'/>
  <instance component='file_read' connect=’add1’>
    <property name='filename' value='test.input'/>
  </instance>
  <instance component='add1' connect=’file_write’/>
  <instance component='file_write'>
    <property name='filename' value='test.outputwrong'/>
  </instance>
</application>

The above example provides an application-level property named infile, which is 

mapped to the filename property of the file_read component instance.  In addition 

to the attributes listed here, the top-level property elements also accept the value, 

valueFile, and dumpFile attributes described in the previous section.

3.4.1 Name attribute (required)

The name attribute of an application-level property is the name that users of the 

application will use to read, write or display the value.  If the property attribute just 

below is not present, then this name is also the name of the instance’s property.

3.4.2 Instance attribute (required)

This attribute specifies the name of the instance that actually implements this property 
for the application.  It is the instance that the application-level property is “mapped to”.

3.4.3 Property attribute (optional)

If the application-level name of this property is not the same as the instance’s property 
to which is it mapped, this attribute is used to specify the actual property of the instance.
It is a string property that must match a property of the instance.

OpenCPI Application Development Guide Page 20 of 82



3.5 Connection Elements within the Application Element (optional)

Connecting instances together in an assembly can be done one of two ways. Using the
connect attribute of an instance is the simplest (described above), but cannot express 
all connections. The connection child element of the application element can be 

used to express all types of connections.  It describes connections among ports and 
also with “the outside world”, i.e. external to the application.  The connection element 

has optional name and transport attributes, and port and external child elements.

An example of an application with some connections is:

<application done='file_write'>
  <instance component='file_read'/>
  <instance component='bias'/>
  <instance component='file_write'/>
  <connection transport=”socket”>
    <port instance='file_read' name='out'/>
    <port instance='bias' name='in'/>
  </connection>
  <connection>
    <port instance='bias' name='out'/>
    <port instance='file_write' name='in'/>
  </connection>
</application>

The first connection connects the out port of the file_read instance to the in port of 

the bias instance, and specifies that the connection should use the socket transport 

mechanism.  The second simply connects the out port of the bias instance to the in 

port of the file_write instance.  This second connection could have been more 

simply accomplished by using the connect attribute on the bias instance.

3.5.1 Name attribute (optional)

This attribute specifies the name of the connection.  It is only used for documentation 
and display purposes and has no specific other function.  If it is not present, a name is 
assigned according to the conn<n> pattern, where <n> is the number of the connection

in the application (0 origin).  If the connection is thought of as a “wire”, this is the name 
of the wire that is attached to various other things (instance ports and external ports).

3.5.2 Transport attribute (optional)

This attribute specifies what transport mechanism should be used for this connection. 
OpenCPI supports a variety of transport technologies and middlewares that convey 
data/messages from one instance’s port to another.  Normally the transport mechanism 
is chosen automatically based on which ones are available and optimal.  This attribute 
allows the application to override the default transport mechanism and force the usage 
of a particular one.  The ones supported at the time of this document update are:

OpenCPI Application Development Guide Page 21 of 82



Table 2:  Transport Options for Connections

Name Description

pio Programmed I/O using shared memory buffers between processes

pci DMA or PIO over the PCI Express bus/fabric

ofed RDMA using the OFED software stack, usually for Infiniband

socket RDMA using TCP/IP sockets

ether RDMA using Ethernet (link layer) frames

udp RDMA using UDP/IP

Some of these transport mechanisms are only available if specifically installed in a 
system.  See the OpenCPI Installation Guide.

3.5.3 Buffersize attribute (optional)

This attribute specifies the message buffer size for the connection.  Connections convey
messages from input ports to output ports, using message buffers.  The buffers must be
large enough to fit the messages.  The exact mechanism for buffering is determined by 
the low-level mechanisms and technologies used to convey the messages.  Normally 
the OpenCPI runtime framework determines buffer sizes based on a combination of the 
protocol used for the connection and other information supplied by workers.

When there is no protocol associated with any of the ports of the connection, and no 
worker-based information to determine the buffer size, a system-wide default buffer size
is used, which is 2K bytes.

If the application wants to override the above determination of buffer size, perhaps to 
reduce latency (by reducing buffer size) or increase throughput (by increasing buffer 
size), it can use this attribute to do so.  Even when this attribute is specified, this value 
can be overridden by command line arguments or runtime ACI values.

3.5.4 Port Elements within the Connection Element (optional)

This element is used to specify a port that this connection should be attached to. The 
most common use of this element is to specify the consumer and producer of the 
connection, using a port element for each, within the same connection element. 
However, port elements can be used to indicate more than two ports on the same 
connection, when there are multiple consumers for the connection (currently not 
supported).

3.5.4.1 Instance attribute (required)

This attribute specifies the name of the instance of the port to be attached to this 
connection. This instance name is used along with the name attribute to specify the 
port.

OpenCPI Application Development Guide Page 22 of 82



3.5.4.2 Name attribute (required)

This attribute specifies the name of the port that should be attached to this connection. 
This port name is scoped to the instance defined in the instance attribute of the 
connection element.

OpenCPI Application Development Guide Page 23 of 82



4 The ocpirun Utility Program for Executing XML-based 

Applications

The simplest way to run an OpenCPI application is to describe it in an XML file (an OAS
as described above), and run it using the command-line utility ocpirun. This 

command reads the OAS file and runs the application.  E.g., if the OAS was in a file 
named myapp.xml, the following command would run it:

ocpirun myapp

With some typical options, the command would be:

ocpirun -v -d -t 10 myapp

This would be verbose during execution, dump property values after initialization and 
after execution, and limit execution to 10 seconds.

The execution ends when the application described in the OAS is “done” or the provided
time duration is exceeded.  As mentioned above, an application is done either when all 
its workers indicate they are “done” or when a single worker, identified using the done 

attribute in the OAS, says it is done.  The ocpirun utility also has an option to stop 

execution after a fixed period of time.

There are a number of options to ocpirun, which are all printed in the help message 

when it is executed with no arguments.  Options that are “Bool”, have no value:  their 
presence indicates true.  When an option has a value, the value can immediately follow 
the option letter, or be in the next argument.  There are general options, function options
and options that refer to a specific instance in the application.  These are all described 
below.  Some options can also be expressed as XML attributes in the OAS and some 
may also be used in the Application Control Interface described below in ACI.  A 
complete alphabetical option summary, for all three ways of indicating options, is in the 
Option  s   Summary   section.

When ocpirun executes the application, it must make deployment decisions, which 
decide, for each instance:

 which worker in which compiled artifact should be used, and

 which container should it run in.

There is an automatic built-in algorithm to make these decisions, as well as a number of
options described below that override or guide the automatic deployment algorithm.

OpenCPI Application Development Guide Page 24 of 82



4.1 General Options for ocpirun

Table 3:  General Options to ocpirun

Name Letter Datatype Description

dump d Bool Dump all readable properties after initialization, and again 
after execution, to stderr.

verbose v Bool Be verbose in describing what is happening.

hex x Bool Print numeric property values in hex, not decimal.

uncached U Bool When dumping property values do not use cached values 
that are “remembered” by ocpirun when they are written.  

Actually query the worker in its execution environment 
(which is much more expensive).

processors n ULong Create this many RCC containers (default is 1).

log-level l ULong Set the OpenCPI log level to the given level.  Overrides any 
value of the OCPI_LOG_LEVEL environment variable.

duration t ULong Stop execution after this many seconds.   If the application is
not done before this amount of time, the application stops 
and is considered a successful execution (with the 
ocpirun exit code being zero).

timeout O Ulong If the execution in seconds exceeds this amount, the 
application is stopped and is considered a failure, with the 
ocpirun exit code being 1.

server S String A server (name or IP address) to explicitly contact for remote
containers whether or not the remote option is not 

specified.  This option may be specified multiple times.

remote R Bool Automatically discover servers offering remote containers 
using multicast UDP.

deployment String Specify a filename to read for deployment decisions, rather 
than using the built-in deployment algorithm.  See deploy-
out.

deploy-out none String The name of a file in which to record deployment decisions 
for this execution, in XML format.  Such an output file can be 
supplied later in the deployment option, to use the exact 

deployment recorded from a previous run (or from a no-
execute function as defined below).

OpenCPI Application Development Guide Page 25 of 82



Name Letter Datatype Description

library-
path

none String Override the OCPI_LIBRARY_PATH environment variable.

dump-file none String The name of a file in which to record the final property values
in machine-parseable form.

component none Bool Indicates that the first non-option argument is in fact a 
component name for a single-component application rather 
than the file name of an OAS.

no-execute none Bool Indicates that the application should not really execute, but 
all deployment decisions should be made, and if requested, 
recorded in the file indicated by the deploy-out option.

dump-
platform

M Bool Dump all platform worker and device worker properties, in 
addition to properties of the workers in the application.

OpenCPI Application Development Guide Page 26 of 82



4.2 Function Options for ocpirun

The function options tell the ocpirun command to perform certain functions other than 
executing the application.  Options only relating to these non-execution functions are 
also listed here in the following table.

Table 4:  Function Options to ocpirun

Name Letter Datatype Description

list C Bool List all available containers, including those discovered on the
network (if the -R or -S options are specified).  Assign each 

a number for easy assignment with the -c instance option 

described below.  The application is still executed if an 
application filename argument is specified after the options.

only-
platforms

none Bool Modifies the list command to only print available platforms,

listing any available platform only once even if there is more 
than one container with the same platform type.

list-
artifacts

A Bool This function searches for all artifacts for any of the listed 
targets or platforms (using the –target, or -r option), 

based on OCPI_LIBRARY_PATH, and prints the list to 

stdout.  Used to collect artifacts for a specific system.

list-
specs

none Bool This function searches for all artifacts for any of the listed 
targets or platforms (using the –target, or -r option), 

based on OCPI_LIBRARY_PATH, and prints the list to 

stdout.  Used to collect available specs for a specific system.

target r String A target (<os>-<os-version>-<arch>), or platform for the 
list-artifacts and list-specs commands.  May be

specified more than once.

no-
execute

none Bool After the normal process of deciding, for each instance, what 
container it will run on, and what artifact will be used to run it, 
stop short of actually allocating any resources or performing 
execution.  This option can be used as a “dry run” to see what
would happen, and, with the deploy-out option, record 

the deployment decisions in an XML file.

OpenCPI Application Development Guide Page 27 of 82



4.3 Instance Options for ocpirun

The instance options allow a value to be specified that applies to either all instances or 
just one instance.  All these options take string values and the values are of the form:

[<instance-name>]=<value>.

So, the option:

-m=rcc

would set the m option (the authoring model) for all instances to rcc, while the option:

-mctl=rcc

would set the m option for the ctl instance to be rcc.  These options can appear more 

than once to indicate options for different instances.  If you specify an instance with an 
empty value (e.g. -mctl= ), it unsets any previous default (such as -m=rcc).  So the 

following example would say:  all instances have the rcc model except filter.

-m=rcc -mfilter=

These options typically provide constraints on the deployment algorithm to only consider
certain workers or certain containers.  The following table lists all instance options:

Table 5:  Instance Options to ocpirun

Name Letter Description

container c Assign the instance to a specific container, using the name or number from 
the listing of the -C command.

Examples:  -cfft=1 -cfir=rcc2

model m Specify the authoring model of the named instance.  This creates a 
constraint that the worker used for this instance must have this model.
Examples:  -m=hdl -m fft=rcc

platform P Assign instance only to containers for this platform type (see output from 
-C).

Examples:  -Pfft=ml605 -P=centos7

property p Set the value of a property.  The value of the option is either:
<property-name>=<value>

for application-level properties, or:
<instance-name>=<property-name>=<value>

for per-instance property value settings.  See below for more details.

selection s Set the selection expression for the instance.  See below for more details.  
Example, to request that for the ctl instance, only workers with the snr 

property less than 5 are used:  -s 'ctl=snr<5'.  See the Instance 

Selection Attribute section.

worker w Specify the name of the worker (specific implementation) to be used for the 
instance.  Note this does not include model suffix or package prefix.

OpenCPI Application Development Guide Page 28 of 82



4.3.1 Setting Properties in the Application

The property setting option (-p) can set an application-level property rather than an 

instance property.  Application-level properties are those specified using the property 

element at the top level of the OAS, as a child element of the application element.  

Application-level properties have an application-level name that is mapped in the OAS 
to the underlying instance and property name.

When setting a top level application property value, the form of the option is:

-p control=5

which sets the application level control property to the value 5.

When specifying the property value of an instance, the form of the option is:

-p file_read=filename=myinput.data

which sets the filename property value of the file_read instance to 

myinput.data.

Property values must be consistent with the data types defined in the component 
specification.  The syntax for all data types is described in the Property Value Syntax 
and Ranges section below.

4.3.2 Instance options that apply to the ports of instances

There are several options that apply to specific ports of instances in the application.  
These options modify default behavior for the communications occurring at that port.  
When a port is connected to a port of another instance, the connection is between two 
ports.  Some of the port options apply to only one end (one port) of the connection, 
while others apply to the connection as a whole and thus apply to both the mentioned 
port as well as the port it is connected to.

The syntax of port options is:

<instance-name>=<port-name>=<value>.

If the option is port-specific (for only one end of the connection), the value is applied to 
that port.  If the option is for connections, the value is applied to the indicated port as 
well as the port it is connected to.  The following table lists all instance port options:

Table 6:  Instance Port Options to ocpirun

Name Letter Description

buffer-
count

B Specify the number of buffers at this instance port (not for all ports of the 
connection).  The default is usually 2.  This option allows the number of 
buffers to be different each end of the connection.

buffer-
size

Z Specify the the buffer size for the connection (for this port and the port it is 
connected to).  The default is usually determined by a combination of the 
protocol used on the connection and other system constraints.

transport T Specify the transport technology used for the connection (for this port and 

OpenCPI Application Development Guide Page 29 of 82



the port it is connected to).  This applies when using remote containers.

External Port Options

Several options apply to the external ports of the application (which are not connected 
to anything else in the OAS).  They use the syntax:

<externalport>=<value>

Table 7:  External Port Options to ocpirun

Name Letter Description

file f Specify the name of the file to connect to this external port.  This inserts 
a file_read or file_write component into the application, and 

connects it to the named external port. These utility components are 

described in the Utility Components section.  This allows an OAS with 

external ports to be used with those ports connected to files while also 
allowing it to be used with those same ports connected to an ACI 

application (described in the ACI section).

buffer
count

B Specify the buffer count for this external port.

buffer-
size

Z Specify the the buffer size for this external port (for this port and the port 
inside the OAS it is connected to).  The default is usually determined by 
a combination of the protocol used on the connection and other system 
constraints.

transport T Specify the transport technology used for the connection (for this port 
and the port it is connected to).  This applies when using remote 
containers.

When the file option is used to connect an external port to a file, the detailed property 

settings for the inserted file_read or file_write components may be supplied 

after the filename using the URL option syntax of:

?<name>=<value>;<name2>=<value>

So if an external port whose name was input was to be connected to the file 

myinput.txt, with the opcode option set to 2 and the suppressEOF option set to 

false, the option syntax would be:

-f 'input=myinput.txt?opcode=2;suppressEOF=false'

Note that the option value is quoted since the question mark and semicolon are shell 
metacharacters.

OpenCPI Application Development Guide Page 30 of 82



4.4 Simulation Options for ocpirun

The simulation options are used to control containers that are running HDL/FPGA 
simulators.  Any available simulators are used as normal containers during the 
deployment algorithm which decides what artifacts are used and where instances will 
run.  Available simulators are included in the output of the --list (or -C)  function of 

ocpirun.

These options are normally used during HDL/FPGA component development and 
testing, but are listed here for completeness.  They are described in more detail in the 
OpenCPI HDL Development document.

Table 8:  Simulations Options to ocpirun

Name Letter Description

sim_dir none The name of a directory where simulation outputs will be placed.  The 
default is simulations, relative to where ocpirun itself is running.

sim-
ticks

none The number of simulation clock cycles to execute or until the application is 
done.

OpenCPI Application Development Guide Page 31 of 82



5 Property Value Syntax and Ranges

This section describes how property values are formatted to be appropriate for their 
data types.  Property values for applications occur in three places:

 the value attribute of property elements in the OAS XML

 on the ocpirun command line when options are used to set property values

 in C++ when the ACI is used to apply property values to applications (the ACI is 
described below in ACI)

The syntax accepted depends on the type of the property whose value is being set, and 
certain quoting requirements depend on the context where the value is specified.

In XML attributes:  Attribute values in XML syntax are in single or double quotes.  The 
property value syntax described below is used inside these quotes (in the OAS).  To 
have quotes inside XML attribute values, the other type of quotes is used to delimit the 
attribute value.  In either case, inside the quoted attribute value, the & and < characters 

must be escaped using the official XML notations:  &amp; for & and &lt; for <.  If both 

types of quotes must be in an attribute value, then the official XML escape sequences 
for the quotes can be used:  &quot; for double quote, and &apos; for single quote.1

On the shell command line:  Similarly, when used on the command line for ocpirun, 

the shell quoting rules are different than in XML.  If the property value has no single 
quotes at all, then using single quotes for the shell command line argument is the most 
convenient when any of the shell's metacharacters are in the property value.  The shell 
metacharacters are these:

 |  &  ;  (  )  <  >  *  ?  [  ]  {  }  space  tab  

If single quotes are in the value, or if shell variable or history expansion is required, the 
QUOTING section of the shell/bash manual page defines how to escape them.

In a C++ program:  In C++, the values will be defined in double-quoted string literals, 
where only double-quote characters and backslash characters must be escaped by 
preceding them with a backslash.

These XML/shell/C++ rules are applied after the value is constructed according to the 
general property value syntax defined below.

Property values are also used when creating component specifications and workers.  
That usage is described in the OpenCPI Component Development Guide, but the 
format is as described here.

5.1 Values of Unsigned Integer Types:  uchar, ushort, ulong, ulonglong

These numeric values can be entered in decimal, octal with leading zero, or 
hexadecimal with leading 0x.  The limits are the typical ranges for unsigned 8, 16, 32, or
64 bits respectively.

1  The details of XML attribute encoding can be found at Wikipedia XML Character Entities

OpenCPI Application Development Guide Page 32 of 82

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references#Predefined_entities_in_XML


The uchar type can also be entered as a value in single quotes, which indicates that 

the value is an ASCII character, with backslash escaping as defined in the C language.  
The syntax inside the single quotes is as described for the char type below.

5.2 Values of Signed Integer Types:  short, long, longlong

These numeric values can be entered in decimal, octal with a leading zero, or 
hexadecimal with a leading 0x, with an optional leading minus sign to indicate negative 
values.  The limits are the typical ranges for signed 16, 32, or 64 bits respectively.

5.3 Values of the Type:  char

This type is meant to represent a character, i.e. a unit of a string.  In software it is 
represented as a signed char type, with the typical numeric range for a signed 8-bit 

value.  The format of a value of this type is simply the character itself, with the typical 
set of escapes for non-printing characters, as specified in the C programming language 
and IDL:

 \n  \t  \v  \b  \r  \f  \a  \\  \?  \’  \”

A series of 1-3 octal digits can follow the backslash, and a series of 1-2 hex digits can 
follow \x.

OpenCPI adds two additional escape sequences as a convenience for entering signed 
and unsigned decimal values of type char.  The sequence \d may be followed by an 

optional minus sign (–) and one to three decimal digits, limited to the range of -128 to 

127.  The sequence \u can be followed by one to three decimal digits, limited to the 

range of 0 to 255.

These escapes can also be used in a string value.  Due to the requirements of the 
arrays and sequence values (see below), the backslash can also escape commas and 
braces, i.e.:

 \,    \{    \}

5.4 Values of the Types:  float and double

These values represent the IEEE floating point types with their defined ranges and 
precision.  The values are those acceptable to the ISO C99 strtof and strtod 

functions respectively.

5.5 Values of the Type:  bool

These values represent the Boolean type, which is logical true or false.  The values can 
be case insensitive: true or 1 for a true value, and false or 0 for a false value.

5.6 Values of the Type:  string

These values are simply character strings, but also can include all the escape 
sequences defined for the char type above.  Due to the requirements of arrays and 
sequence values, the backslash can also escape commas and braces (\, and \{ and

\} ).  Double quotes may be used to surround strings, which protects commas, braces, 

OpenCPI Application Development Guide Page 33 of 82



and leading white space.  To be interpreted this way, the first character must be a 
double quote.  Two double quotes can represent an empty string.

5.7 Values in a Sequence Type

Values in a sequence type are comma-separated values.  When the type of a sequence
is char or string, backslash escapes are used when the data values include commas.

5.8 Values in an Array Type

When a value is a one-dimensional array, the format is the same as the sequence, with 
the number of values limited by the size of the array.  If the number of comma-
separated values is less than the size of the array, the remaining values are filled with 
the null value appropriate for the type.  Null values are zero for all numeric types and 
the type char.  Null values for string types are empty strings.

5.9 Values in Multidimensional Types

For multidimensional arrays or sequences of arrays, the curly brace characters ( { and

} ) are used to define a sub-value.  For example, a sequence of 3 elements, each 

consisting of arrays of length 3 of type char, would be:

{a,b,c},{x,y,z},{p,q,r}

This would also work for a 3 x 3 array of type char.  Braces are used when an item is 
itself an array or sequence, recursively.

5.10 Values in Struct Types

Struct values are a comma-separated sequence of members, where each member is a 
member name followed by white space, followed by the member value.  A struct value 
can be “sparse”, i.e. only have values for some members.  If the struct type was:

struct { long el[2][3]; string m2; char c; };  // C pseudo code

A valid value would be:

el {{1,3,2},{4,5,6}}, c x

This struct value would not have a value for the m2 member.  Unmentioned members 

have null values.

5.11 Expressions in Property Values

Both numeric and string typed scalar values can be specified using an expression 
syntax and operator precedence from the C language, where any parameter property 
with a value can be accessed as a variable.  All C expression operators can be used 
except the comma operator, assignments or self-increments/decrements.  The 
conditional operator using ? and : is supported.  Expressions can be used as elements

of arrays or sequences, or as structure member values.

For example, if the nbranches property was a parameter, a valid expression might be:

nbranches == 0x123 ? 2k-1 : 0177

OpenCPI Application Development Guide Page 34 of 82



5.11.1 Numeric Values

The numeric constant syntax is typical C language syntax (integer and floating point), 
with the following additions:

 Integers with explicit radix after a leading 0 can use 0t for base 10 and 0b for 

base 2, in addition to the normally used 0x for base 16 and no letter for base 8.  

All these prefixes can be applied to the fraction and exponent for floating-point 
syntax.

 Integers can use a letter suffix of K, M, or G, upper or lower case, indicating 2^10,  

2^20 or 2^30 respectively.  E.g. 2k-1 is 2047.

 All arithmetic is done using a numeric data type exceeding the range and precision
of uint64_t, int64_t and double, and then assigned to the actual data type of

the property whose value is being specified.

 The ** binary operator (pow) from the python and FORTRAN languages is also 
supported.

When the value of the expression is assigned to the property value or numeric property
attribute (e.g. ArrayLength), it is range checked for validity.  Boolean properties are 

set to true if the value is non-zero.  Fractions are discarded when assigning values to 
integer types.

5.11.2 String Values

Within expressions, string constants (using double quotes as in C) and string-valued 
parameter properties can be used.  All comparison operators are case sensitive and 
result in boolean numeric values (0 or 1).  All operators requiring boolean values (!, 

||, &&, ?:) use the length of the string (zero being false, otherwise true).  The + 

operator concatenates strings.  There is no implicit or explicit conversion between 
string values and numeric values. E.g. if sparam is a string-typed parameter with the 

value abc, then this expression has the numeric value of 1:

sparam == “abc”

This expression would have the string value xyz_abc:

“xyz_” + sparam

Expressions used for string values

To distinguish when a string value is an expression, as opposed to a string that might 
look like an expression, the string value must have a special prefix of \: (backslash 

followed by colon).  So if a property (or sequence/array element or structure member) 
is a string type, any value assigned to it is considered not to be an expression by 
default.  To make the string value interpreted as an expression, use the \: prefix.

So if sparam is a parameter with value abc, then specifying the property's string value

sparam+”xyz”

would simply define that exact string (with plus sign and double quotes included) but if 
the string value was:

OpenCPI Application Development Guide Page 35 of 82



\:sparam+”xyz”

then it would be interpreted as an expression, and the actual string value would be:

abcxyz

OpenCPI Application Development Guide Page 36 of 82



6 Utility Components for Applications

There are several built-in components that are always available that application 
developers use frequently.  These are listed in this section, along with the available 
implementations.  Their availability on a given platform depends on whether they have 
been built for that platform and whether artifacts are available in the path specified by 
the OCPI_LIBRARY_PATH environment variable.

All of these utility components are in the ocpi.core package, so using them usually 

involves specifying the instance's component attribute as ocpi.core.<component>.

If most of the components in the application are in this package it may be more 
convenient to simply set the package attribute for the whole application.

OpenCPI Application Development Guide Page 37 of 82



6.1 File_Read Component that Reads Data or Messages from a File

The File_Read component injects file-based data into an application.  It is normally used
by specifying an instance of the File_Read component, and connecting its output port to
an input port of the component which will process the data first.  The name of the file to 
be read is specified in a property.

This component has one output port whose name is out, which carries the messages 

conveying data read from the file.  There is no protocol associated with the port:  it is 
agnostic as to the protocol of the file data and the connected input port.

This component has two modes of operation:  data streaming and messaging.

6.1.1 Data Streaming Mode

In data streaming mode, the contents of the file becomes the payloads of a stream of 
messages, each carrying a fixed number of bytes of file data (until the last) and all with 
the same opcode.  The opcode of all output messages is specified in a property.  The 
length of all output messages except the last one are based on the buffer size assigned 
to the output port by the container it is running in.  See the buffer size determination 
section.

If the number of bytes in the file is not an even multiple of the buffer size the remaining 
bytes are sent in a final shorter message.  The granularity of messages can also be 
specified.  This forces the message size to be a multiple of this value, and forces 
truncation of the final message to be a multiple of this value.  The default granularity is 
1.

6.1.2 Messaging Mode

In messaging mode, the contents of the file are interpreted as a sequence of defined 
messages, with an 8-byte header in the file itself preceding the data for each message.  
This header contains the length and opcode of the message, with the data contents of 
the message following the header.  The length can be zero, meaning that a message 
will be sent with the indicated opcode, but the message will carry no data.

The first 32-bit word of the header is interpreted as the message length in bytes, little-
endian.  The next 8-bit byte is the opcode of the message, followed by 3 padding bytes. 
E.g. in the C language (on a little-endian processor):

struct {
  uint32_t messageLength;
  uint8_t  opcode;
  uint8_t  padding[3];
};

This format of messages in a file is the format produced by the File_Write component  
when in messaging mode, described next.

If the end of the file is encountered while reading a message header, or while reading 
the header-specified length of the message payload, an error will be reported and the 
component will report a fatal error.

OpenCPI Application Development Guide Page 38 of 82



6.1.3 End of File Handling

When the File_Read component reaches the end of its input file, it will do one of three 
things:

 assert an EOF condition on its output

 declare itself to be “done” with no further action, when the suppressEOF property 

is true

 restart reading at the beginning of the file, when the repeat property is true

6.1.4 Properties

Table 9:  Properties of the File_Read Component

Name Access Default Type Description

fileName Initial none String Pathname of file to be read

messagesInFile Initial false Bool Indicates messaging mode

opcode Initial 0 UChar Opcode for all outgoing messages in
data streaming mode.

granularity Initial 1 ULong Granularity of outgoing messages

repeat Initial false Bool Whether to repeat the file at EOF

suppressEOF Initial false Bool Do not assert the final EOF

bytesRead Volatile ULongLong How many bytes were read?

messagesWritten Volatile ULongLong How many messages were written to
the output port?

badMessage Volatile Bool Was a bad message encountered in 
the file?

OpenCPI Application Development Guide Page 39 of 82



6.2 File_Write Component that Writes Data or Messages to a File

The File_Write component writes application data to a file.  It is normally used by 
specifying an instance of the File_Write component, and connecting its input port to an 
output port of the component producing the data.  The name of the file to be written is 
specified in a property.

This component has one input port whose name is in, which carries the messages to 

be written to the file.  There is no protocol associated with the file, enabling it to be 
agnostic as to the protocol of the file data and the connected output port.

This component has two modes of operation:  data streaming and messaging.  These 
are similar, but not identical to the modes described in the File_Read component 

above.

6.2.1 Data Streaming Mode

In data streaming mode, the contents of the file becomes the payloads of the stream of 
messages arriving at the input port.  No message lengths or opcodes are recorded in 
the output file.

6.2.2 Messaging Mode

In messaging mode, the contents of the output file is written as a sequence of defined 
messages, with an 8-byte header in the file itself preceding the data for each message 
written to the file.  This header contains the length and opcode of the message, with the 
data contents of the message following the header.  The length can be zero, meaning 
that a header will be written but no data will follow the header in the file.

The first 32-bit word of the header is written as the message length in bytes, little-
endian.  The next 8-bit byte is the opcode of the message, followed by 3 padding bytes. 
E.g. in the C language (on a little-endian processor):

struct {
  uint32_t messageLength;
  uint8_t  opcode;
  uint8_t  padding[3];
};

This format of messages in a file is the format consumed by the File_Read component  
when in messaging mode, described earlier.

6.2.3 End of File Handling

If the File_Write component receives an EOF indication, it will interpret it as the end of 
data and will close the output file and declare itself “done”.  Nothing is written to the 
output file for this EOF indication.

OpenCPI Application Development Guide Page 40 of 82



6.2.4 Properties

Table 10:  Properties of the File_Write Component

Name Access Default Type Description

fileName Initial none String Name of file to be written

messagesInFile Initial false Bool Indicates messaging mode

bytesWritten Volatile ULongLong How many bytes were written to file?

messagesWritten Volatile ULongLong How many messages were written to the
file?

OpenCPI Application Development Guide Page 41 of 82



7 API for Executing XML-based Applications in C++/Python:  ACI

Although XML applications are easily executed using the ocpirun command, there are

cases where more programmatic and/or dynamic creation or control of the XML-based 
application is required.  This section describes an API that supports these scenarios, 
called the OpenCPI Application Control Interface (ACI).  Here are examples of when 
ocpirun may not be sufficient, and may require using the ACI.

1. The contents of the application XML (OAS) need to be constructed 
programmatically or some of its attributes need to be dynamically set.

2. The C++ main program needs to directly connect to the ports of the running 
application (see external ports below), and send or receive data to/from it.

3. The XML-based application needs to be run repeatedly (perhaps with 
configuration changes) in the same process.

4. Component property values need to be read or written dynamically during the
execution of the application.

We use the term control-application to describe the C++ or Python application using 
this interface.  The ACI is described as a C++ API, with a section Using the ACI with 
Python describing how using it in Python differs from using it in C++.  In all examples 
below, the C++ namespace prefix OA is used as an abbreviation of the actual 

namespace of the ACI:  OCPI::API, i.e. assuming:

#include "OcpiApi.hh"
namespace OA = OCPI::API;

The ACI, for executing XML-based applications, is based primarily on one C++ class: 
OCPI::API::Application.  It is constructed by passing it the OAS and has various 

lifecycle control member functions.  It is well suited to being constructed with automatic 
storage (on the stack) and using the implicit destruction at the end of the block.  A 
simple example using this API, assuming the OAS is in the file myapp.xml, is:

{
  OA::Application app("myapp.xml");
  app.initialize(); // all resources have been allocated
  app.start();      // execution is started
  app.wait();       // wait until app is “done”
  app.finish();.....// do end-of-run functions like property dumping
}

All exceptions thrown inherit from the std::string class, so at a minimum, the value 

of the string can be used to print an error message to determine what went wrong, e.g.:

OpenCPI Application Development Guide Page 42 of 82



try {
  OA::Application app("myapp.xml");
  app.initialize(); // all resources have been allocated
  app.start();      // execution is started
  app.wait();       // wait until app is “done”
  app.finish();     // do end-of-run functions like property dumping
} catch (std::string &e) {
  std::cerr << "app failed: " << e << std::endl;
}

When OpenCPI is executing an application, some of the containers may in fact be 
executing inside the same process, in their own threads.  This may occur for software 
containers running software workers, or even for OpenCL or FPGA simulation 
containers.  Thus using the ACI implies that there will be “background processing” 
overheads introduced into the process, running in background threads.

This means that callers of the ACI must generally avoid standard library APIs or system 
calls that are not thread safe.  Also, no calls to the exit() library function should be 

made until any OA::Application objects are destroyed.  Typically this means that an

OA::Application object should either go out of scope or be explicitly deleted before 

exiting.  E.g. for a simple block, the following example is bad coding practice::

{
  OA::Application app("myapp.xml");
  if (something_bad)
    exit(1);
  ....
}

Where as the following is ok:

int exitval = 0;
do {
  OA::Application app("myapp.xml");
  if (something_bad) {
    exitval = 1;
    break;
  }
  ....
} while(0);
if (exitval)
  exit(exitval);

OpenCPI Application Development Guide Page 43 of 82



7.1 Class OA::Application

This class represents a running application, with a simple lifecycle. It has constructors 
and destructors suitable for automatic storage, and methods for:

 controlling the lifecycle

 getting and setting configuration properties

 directly communicating with the external ports defined in the application.

7.1.1 OA:: Application::Application constructors

There are two constructors for this class that differ in the type of the first argument. The 
first argument is either a const char *, or a const std::string &. It is either a 

filename containing the OAS, or the OAS XML string itself.  If the string starts with the < 

character after initial white space, it is considered the latter (XML).  The second 
argument is a parameter array, of type const OA::PValue *.  It defaults to NULL (no 

parameters).

The constructor searches the available artifact libraries as specified in the 
OCPI_LIBRARY_PATH environment variable, and chooses an implementation from 

those available in the libraries, for each instance in the OAS.  Resources are not 
allocated (no loading or instantiating or configuring or connecting is performed). When 
the constructor returns successfully (without exception), the OAS is valid and 
implementations (artifacts) have been found and selected for all instances in the OAS. 
Here are the two constructors:

class Application {
  Application(const char *file, OA::PValue *params = NULL);
  Application(std::string &oas, OA::PValue *params = NULL);

};

The params argument is used to provide additional constraints on the selection of 

implementations and the assignment to containers, in addition to providing more 
property values.  All these values could be specified in the OAS, but this allows the OAS
to remain constant while various aspects of the execution are overridden or augmented 
here in the ACI.

The property, selection, model, and container parameters perform the same 

function as the -p, -s, -m, and -c instance options to the ocpirun utility program. 

Their values are strings that specify a parameter relative to a particular instance. An 
example is:

OpenCPI Application Development Guide Page 44 of 82



{
  OA::PValue params[] = { PVString("model",      "psd1=rcc"),
                          PVString("selection",  "filter=snr<40"),
                          PVString("property",   "filter=mode=6"),
                          PVEnd
                        };
  OA::Application app("myfile.xml", params);
  app.initialize(); // all resources allocated
  app.start();      // start execution
  app.wait();       // wait until app is “done”
  app.finish();.....// do end-of-run processing like dump properties
}

The syntax of the OA::PValue class is described below in Class OA::PValue.  Except for
the property parameter, if there is no instance (followed by equal sign), the parameter

applies to all instances. E.g.:

OA::PValue params[] = { PVString("model",     "rcc"),
                        PVString("selection", "filter=snr<40"),
                        PVString("property",  "filter=mode=6"),
                        PVEnd
                        };
}

would specify that all instances should use the rcc authoring model, and the filter 

instance should only use implementations (workers) whose snr property value was less

than 40.  It would also set the mode property value for the filter instance to 6.

Most ocpirun options may be set using this method, with the convention that option 

names with hyphens are replaced with camel-case names, e.g.:

ocpirun –-log-level=8

would require:

PVUChar(“logLevel”, 8);

7.1.2 OA:: Application::initialize Method

This method initializes the application by allocating all necessary resources and loading,
creating, initializing, configuring and connecting all workers necessary to run the 
application.  When this method returns, the application is “ready to run”.  Any errors that 
might occur when allocating resources, loading code, instantiating/initializing workers, 
configuring workers or connecting workers, will have happened via exceptions before 
this method returns.

class Application {
  void initialize();
};

7.1.3 OA:: Application::start Method

This method starts the application by starting all the workers in the OA::Application. 
When this method returns the application is running.

OpenCPI Application Development Guide Page 45 of 82



class Application {
  void start();
};

Workers in the application are started using the ordering rules described in the CDG. 

7.1.4 OA::Application::stop Method

This method suspends execution of the application. When the method returns the 
application is no longer executing.  Properties may be queried (and should not be 
changing) after the application is suspended.  Some workers do not implement this 
operation (they are not suspendable), and if so an exception is thrown.  When the 
application can be successfully stopped, it can be resumed by again using the start 
method described above.

class Application {
  void stop();
};

Workers in the application are stopped using the ordering rules described in the CDG. 

7.1.5 OA:: Application::wait Method

This method blocks the caller until the application is done:  when all the workers are 
done or when the worker indicated by the “done” attribute in the OAS, is done.  The 
single argument indicates how long to wait in microseconds.  If the value is zero, the 
wait will not timeout.  The return value is true when the timeout expired, and false when 
the application was “done”.

class Application {
  bool wait(unsigned timeout_us);
};

7.1.6 OA:: Application::finish Method

This method performs various functional (not cleanup) actions when the application is 
“done”.  It should be called after wait returns, whether timeout or not.  Among other 

things, this is required to perform the “dumpfile” action for properties, as indicated in the 
OAS or ocpirun options.

class Application {
  void finish();
};

7.1.7 OA::Application::getProperty Method — by Property Name

This method gets a property value by name, returning the value in text form into the 
std::string whose reference is provided.  It should be used in preference to the 

OA::Property class below, when performance is not important, since although it has 

higher overhead internally, it is simpler to use than using OA::Property.

Application-level properties are simply identified by name and Instance-level properties 
are identified as <instance>.<property_name>.  The name argument can be a 

OpenCPI Application Development Guide Page 46 of 82



literal string constant (const char *) or something that can be resolved to std::string, 
such as:

"myfilter0.myprop"
inst_name + ".myprop"
inst_name + "." + prop_name
"my_app_prop"

If there is no property with the given name, or some other error occurs reading the 
property value, an exception is thrown.

class Application {
  const char *getProperty(const std::string &name, std::string &val,
                          OA::AccessList &list = <none>,
                          OA::PropertyOptionList &options = <none>,
                          OA::PropertyAttributes *attrs = NULL);
  const char *getProperty(const char *name, std::string &val,
                          OA::AccessList &list = <none>,
                          OA::PropertyOptionList &options = <none>,
                          OA::PropertyAttributes *attrs = NULL);
};

The list optional argument allow navigation to parts of a complex data types.  See 

OA::AccessList Arguments for Accessing within Complex Types below.  The options 

optional argument provides options for formatting and accessing the property value.  
See OA::PropertyOptionList Arguments when Getting Property Values below.  The 
attrs optional argument allows the retrieval of various attributes of the property into a 

structure provided by the caller.  See OA::PropertyAttributes Arguments for Getting 
Property Attributes.

The return value is simply the c_str() value of the provided string, to allow the 

method call to be used directly in formatted output, e.g.:

std::string val;
cout << “myprop: “ << app.getProperty(“myprop”, val) << std::endl;
printf(“property myprop is: %$s\n”, app.getProperty(“myprop”, val));

7.1.7.1 OA::AccessList Arguments for Accessing within Complex Types

The optional AccessList argument provides for navigation to values within properties 

with complex types.  AccessList arguments are specified in the syntax of 

std::initializer_list, which is a brace-enclosed comma-separated list.  The 

elements of the list are either indices (for arrays or sequences), or member names (for 
structures).  For example, if the property was an array of structures with members a and

b, then:

// XML:  <property name='propA' type='struct' arraylength='4'>
//         <member name='a' type='float'/>
//         <member name='b' type='bool'/>
//       </property>
getProperty("propA", val, {2, "a"});

would access member a of the structure that was element 2 of the array.  If the property 

was a sequence of floats, we would just use:

OpenCPI Application Development Guide Page 47 of 82



// XML:  <property name='propB' type='float' sequencelength='10'/>
getProperty("propB", val, {2});

The std::initializer_list feature of C++ was first implemented in GCC 4.4 (the 

compiler used in CentOS6) but was not entirely compliant with the language standard in
that compiler version.  For such older compilers a type must be applied to the 
AccessList arguments, e.g.:

getProperty("prop", val, OA::AccessList({2}));

This can be somewhat mitigated by using a variadic macro, e.g.:

#ifdef __NEWER_COMPILER__
#define A(...) {__VA_ARGS__}
#else
#define A(...) OA::AccessList({__VA_ARGS__})
#endif

Using such a macro, the code becomes:

getProperty("prop", val, A(2));

7.1.7.2 OA::PropertyOptionList Arguments when Getting Property Values

This data type is also based on std::initializer_list, and is a list of options in the form of 
enumeration constants that apply to the retrieval of the property value.  The options are:

OA::HEX — an indication that numeric integer values should be formatted in 

hexadecimal rather than decimal

OA::UNCACHED — an indication that any caching should be ignored (values read 

from workers if possible, even when otherwise cached)

OA::APPEND — an indication that the value should be appended to the provided 

std::string value rather than setting it.

OA::APPEND — an indication that the value should be appended to the provided 

std::string value rather than setting it.

OA::UNREADABLE_OK — an indication that allows an otherwise unreadable 

property to return an empty string, and not throw an exception in that case.

An example that appended the value to the incoming string, and formatted the textual 
value in hexadecimal, with no AccessList is:

getProperty("prop", val, {}, {OA::APPEND, OA::HEX});

OpenCPI Application Development Guide Page 48 of 82



7.1.7.3 OA::PropertyAttributes Argument for Getting Property Attributes

This argument allows the caller to provide a structure that will be filled in when the 
property value is retrieved.  The members of the structure are all boolean members 
except the name member which is a std::string.  The attributes retrieved are:

name — the name of the property, as a std::string

isParameter — it is a parameter

isinitial — it is initial and cannot be modified after the application is started

isWritable — it is writable and thus may be modified while application is running

isVolatile — it volatile thus worker may change it during execution

isDebug — it is only present if the worker was built in debug mode

isHidden — it hidden and thus will not normally be printed in some contexts

isWorker — it was defined by the worker, and is not in the OCS

isBuiltin — it is defined by OpenCPI, and not defined by the OCS or the worker

isPadding — it is defined by the worker to be padding and is not accessible

isRaw — it is defined by the worker as raw (defined in the HDL guide)

isCached — the value retrieved was based on a cache and not the actual worker

isUnreadable — the value was not readable, set to the empty string, and would 

throw an exception unless the OA::UNREADABLE_OK option was set

7.1.8 OA::Application::getProperty Method — by Property Ordinal

This method gets a property value by ordinal, returning the value in string form into the 
std::string whose reference is provided.

Identifying properties by ordinal is useful when enumerating all properties.

If the property is not readable, or some other error occurs reading the property value, an
exception is thrown.

class Application {
  const char *getProperty(unsigned ordinal, std::string &val,
                          OA::AccessList &list = <none>,
                          OA::PropertyOptionList &options = <none>,
                          OA::PropertyAttributes *attrs = NULL);

};

When accessing a property by ordinal, its name may be returned in the optional 
OA::PropertyAttributes structure specified by the attrs argument.

The return value is NULL if the ordinal is out of range.

This is useful to retrieve all property values (and names) without knowing their names.  
Thus a simple loop can retrieve all properties:

OpenCPI Application Development Guide Page 49 of 82



std::string value;
OA::PropertyAttributes attrs;
for (unsigned n = 0;
     app.getProperty(n, value, {}, {OA::UNREADABLE_OK}, &attrs);
     n++)
  std::cout << attrs.name << ":" << value << std::endl;

Note that by supplying the OA::UNREADABLE_OK option, this loop will not fail on 
properties that are not readable (e.g. a debug property for a worker not build in debug 
mode).

7.1.9 OA::Application::setProperty Method

This method sets a property value by name, taking the value in text form, which is then 
parsed and error checked according to the data type of the property.  It should be used 
in preference to the OA::Property class below, when performance is not important, 

since although it has higher overhead internally, it is simpler than using 
OA::Property.

The name and list arguments are the same as in the getProperty method.  The 

value arguments are const, and the value may also be a string literal.

If the value cannot be parsed for the appropriate type, or there is no property with the 
given name, or the worker itself does not accept the property setting, an exception is 
thrown.

class Application {
  void setProperty(const char *property_name, const char *value,
                   OA::AccessList &list = <none>);
  void setProperty(const std::string &property_name,
                   const std::string &value,
                   OA::AccessList &list = <none>);
};

7.1.10 OA::Application::getPropertyValue Method

This method gets property values in their native data type, without converting to a string 
form (as done in the getProperty methods).  The properties are identified by name as

is done in the getProperty methods (one or two names).  This method also allows for

navigation within the property's value when it is an array, sequence, or structure type.

This method is templated based on the type of scalar value requested, and has different
variants for one or two names, and whether the value is returned as the return value or 
as an output argument:

OpenCPI Application Development Guide Page 50 of 82



class Application {
  T getPropertyValue<typename T>(const char *instance_name,
                                 const char *property_name,
                                 AccessList &list = emptyList);
  void getPropertyValue<typename T>(const char *instance_name,
                                    const char *property_name,
                                    T &value,
                                    AccessList &list = emptyList);
};

When the property value is retrieved, it is error-checked for a valid conversion to the 
explicit type and if the value cannot be represented in the explicit type, an exception will 
be thrown.

Since C++ overload resolution is not available based on return type, the variants that 
directly return values must include the data type template parameter at the call site, 
e.g.:

float f = app.getPropertyValue<float>(NULL, “prop”) + 1e9;

The optional AccessList argument provides for navigation to scalar values in 

properties with complex types.  AccessList arguments are specified in the syntax of 

std::initializer_list, which is a brace-enclosed comma-separated list.  The 

elements of the list are either indices (for arrays or sequences), or member names (for 
structures).  For example, if the property was an array of structures with members a and

b, then:

// XML:  <property name='prop' type='struct' arraylength='4'>
//         <member name='a' type='float'/>
//         <member name='b' type='bool'/>
//       </property>
float f = getPropertyValue<float>(NULL, ¨prop¨, {2, ¨a¨});

would access member a of the structure that was element 2 of the array.  If the property 

was a sequence of floats, we would just use:

// XML:  <property name='prop' type='float' sequencelength='10'/>
float f = getPropertyValue<float>(NULL, ¨prop¨, {2});

The std::initializer_list feature of C++ was first implemented in GCC 4.4 (the 

compiler used in CentOS6) but was not entirely compliant with the language standard in
that compiler version.  For such older compilers a type must be applied to the 
AccessList arguments, e.g.:

float f = getPropertyValue<float>(NULL, ¨prop¨, AccessList({2}));

This can be somewhat mitigated by using a variadic macro, e.g.:

#ifdef __NEWER_COMPILER__
#define A(...) {__VA_ARGS__}
#else
#define A(...) OA::AccessList({__VA_ARGS__})
#endif

Using such a macro, the code becomes:

OpenCPI Application Development Guide Page 51 of 82



float f = getPropertyValue<float>(NULL, ¨prop¨, A(2));

7.1.11 OA::Application::setPropertyValue Method

This method works analogous to getPropertyValue, but since it takes the value to 

set as an argument, no explicit template type argument is required.

The value to be set is error-checked for a valid conversion to the property's type and if 
the value cannot be represented in that type, an exception will be thrown.

If the type of the value supplied is not valid for any OpenCPI property type, then a 
compiler error may result since the template methods are only implemented for those  
valid data types.

class Application {
  void setPropertyValue<typename T>(const char *instance_name,
                                    const char *property_name,
                                    const T value,
                                    AccessList &list = emptyList);
};

Using the example above, to set the b member of element 2 of the array to 1.2:

app.setPropertyValue(NULL, ¨prop¨, 1.2, {2, ¨b¨});

7.1.12 OA::Application::getPort Method

This method is used when the C++ program wants to directly connect to an external 
port of the application.  Such a connection is external to the application as defined in the
OAS (via the external attribute of an instance element, or an external child 

element of a connection element). This allows the C++ program to directly send and 

receive messages to/from the application (actually to/from some port of some instance 
in the application).

An optional OA::PValue list is provided to each side of the connection in order to 

provide configuration information about the connection.  The producer or consumer type
of the created OA::ExternalPort object is implicitly opposite from the role of the 

external port. E.g. if the external port of the application is an output port, then the 
ExternalPort object acts as an input port on which to receive messages.  This method 
returns a reference to an OA::ExternalPort object (see below) that is used by the 

control-application to, itself, produce or consume messages.

class ExternalPort;
class Application {
  ExternalPort &getPort(const char *externalName,
                        const PValue *myProperties = NULL,
                        const PValue *extProperties = NULL);
};

If the connection cannot be made or the OA::PValue lists are invalid, an exception is 

thrown.  The possible OA::PValue types for these external connections are currently 

unspecified.

OpenCPI Application Development Guide Page 52 of 82



The following diagram shows the relationships between Application objects and the 
ExternalPort objects and ExternalBuffer objects described next.

Figure 9:  External Ports and Applications

OpenCPI Application Development Guide Page 53 of 82



7.2 Class OA::ExternalPort

This class represents a communication endpoint for the control-application itself, used 
to communicate with external ports of the application.  These objects are owned by the 
OA::Application object and should not be deleted directly.

7.2.1 OA::ExternalPort::getBuffer Method

This method is used to retrieve the next available buffer of the port.  It returns a pointer 
to an OA::ExternalBuffer object, or NULL if there is no buffer available.  Thus it is a

non-blocking I/O call.  The buffer objects encapsulate the actual raw data buffers and 
are owned by the OA::ExternalPort objects.

For external ports giving data to the application (connected to a worker input port inside 
the application), the returned buffer object manages a data buffer to fill with a message 
to send into the application.  For external ports taking data from the application, the 
returned buffer object manages a data buffer containing the next message to be 
received by the control-application.  When the control-application is done with the buffer,
it calls the put method (when giving data) or the release method (when taking data).

In addition to returning a pointer to the buffer object, the getBuffer method also 

returns (as output arguments by reference), a pointer to its raw data buffer and the 
length of the message (when taking) or the length of the buffer (when giving).  These 
are convenience values that are attributes of the returned buffer object.  The data 
pointer returned by reference points to memory owned by the buffer object.

There are two overloaded getBuffer methods, for the two directions.  The first, for 

taking data by getting a buffer filled with a message, also returns the metadata for the 
message (opCode and endOfData) in separate by-reference output arguments.

class ExternalPort {
  // Take data from app: get buffer filled with next message
  ExternalBuffer *getBuffer(uint8_t *&data,
                            uint32_t &length,
                            uint8_t &opCode,
                            bool &endOfData);
  // Give data to app: get buffer to fill with next message
  ExternalBuffer *getBuffer(uint8_t *&data, uint32_t &length);
};

7.2.2 OA::ExternalPort::endOfData Method

This method indicates that no more messages will be sent to the application on this 
external port.  It is only used when giving data.  This propagates an out-of-band 
indication across the connection to the worker port.  Note that this indication can also be
made in the OA::ExternalBuffer::put() method below if the message being sent 

is the last message to be sent.  This latter method may be more efficient, since the out-
of- band indication can be carried with the message, rather than by itself.

OpenCPI Application Development Guide Page 54 of 82



class ExternalPort {
  void endOfData();
};

OpenCPI Application Development Guide Page 55 of 82



7.3 Class OA::ExternalBuffer

This class represents buffers attached to (and owned by) ExternalPort objects.  

They are returned (by pointer return value) from the 
OA::ExternalPort::getBuffer methods, and recycled back to the external port 

via the put method (when giving data to the application) or the release method (when

taking data from the application).

These objects encapsulate raw data buffers which are provided to the caller of the 
OA::ExternalPort::getBuffer methods via an output pointer argument, by 

reference.  Thus all buffering is managed by these objects, and pointers to the objects 
as well as to the internal raw data buffers are provided to callers.

7.3.1 OA::ExternalBuffer::release Method

This is the method used to discard an input buffer (output from the application) after the 
message in it has been processed/consumed by the control-application.

class ExternalBuffer {
  void release();
};

A simple loop that prints 10 (text) messages (without blocking or yielding) might be:

for (unsigned n = 0; n < 10; ++n) {
  OA::ExternalBuffer *b;
  uint8_t *data, opcode;  size_t length;  bool end;
  do b = port.getBuffer(data, length, opcode, end); while (!b);
  printf(“%u: %.*s\n”, opcode, (int)length, data);
  b->release();
}

7.3.2 OCPI::ExternalBuffer::put Method

This method is used to send an output buffer after it has been filled by the control-
application.  The arguments specify the metadata associated with the message:

 the length in bytes of  message data

 the opcode of the message 

 whether it is the last message to be sent

If it is not known whether the message is the last to be sent at the time of the call, it can 
be sent without that indication, and the endOfData() method can be called on the 

ExternalPort object at a later time.

The declaration is:

class ExternalBuffer {
  void put(uint32_t length,
           uint8_t opCode = 0,
           bool endOfData = false);

};

OpenCPI Application Development Guide Page 56 of 82



A simple loop that fills/sends 10 (text) messages (without blocking or yielding) might be:

for (unsigned n = 0; n < 10; ++n) {
  OA::ExternalBuffer *b;
  uint8_t *data;  size_t length;
  do b = port.getBuffer(data, length); while (!b);
  snprintf(data, length, “Message number %n”, n);
  b->put(strlen(data), 0);
}
port.endOfData();

OpenCPI Application Development Guide Page 57 of 82



7.4 Class OA::Property

This class represents a runtime accessor for a property.  They are normally created with
automatic storage (on the stack) and simply cache the necessary information to very 
efficiently read or write property values.  The control-application that uses this class is 
responsible for creating and deleting the objects, although typical usage is automatic 
instances that are automatically deleted.

7.4.1 OA::Property::Property Constructor Method

This constructor initializes the Property object such that it is specific to the application 
and specific to a single named property of that application.

class Property {
  Property(Application &app, const char *name);
};

The name argument specifies the property the same as the getProperty method in 

the application class described above.  Typical usage would be:

{
  OA::Application app(“myapp.xml”);
  app.initialize();
  OA::Property freq(w, “frequency”), peak(w, “peak”);
  app.start();
  freq.setFloatValue(5.4);        // set this during execution
  float p = peak.getFloatValue(); // get this during execution
  app.wait();
}

The set and get methods are all strictly typed.  They cannot be overloaded since 
overloading of integral types in C++ does not prevent truncation.

This same class is used in the more detailed ACI classes described below. In particular,
there is another constructor for this class based on a Worker object:

class Property {
  Property(Worker &worker, const char *name);
};

Beyond the fact that it is based on a worker rather than an application, the constructed 
Property object is used with all the same methods.

7.4.2 OA::Property::set{Type}Value Methods

There is a set method for each property scalar data type.  The set methods are strongly
typed and individually named to avoid the unintended consequences of numerical type 
conversions of the C++ language.  If the wrong set method is used for a property (e.g. 
setULong for a property whose type of Float), an exception is thrown.  If the string in 

setStringValue is longer than the worker property’s maximum string length, an 

exception is thrown.

OpenCPI Application Development Guide Page 58 of 82



class Property {
  void setBoolValue(bool val);
  void setCharValue(int8_t val);
  void setDoubleValue(double val);
  void setFloatValue(float val);
  void setShortValue(int16_t val);
  void setLongValue(int32_t val);
  void setUCharValue(uint8_t val);
  void setULongValue(uint32_t val);
  void setUShortValue(uint16_t val);
  void setLongLongValue(int64_t val);
  void setULongLongValue(uint64_t val);
  void setStringValue(const char *string);
};

7.4.3 OA::Property::get{Type}Value Methods

There is a get method for each property data type.  The get methods are strongly typed
and individually named to avoid the unintended consequences of numerical type 
conversions of the C++ language.  If the wrong get method is used for a property (e.g. 
getULong for a property whose type of Float), an exception is thrown.  If the string 

buffer in getStringValue is not long enough to hold the worker property’s current 

string value, an exception is thrown.  If there is an error accessing the worker’s property
value, an exception is thrown.

class Property {
  bool getBoolValue();
  int8_t getCharValue();
  double getDoubleValue();
  float getFloatValue();
  int16_t getShortValue();
  int32_t getLongValue();
  uint8_t getUCharValue();
  uint32_t getULongValue();
  uint16_t getUShortValue();
  int64_t getLongLongValue();
  uint64_t getULongLongValue();
  void getStringValue(char *string, unsigned length);
};

7.4.4 OA::Property::set{Type}SequenceValue Methods

There is a set sequence method for each property data. The set sequence methods are
strongly typed and individually named. If the wrong set sequence method is used for a 
property (e.g. setULongSequence for a property whose type of Float), an exception is 
thrown. If any of the strings in setStringValueSequence is longer than the property’s 
maximum string length, an exception is thrown. It the number of items in the provided 
sequence is greater than the maximum sequence or array length of the property, an 
exception is thrown. If there is an error accessing the property value, an exception is 
thrown.

OpenCPI Application Development Guide Page 59 of 82



class Property {
  void
    setBoolSequenceValue(bool *vals, unsigned n),
    setCharSequenceValue(int8_t *vals, unsigned n),
    setDoubleSequenceValue(double *vals, unsigned n),
    setFloatSequenceValue(float *vals, unsigned n),
    setShortSequenceValue(int16_t *vals, unsigned n),
    setLongSequenceValue(int32_t *vals, unsigned n),
    setUCharSequenceValue(uint8_t *vals, unsigned n),
    setULongSequenceValue(uint32_t *vals, unsigned n),
    setUShortSequenceValue(uint16_t *vals, unsigned n),
    setLongLongSequenceValue(int64_t *vals, unsigned n),
    setULongLongSequenceValue(uint64_t *vals, unsigned n),
    setStringSequenceValue(const char **string, unsigned n);

};

7.4.5 OA::Property::get{Type}SequenceValue Methods

There is a “get sequence” method for each scalar data type. The get sequence 
methods are strongly typed and individually named.  If the wrong get sequence method 
is used for a property (e.g. getULongSequenceValue for a property whose type of 

Float), an exception is thrown. If there is an error accessing the worker’s property 

value, an exception is thrown.

The first argument, vals, points to an array where the values will be placed.  The 

second argument, n, is the space available provided by the caller.  If there is not enough

room in the array, an exception is thrown.  The return value is the number of elements 
returned in the array. 

class Property {
  unsigned
    getBoolSequenceValue(bool *vals, unsigned n),
    getCharSequenceValue(int8_t *vals, unsigned n),
    getDoubleSequenceValue(double *vals, unsigned n),
    getFloatSequenceValue(float *vals, unsigned n),
    getShortSequenceValue(int16_t *vals, unsigned n),
    getLongSequenceValue(int32_t *vals, unsigned n),
    getUCharSequenceValue(uint8_t *vals, unsigned n),
    getULongSequenceValue(uint32_t *vals, unsigned n),
    getUShortSequenceValue(uint16_t *vals, unsigned n),
    getLongLongSequenceValue(int64_t *vals, unsigned n),
    getULongLongSequenceValue(uint64_t *vals, unsigned n),
    getStringSequenceValue(const char **string, unsigned n,
                           char *buf, unsigned maxStringSpace);
};

For getStringSequenceValue, the first argument is an array of pointers provided by 

the caller, whose length is n.  These pointers will point to the returned strings.  The buf 

argument is space for the returned strings to be stored, whose length is indicated by the
maxStringSpace argument.  If maxStringSpace is insufficient to store all the strings

(each with null termination), an exception will be thrown.

OpenCPI Application Development Guide Page 60 of 82



7.5 Class OA::PValue:  Named and Typed Parameters

This class represents a strongly typed name/value pair, and is always used as a 
member of a null-terminated array of such objects.  Its usage is typically to provide a 
pointer to an array of PValue structures, usually statically initialized.  There are derived 
classes (of OA::PValue) for each supported data type, which is the same set of types 

supported for component properties in the OCS.  For each supported scalar data type, 
the name of the derived class is OA::P<type>, where <type> can be any of:

Bool, Char, Double, Float, Short, Long, UChar, ULong, UShort, LongLong, 

ULongLong, or String.

The corresponding C++ data types are:

bool, char, double, float, int16_t, int32_t, uint8_t, uint32_t, uint16_t, 

int64_t, uint64_t, char *.

Common usage for static initialization is to declare a PValue array and initialize it with 
typed values and terminate the array with the symbol PVEnd, which is a value with no 
name, e.g.:

PValue pvlist[] = {
  PVULong("bufferCount", 7),
  PVString("xferRole", “active”),
  PVULong("bufferSize", 1024),
  PVEnd
};

Note that OA::PValue objects are used to provide named and typed parameters to the 

ACI, and are in fact unrelated to component properties except they share data types.

7.6 Building ACI Programs

Programs using the ACI are normally built in the context of OpenCPI projects (see 
Applications   in Projects  ), in which case the compilation and link commands are provided
by OpenCPI.  When the ACI is used outside OpenCPI projects, presumably in the 
context of other software libraries or executables, the OpenCPI CDK must still be 
installed.

The make file fragment ocpisetup.mk (from the include subdirectory of the CDK 

installation) can be included or examined to determine the correct values of gnumake 
variables for use outside OpenCPI projects.  In particular:

 The include file search path must include the directory defined in OCPI_INC_DIR.

 External OpenCPI symbols in the executable must be available to dynamically 
loaded libraries using linker options defined in OCPI_EXPORT_DYNAMIC.

 The link-time library search path (usually using -L options) must include the 

directory in OCPI_LIB_DIR.

 The OpenCPI framework libraries found in the OCPI_API_LIBS variable must be 

included in the link command, typically using:

OpenCPI Application Development Guide Page 61 of 82



  $(OCPI_API_LIBS:%=-locpi_%)

 The OpenCPI prerequisite libraries found in the OCPI_PREREQUISITE_LIBS 

must be included as static libraries using, e.g.:

  $(foreach l,$(OCPI_PREREQUISITES_LIBS),\
    /opt/opencpi/prerequisites/$l/linux-c7-x86_64/lib/lib$l.a)

Building ACI programs for embedded systems outside of OpenCPI projects is not 
explicitly supported.

OpenCPI Application Development Guide Page 62 of 82



7.7 Using the ACI with Python

If the program using the ACI is written in Python, the ACI can be used directly by 
importing the OcpiApi module.

This module serves as the namespace for the Python ACI, much like the OCPI::API 

C++ namespace.  Thus a typical initial python code might be:

import opencpi.aci as OA
app = OA.Application('myapp.xml')
...

The same object classes and methods described for C++ are available in Python, with 
the following rules and exceptions.

Methods that have by-reference output arguments in C++ return a tuple in Python 
consisting of the normal return value followed by all the by-reference output arguments 
described for C++.  For example, the getBuffer method of the ExternalPort class 

is defined in C++ as:

ExternalBuffer *getBuffer(uint8_t *&data, uint32_t &length);

A use of this method in C++ would look like:

uint8_t *data;
uint32_t length;
ExternalBuffer *buffer = port.getBuffer(data, length);

In python this would be:

buffer, data, length = port.getBuffer()

When the OpenCPI environment is set up (using the opencpi-setup.sh, which is 

normally automatically run at login) the PYTHONPATH environment is modified to 
include the location where the appropriate python module files are located.

OpenCPI Application Development Guide Page 63 of 82



8 Using Remote Containers:  Network-Connected Processors

This feature is preliminary and subject to change.

When an application is run, containers are found on the local system where workers 
(based on artifacts) may execute.  The set of containers considered are those that are 
part of, or directly attached to, the local system.  This includes RCC (software) 
containers based on the local CPU, and FPGAs attached to the system's bus or fabric 
such as PCI Express or the local interconnect between CPU and FPGA on Zynq SoCs.

The remote containers feature adds containers available in other systems on the 
network to the set of containers considered for execution.  Remote containers are 
containers offered for use by these other network-based systems.

An OpenCPI system may offer its containers to other systems for use as remote 
containers by running the ocpiserve command.  This command, when run on a 

system says:  make my local containers available for use by other systems which act as
network clients.  The ocpiserve command runs a “container server” serving up local 

containers as remotely accessible containers to network clients.

There are several reasons for remote containers:

 Scaling the available resources by using all the containers on a collection of 
network-connected systems (e.g. clusters, multiple radios)

 Heterogeneous testing, control, experimentation by allowing the application control
and testing client to use and control many disparate platforms 

 Support containers only controllable via networks
 like plug-in processor cards controllable via network over backplane
 signals, or virtual machines running other OSs or licensed simulators 

 Support minimally configured embedded server nodes which only require 

ocpiserve to run and nothing else (minimal configuration and footprint) 

Since ocpiserve does not run, initiate or control entire OpenCPI applications, it 

requires fewer resources than ocpirun or ACI executables.  No artifacts are necessary

on the server system, since they are downloaded on demand (and then cached), from 
the client (where the application is initiated and controlled) to the server.

OpenCPI Application Development Guide Page 64 of 82



8.1 Using ocpirun with Remote Containers

While ocpiserve enables containers to be offered by a remote system,  its containers 

are only used when clients are similarly enabled to discover and use them.  The 
ocpirun command has two options for this purpose.  The -R (--remote) option tells 

ocpirun to “discover” and use remote containers.  The discovery function uses a 

multicast technique to find the systems running ocpiserve, and retrieve from them the

list of available containers on each such system.  Similarly, the -S (--server) option to

ocpirun specifies the IP address of a specific system where ocpiserve is expected 

to be running.  This option avoids any necessity of discovery or multicast, but requires a
manual method to obtain the IP address of the server system and provide that address 
to the ocpirun command.  The command:

ocpirun -R -C

runs ocpirun simply to list available containers, including any discovered remote ones.

Similarly, there is a -d (--discoverable) option to ocpiserve that says:  make 

ocpiserve discoverable via multicast.  This enables clients using the -R option to find 

the server.  Without the -d (--discoverable) option, the ocpiserve command must

be contacted using its explicit IP address (using the -S option to ocpirun).  The 

ocpiserve command is fully described below.

8.2 ACI Functions for Using Remote Containers

If the client system is using the ACI, then there are two functions that serve purposes 
similar to the -R and -S options to ocpirun.  The function:

void OA::enableServerDiscovery();

is the ACI equivalent to the ocpirun -R option, and enables remote container discovery.  
The function:

void OA::userServer(const char *server);

is the ACI equivalent to the ocpirun -S option.  And the function

bool OA::isServerSupportAvailable();

is a simple function to use to determine whether remote container support is enabled in 
the current environment.  This function can be called early in the ACI program to decide 
whether the other two should be called at all.  it essentially indicates whether the remote
container plug-in is loaded via being specified in the system.xml file.

OpenCPI Application Development Guide Page 65 of 82



8.3 Environment Variables for Using Remote Containers

The OCPI_ENABLE_REMOTE_DISCOVERY variable can be set to 1 to enable the 

multicast discovery of servers running ocpiserve.  There are also environment 

variables that specify which remote servers to contact (independent of multicast 
discovery).  All these variables may be applied to either ocpirun or ACI programs, as 

well as unit testing.

The OCPI_SERVER_ADDRESSES environment variable may contain a space-separated 

list of IP addresses of servers to contact, and the OCPI_SERVER_ADDRESSES_FILE 

environment variable may contain a filename containing server IP addresses, one per 
line.  Using these variables enables the use of multiple remote systems' containers for 
any ocpirun, ACI or unit test execution.

The OCPI_SERVER_ADDRESSES_FILE variable can sometimes be used when the 

client and server both have the same file system mounted since the ocpiserve 

command can be told to put its address(es) into a named file (see below).  This is a 
tradeoff between the overhead and complexity of having a common mounted file system
(e.g. when the server has an NFS mount to the client or vice versa), vs. the need to 
know the server's IP address, which could be dynamically determined by DHCP.

If you cannot use server discovery and already have a common NFS mounted directory,
using OCPI_SERVER_ADDRESSES_FILE is a convenient way to avoid knowing or 

typing or copy-pasting IP addresses.  If you cannot use discovery and do not want or 
have a common mounted file system, using OCPI_SERVER_ADDRESSES on the client 

side may be best.  The ocpiserve -v option causes ocpiserve to print out its IP 

addresses.

OpenCPI Application Development Guide Page 66 of 82



8.4 Using ocpiserve to Offer Remote Containers to Clients

The ocpiserve command offers local containers to remote clients.  When it starts, 

ocpiserve discovers all local network interfaces and prepares to be contacted by 

clients for all of them.  When given the -d (--discoverable) option, it also prepares 

to receive multicast queries from clients on all network interfaces.  It is a fully multi-
homed server, using all network interfaces for normal usage (via TCP) and discovery 
(via multicast UDP).

The ocpiserve command does not use the OCPI_LIBRARY_PATH environment 

variable since the client-server protocol automatically downloads (from client to server) 
each artifact needed by any application using these remote containers.  This automatic 
artifact downloading operates as a cache.  When any client requests execution using 
any of ocpiserve's containers, they also indicate which artifacts should be used in 

each container.  If these artifacts have been previously downloaded, they are reused.  If 
not, they are downloaded from client to server.  The ocpiserve command maintains 

this cache in a directory called artifacts (unless overridden by an option — see 

below).  The artifact cache is normally maintained after ocpiserve exists (usually via 

control-C).  An option indicates whether it should be removed when ocpiserve exits.

Table 11:  Options to ocpirun

Name Letter Data
type

Description

verbose v Bool Print status and progress as ocpiserve executes

log-level l UChar Set the logging level during execution

directory D String The name of the directory to use for caching downloaded 
artifacts.  The default is artifacts.

processors n UShort How many local RCC containers to create and serve.  The 
default is one.

remove r Bool Remove artifact cache when ocpiserve exits.

port p UShort The TCP port to be used for server ports.  The default is 
dynamically assigned port numbers.

discoverable d Bool Whether to become discoverable via UDP multicast.

addresses a String File name for a file where ocpiserve will write all its TCP

addresses.  See the description of the 
OCPI_SERVER_ADDRESSES_FILE environment 

variable above.

loopback L Bool Enable/add discovery on the local loopback subnet.

onlyloopback O Bool Allow discovery only on the local loopback subnet.

OpenCPI Application Development Guide Page 67 of 82



Note that some option must be present otherwise ocpiserve will simply print a help 
message.  A typical execution is:  ocpiserve -v -d

OpenCPI Application Development Guide Page 68 of 82



8.5 Remote Containers Setup Requirements

In order for remote containers to be fully enabled several setup requirements must be 
met, both on the client side and on the server side.

8.5.1 Client Side Remote Container Setup Requirements

Client systems must be enabled for remote containers.  The first requirement is that the 
remote container OpenCPI plug-in must be loaded, which is specified in the 
system.xml file for the client system.  E.g. the load attribute of the remote container 

plug-in must be set to one:

<opencpi>
  <container>
   <rcc load='1'/>
   <remote load='1'/>
   ...
  </container>
  ...
</opencpi>

The second requirement, to enable clients to automatically discover servers via 
multicast UDP, is to provide a proper multicast route to the local network interface on 
the client system.  This is normally accomplished by a command such as:

route -n add -net 224.0.0.0 netmask 240.0.0.0 dev enp2s0 

This assumes the normal default network interface for the client is enp2s0.

8.5.2 Server Side Remote Container Setup Requirements

On the server side, the ocpiserve executable must be present and there should be 

enough disk space to hold the artifact cache.

To allow the server to be discovered via multicast, its local firewall must allow inbound 
UDP multicast packets from the local network or at least selected clients.  To open the 
firewall to local network traffic the following command can be used (on CentOS linux):

firewall-cmd --zone=trusted --add-interface=eth0

Of course more fine-grained permissions may be appropriate.

OpenCPI Application Development Guide Page 69 of 82



9 Preparing HDL Assemblies for Use by Applications

Developing HDL component implementations (workers) for FPGAs is out of scope for 
this application development guide.  That process is fully described in the OpenCPI 
HDL Development Guide.  Utilizing FPGAs in OpenCPI requires that component 
libraries, with built/compiled HDL/FPGA workers, be supplied for applications to use 
FPGAs.

HDL assemblies are the way compiled HDL workers (in built component libraries) are 
transformed into the artifacts necessary to execute applications that use workers 
executing on FPGAs.  The steps to using FPGAs with OpenCPI are:

1. HDL workers are written in an HDL (hardware description language), typically
VHDL.

2. HDL workers are built/compiled for a specific type of FPGA (e.g. Xilinx Zynq 
or Altera Stratix4)

3. HDL assemblies are defined in simple XML files as a set of connected HDL 
workers that can act as a proper subset of an application.

4. HDL assemblies are converted into ready-to-execute artifacts by a build 
process that incorporates the built/compiled HDL workers into a bitstream file
targeting a particular FPGA platform.

Steps 1 and 2 are performed by HDL component developers who create libraries of 
HDL workers compiled for a variety of targeted FPGA devices.

Steps 3 and 4 do not require VHDL coding or specific knowledge of or interaction with 
FPGA tools, but the FPGA development tools (as well as the CDK) are required to be 
installed.

Step 4 is more complex when the application is accessing I/O devices directly attached 
to the FPGA, but still requires no VHDL coding nor vendor tools knowledge.

Thus HDL assemblies are in a middle ground between HDL worker development and 
application execution.  Once artifacts are produced from HDL assemblies, neither the 
CDK nor the FPGA build tools are required.  A set of artifacts based on HDL assemblies 
and built for some HDL platforms, acts as a runtime library for using FPGAs to support 
executing applications.

Except under unusual conditions (e.g. when the HDL assembly does not fit into the 
targeted FPGA device), building FPGA artifacts using HDL assemblies can be 
considered part of application development, and not component development.

Creating HDL assemblies in projects is described in the HDL Assemblies in Projects 
section below.  Building HDL assemblies outside of projects is not explicitly supported.

The section HDL Assemblies for Creating Bitstreams, in the OpenCPI HDL 
Development Guide, describe steps 3 and 4 in detail.

OpenCPI Application Development Guide Page 70 of 82



10 Developing Applications in OpenCPI Projects

Applications are typically XML files (OASs) that rely on the existence of existing artifacts
found via OCPI_LIBRARY_PATH.  They may also be C++ or Python main programs 
using the ACI.

Applications may also be created as part of an OpenCPI project containing other 
OpenCPI assets such as components, workers, primitive libraries, etc.

In OpenCPI a project represents a work area in which a variety of assets are created 
and developed.  Projects can contain all types of OpenCPI assets that are described in 
this document or in others.  A project can contain:

 Component libraries with specs and workers (described in the Component 
Development Guide)

 Applications whether simple XML or using the ACI (described here).

 HDL primitives and assemblies (described in the HDL Development Guide)

 HDL devices, cards, slots (described in the HDL Development Guide)

 Platform support assets (described in the Platform Development Guide)

A project uses a standardized directory structure that holds the various OpenCPI assets
in source code form, along with other files that describe how they are built.  The project 
structure provides a means to co-develop a collection of assets which may have a 
logical relationship or be created for a specific overall application.  Projects may depend
on other projects when assets from other projects are needed.

All the assets in a project have a package ID, which all normally share a project-level 
package prefix.

When an OpenCPI application is developed in a project, an IDE or the ocpidev 

command line tool is used to manage the project and the assets inside it.  Even if the 
project contains only applications, there are advantages to putting applications into 
OpenCPI projects, especially during development and especially for ACI-based 
applications.  The ocpidev tool is described next.  Discussing any IDE for this purpose 

is out of scope for this document.

Projects are for development.  When an OpenCPI application is deployed on a runtime-
only non-development system, projects are not used.  Deploying applications and the 
various files they depend on (e.g. OAS files, ACI executables, artifacts, ocpirun), is 

described in the Deploying Applications in a Runtime Environment section below.

OpenCPI Application Development Guide Page 71 of 82



10.1 The ocpidev Tool as Used for OpenCPI Applications in Projects

The ocpidev command is fully described and documented in the CDG, but for pure 

application users (that are not developing other asset types), the small necessary 
subset of this tool's functionality is described here.  Projects are created with the 
command:

% ocpidev [options] create project <name>

This creates a project in a directory <name>, which must be a name without slashes.  

The project directory is created under the current working directory where ocpidev is 

executed.  The -d <directory> option can be used to create the project's directory 

under a different directory.  The options available during project creation are:

Table 12:  Options for ocpidev when Creating Projects

Option Value
?

Default Description

-v no Be verbose, describing what is happening in more detail.

--help no Show message explaining how ocpidev can be used.

-d yes . Specify the directory in which this command should be performed, 
analogous to the -C option in the POSIX make command.

-D yes Specify a project (using its package-ID) that this project depends on.

-K yes local Specify the package ID when creating a project.

The -D option is useful to specify other projects that the assets in this project depend 

on, such as projects that may contain component libraries.  The -K option is only 

needed when the project will be globally published and requires a globally unique name.

Projects are deleted using the command:

% ocpidev [options] delete project <name>

When using projects only for applications, only two types of assets are created in the 
project:  applications and HDL assemblies.

OpenCPI Application Development Guide Page 72 of 82



10.2 Applications in Projects

Applications in projects live in the applications/ subdirectory of the project and are 

either XML applications, based on an OAS file, or ACI-based C++ programs.  XML 
applications can simply be OAS files in the applications/ subdirectory, or be in a 

directory of their own, also under applications/.  ACI-based applications are always 

in their own directory.  Applications are created in projects by executing this command in
a project's directory or in its applications/ subdirectory:

% ocpidev [options] create application <name>

Table 13:  Options for ocpidev when Creating Applications

Option Value? Default Description

-v no Be verbose, describing what is happening in more detail.

-X no The application will be a simple XML OAS file in the 
applications/ directory of the project, named <name>.xml.

-x no The application will be an XML application file in its own directory, in
applications/<name>/<name>.xml.

The -X or -x options specify an XML application, the latter in its own directory.  In these

cases an empty OAS file is created with the indicated name and can then be edited as 
necessary to create the application.

Without the -X or -x options, an ACI C++ application is created in its own directory 

under the applications/ directory with the indicated name in a file named 

<name>.cc, containing the main program.

When an application is created in its own directory (either XML or ACI C++) a default 
Makefile is created in that directory.  Placing an application in its own directory allows 

customizations in the associated Makefile for options, and the inclusions of test or 

data files or even other make targets.

The Makefile in the top level applications/ directory will build (for ACI-based C++ 

applications), and execute all applications.  If only a subset of the applications should be
built or executed, or if they must be built or executed in a particular order, the 
Applications variable may be set in this applications/Makefile to contain a list of 

the applications to be used (built or run) and the order in which they are built and/or 
used, e.g.:

Applications=myapp1 myapp3 # do not use myapp2 for now

Even when an application is excluded from the Applications variable, it is still 

possible to manually enter its directory and build or run there.  To delete applications,  
the following command is used.  The same options allowed for creating an application 
are valid for deleting one.

% ocpidev [options] delete application <name>

OpenCPI Application Development Guide Page 73 of 82



The default make goal for the applications directory is to build all ACI applications.  The 

run goal is used to execute all applications, either pure XML or ACI.

10.2.1 Building Applications in Projects

ACI-based applications are built in their own directories using the ocpidev command.  

From a project's top level directory or the applications subdirectory, a specific 

application can be built using the command:

% ocpidev [options] build application <name>

To build all applications in a project, you can issue the following command either in the 
project's directory or in its applications subdirectory:

% ocpidev build applications

From the application's directory itself, you can simply use:

% ocpidev build

With no target platform specified, the executable is built to run on the development 
system itself.  To build for other software platforms, you can use the --rcc-platform 

option (multiple times if desired).

E.g., for the ZedBoard embedded platform, the software platform name for the 
embedded linux is something like xilinx13_3.  Thus to build an ACI program for that 

system would be:

% ocpidev --rcc-platform xilinx13_3 build

To build the application for a software (RCC) platform associated with a particular HDL 
platform, you can use the option --hdl-rcc-platform, which essentially adds the 

RCC platform associated with the specified HDL platform to the platforms to build.  Not 
all HDL platforms have a specific associated RCC platforms, but SoC platforms like 
Zynq usually do, since there is an FPGA side and a GPP CPU side to one chip.

All executables are created in subdirectories named target-<platform>, so executables 
for multiple different platforms can coexist.

10.2.2 Application Makefiles

The Makefile in an ACI application's directory in a project is normally used as it is 

initially created by ocpidev.  Several make variables can be set in this file to customize

the application's build or execution behavior.

The OcpiApp variable can be set to indicate the file name of the application's main C++

file.  Normally this defaults to the name of the application's directory which is the name 
of the application given to ocpidev when it was created.  The OcpiApps variable can 

be specified to build more than one executable in this application's directory.  OcpiApps

provides file names (without suffix) of other files that should be built as separate 
executables.

The OcpiAppNoRun variable, when not empty, prevents the Makefile from allowing 

the application to execute using the run goal (or ocpidev run verb), whether invoked 

OpenCPI Application Development Guide Page 74 of 82



in the project directory, the applications/ directory, or the application's own 

directory.  This is appropriate when the application should not run this way, i.e. when all 
applications are run using make run or ocpidev run in upper level directories 

(project-level or applications).  This variable has no effect on building.

The OcpiPrereqLibs variable contains a list of installed prerequisite library names 

that are required to build the executable(s) from the source files here.  An example 
might be liquid, a DSP function library that is installed with OpenCPI.

The SourceFiles variable can identify other source files to be compiled and linked 

with the applications built in this directory.  These file names include suffixes, which may
be .c, .cc, .cxx, .cpp.

10.2.3 Executing Applications in Projects

Simple OAS XML applications may be run directly using the ocpirun command.  All 

applications in a project may be run in sequence using the command:

% ocpidev run applications

from a project directory or its applications/ subdirectory.  In the applications/ 

directory, only this command is necessary to run all applications:

% ocpidev run

These will run all applications, one after the other, with no arguments specified.   To run 
a particular ACI application, you can either run ocpidev run in the application's 

directory, or, from the project or applications/ directory, you can use:

% ocpidev run application <appname>

To run a specific XML application, ocpidev cannot be used (yet), but you can use:

% make run Applications=<foo.xml>

Running all the applications in a project with default arguments is normally used for test 
purposes.

To provide arguments to applications, these Makefile variables may be set, either in 

Makefiles or on the make command line.

OpenCPI Application Development Guide Page 75 of 82



Table 14:  Make Variables for Running Applications

Makefile Variable Description

OcpiRunBefore Arguments to insert before the ACI executable or ocpirun, such 

as environment settings or prefix commands like time or 

valgrind.

OcpiRunArgs Arguments to insert immediately after the ACI executable or 
ocpirun, such as ocpirun options like -v or -m -or -p

OcpiRunAfter Arguments to insert at the end of the execution command line.

OcpiRunBefore_<app> Like OcpiRunBefore, but only for the <app> application.

OcpiRunArgs_<app> Like OcpiRunBefore, but only for the <app> application.

OcpiRunAfter_<app> Like OcpiRunBefore, but only for the <app> application.

For applications other than simple OAS XML applications without their own directory, 
the application's own Makefile may be customized using these variables.

For XML applications, these variables are applied using the following pattern:

<OcpiRunBefore> ocpirun <OcpiRunArgs> <xml-OAS-file> <OcpiRunAfter>

For ACI C++ applications, the pattern is:

<OcpiRunBefore> <executable> <OcpiRunArgs> <OcpiRunAfter>

OpenCPI Application Development Guide Page 76 of 82



10.3 HDL Assemblies in Projects

HDL assemblies may also be created in projects, using the command:

% ocpidev create hdl assembly <name>

Within a project, HDL assemblies are created in the hdl/assemblies/ directory in the

project.  Similar to applications, that directory has a standard Makefile, and it can 

contain a setting of the Assemblies variable when the default behavior, of all 

assemblies being built in alphabetical order, is not desired.

Each assembly is created as an XML file in its own directory.  Thus creating the HDL 
assembly whose name is myassy, would create the myassy.xml file in the 

hdl/assemblies/myassy directory.  After editing this file to describe the required 

worker instances and connections, artifacts based on this assembly can be created 
using the ocpidev build command in that assembly's directory, or, for building all the

assemblies in the project, the ocpidev build hdl assemblies command may be 

issued from the project or  hdl/assemblies directory.

The resulting FPGA artifact files, with the suffix .bitz, are created in target-specific 

directories with the prefix container-, created under the assembly's directory.

Details about this artifact building process are in the OpenCPI HDL Development 
Guide.

HDL assemblies may be deleted using this command:

% ocpidev delete hdl assembly <name>

Once the HDL assemblies are built, resulting in the .bitz artifact files, applications can

use them as long as they are accessible using the OCPI_LIBRARY_PATH environment 

variable.

OpenCPI Application Development Guide Page 77 of 82



11 Deploying Applications in a Runtime Environment

OpenCPI applications require a small set of required dependencies during execution, 
which is considerably smaller than the requirements for OpenCPI development, which 
requires the installation of the OpenCPI Component Development Kit (CDK).  While the 
installation requirements and procedures are described in full in the OpenCPI 
Installation Guide, the essential requirements required to support application execution
are described here.

The basic requirements are to have the executable (ocpirun or a custom ACI C++ 

program), as well as the artifacts for the workers used during execution.  The 
executable can use whatever artifacts are available, as built for the available processing
resources on the system.  By limiting the artifacts available (accessed via the 
OCPI_LIBRARY_PATH environment variable setting), the system requirements are 

reduced to the minimum.

Beyond these two important elements (executables and artifacts), there are several 
dynamically loaded and used drivers, depending on which hardware resources are 
enabled for OpenCPI to use during execution.  There is a Linux kernel module that is 
loaded using the ocpidriver command line tool.  There are user-mode plug-ins that 

are loaded according to a system configuration file, at /opt/opencpi/system.xml, 

or a location indicated by the OCPI_SYSTEM_CONFIG environment variable.

All of these drivers and plug-ins are optional, and used based on the hardware needed 
by OpenCPI application execution.  The following table lists them and their use cases:

Table 15:  Loadable Drivers for OpenCPI Execution

Driver Required for:

Kernel Module Access to DMA devices on the system bus.  E.g. FPGA PCIe cards in 
slots on the system's motherboard, or Zynq systems using the FPGA 
subsystem.  Loading this driver requires root/sudo privileges.
Loaded using the ocpidriver command.

RCC Container Plug-in Execution of RCC/Software workers.  Indicated in system.xml

HDL Container Plug-in Execution of HDL/FPGA workers (in hardware or in simulators).
Indicated in system.xml

DMA Transport Plug-in Data plane transport between software containers and DMA devices, 
e.g. FPGA containers.  Requires the kernel module to be loaded prior 
to execution.  Indicated in system.xml.

PIO Transport Plug-in Data plane transport for software containers using shared memory.  
Indicated in system.xml

Socket Transport Plug-
in

Data plane transport for containers using network sockets.  Indicated 
in system.xml.  Required by HDL simulators and remote 

containers.

OpenCPI Application Development Guide Page 78 of 82



In addition to the executables, artifacts, and optionally loaded drivers and plug-ins, there
are a small number of utility scripts (such as ocpidriver), support files (such as 

system.xml), and utility commands (which includes ocpirun) that are typically 

included in a runtime-installation.  Installation packages are generally prepared for a 
particular runtime environment.

For some hardware and software configurations, third party software is required for 
execution.  One example is that for execution on FPGA boards that require dynamic 
JTAG loading of FPGA configuration files (a.k.a. bitstreams), there are drivers and 
utilities required from the FPGA vendors (Xilinx or Altera) that must be installed.

Execution Options Summary — Alphabetical

Table 16:  Options for ocpirun, OAS XML, and ACI PValue

ocpirun

Option
Name

ocpirun

Option
Letter

OAS
XML

Attribute

ACI
PValue
Name

Type Description

buffer-count B buffer
Count

String Set the number of buffers for an instance 
port or an external port.

buffer-size Z buffer
Size

String Set the size of both ports of a connect for
instance port or an external port.

component Bool Use the first command argument after 
options as the component for a single-
component OAS.

container c container String Specify the container for an instance.

deploy-out String Specify the filename to write deployment 
decisions into, which can be used later 
using the deployment option.

deployment String Specify a deployment file, containing 
hardwired deployment decisions.

device D device String Reserved for future use.

dump d dump Bool Dump property values to stderr, before 
starting the application, and after it is 
done

dump-file dumpFile String Dump property values after the 
application is done, in a machine 
parseable format.

dump-
platforms

M dump
Platforms

Bool Dump property values for non-application
workers before and after execution.

duration t ULong Run the application for a time duration in 
seconds if it doesn't finish earlier.

file f file String Connect an external port of the 

OpenCPI Application Development Guide Page 79 of 82



application to a file.

hex x hex Bool When dumping property values, use 
hexadecimal when possible.

library-path String Set the OCPI_LIBRARY_PATH.

list C Bool List available containers

list-
artifacts

Bool List available artifacts for the target 
values provided using --target

list-specs Bool List available specs for the target values 
provided using --target.

log-level l ULong Set the logging level.

no-execute Bool Figure out how to execute the 
application, but then don't actually 
execute.  Usually used with --deploy-
out

model m model String Specify the model for an instance

only-
platforms

Bool When listing containers, actually only list 
platforms.

platform P platform String Specify the platform for an instance

processors n ULong Specify the number of RCC containers to 
create.

property p property

(element)

property String Instance-specific or application-level 
property value.

remote R Bool Discover remote containers using 
Multicast UDP.

scale N scale Scale Set the scale factor for an instance

selection s selection selection String Set the selection expression  for an 
instance

server S String Contact this server for remote containers

sim-dir String Set the directory for simulation output

sim-ticks ULong Set the number of clock cycles for 
simulations.

target r String Set a target to use with list-

artifacts or list-specs

timeout O ULong Set a timeout after which the application 
will be stopped and considered failed.

transfer- transfer String Reserved

OpenCPI Application Development Guide Page 80 of 82



role Role

transport T transport transport String Set the transport for a connection

uncached U uncached Bool Dump properties without caching.

url u url String Reserved

verbose v verbose Bool Be verbose with messages

worker w worker worker String Specify the worker for an instance.

OpenCPI Application Development Guide Page 81 of 82



12 Glossary

Authoring Model – A particular way to write the source code and XML for a worker, 
usually associated with a class of processors, and a set of related languages.

Component Application – A component application is a composition or assembly of 
components that as a whole perform some useful function.

Configuration Properties – Named value locations of a worker that may be read or 
written. Their values indicate or control aspects of the worker’s operation. Reading and 
writing these property values may or may not have side effects on the operation of the 
worker. Each worker (component implementation) may have its own, possibly unique, 
set of configuration properties.

Control-Application – A control-application is the conventional application that 
constructs and runs component applications.

Control Operations – A fixed set of control operations that every worker has. The 
control aspect is a common control model that allows all workers to be managed without
having to customize the management infrastructure software for each piece of IP, while 
the aforementioned configuration properties are used to specialize components. The 
most commonly used are “start” and “stop”.

Worker – A concrete implementation (and possibly runtime instance) of a component, 
written according to an authoring model.

OpenCPI Application Development Guide Page 82 of 82


	1 References
	2 Overview
	3 OpenCPI Application Specification (OAS) XML Documents
	3.1 Quick XML Introduction
	3.2 Top Level Element in an OAS: application
	3.2.1 Name attribute (optional)
	3.2.2 Done attribute (optional)
	3.2.3 Package attribute (optional)
	3.2.4 MaxProcessors attribute (optional)

	3.3 Instance Elements within the Application Element
	3.3.1 Component attribute (required)
	3.3.2 Name attribute (optional)
	3.3.3 Connect attribute (optional)
	3.3.4 Selection attribute (optional)
	3.3.5 From attribute (optional)
	3.3.6 To attribute (optional)
	3.3.7 External attribute (optional)
	3.3.8 Externals attribute (optional)
	3.3.9 Worker attribute (optional)
	3.3.10 Slave attribute (optional)
	3.3.11 Buffersize attribute (optional)
	3.3.12 Property Elements within the Instance Element (optional)
	3.3.12.1 Name attribute (required)
	3.3.12.2 Value attribute (one of value or valueFile is required)
	3.3.12.3 ValueFile attribute (one of value or valueFile is required)
	3.3.12.4 DumpFile attribute (optional)
	3.3.12.5 Delay attribute (optional)

	3.3.13 Slave Elements within the Instance Element (optional)

	3.4 Property Elements within the Application Element (optional)
	3.4.1 Name attribute (required)
	3.4.2 Instance attribute (required)
	3.4.3 Property attribute (optional)

	3.5 Connection Elements within the Application Element (optional)
	3.5.1 Name attribute (optional)
	3.5.2 Transport attribute (optional)
	3.5.3 Buffersize attribute (optional)
	3.5.4 Port Elements within the Connection Element (optional)
	3.5.4.1 Instance attribute (required)
	3.5.4.2 Name attribute (required)



	4 The ocpirun Utility Program for Executing XML-based Applications
	4.1 General Options for ocpirun
	4.2 Function Options for ocpirun
	4.3 Instance Options for ocpirun
	4.3.1 Setting Properties in the Application
	4.3.2 Instance options that apply to the ports of instances

	4.4 Simulation Options for ocpirun

	5 Property Value Syntax and Ranges
	5.1 Values of Unsigned Integer Types: uchar, ushort, ulong, ulonglong
	5.2 Values of Signed Integer Types: short, long, longlong
	5.3 Values of the Type: char
	5.4 Values of the Types: float and double
	5.5 Values of the Type: bool
	5.6 Values of the Type: string
	5.7 Values in a Sequence Type
	5.8 Values in an Array Type
	5.9 Values in Multidimensional Types
	5.10 Values in Struct Types
	5.11 Expressions in Property Values
	5.11.1 Numeric Values
	5.11.2 String Values


	6 Utility Components for Applications
	6.1 File_Read Component that Reads Data or Messages from a File
	6.1.1 Data Streaming Mode
	6.1.2 Messaging Mode
	6.1.3 End of File Handling
	6.1.4 Properties

	6.2 File_Write Component that Writes Data or Messages to a File
	6.2.1 Data Streaming Mode
	6.2.2 Messaging Mode
	6.2.3 End of File Handling
	6.2.4 Properties


	7 API for Executing XML-based Applications in C++/Python: ACI
	7.1 Class OA::Application
	7.1.1 OA:: Application::Application constructors
	7.1.2 OA:: Application::initialize Method
	7.1.3 OA:: Application::start Method
	7.1.4 OA::Application::stop Method
	7.1.5 OA:: Application::wait Method
	7.1.6 OA:: Application::finish Method
	7.1.7 OA::Application::getProperty Method — by Property Name
	7.1.7.1 OA::AccessList Arguments for Accessing within Complex Types
	7.1.7.2 OA::PropertyOptionList Arguments when Getting Property Values
	7.1.7.3 OA::PropertyAttributes Argument for Getting Property Attributes

	7.1.8 OA::Application::getProperty Method — by Property Ordinal
	7.1.9 OA::Application::setProperty Method
	7.1.10 OA::Application::getPropertyValue Method
	7.1.11 OA::Application::setPropertyValue Method
	7.1.12 OA::Application::getPort Method

	7.2 Class OA::ExternalPort
	7.2.1 OA::ExternalPort::getBuffer Method
	7.2.2 OA::ExternalPort::endOfData Method

	7.3 Class OA::ExternalBuffer
	7.3.1 OA::ExternalBuffer::release Method
	7.3.2 OCPI::ExternalBuffer::put Method

	7.4 Class OA::Property
	7.4.1 OA::Property::Property Constructor Method
	7.4.2 OA::Property::set{Type}Value Methods
	7.4.3 OA::Property::get{Type}Value Methods
	7.4.4 OA::Property::set{Type}SequenceValue Methods
	7.4.5 OA::Property::get{Type}SequenceValue Methods

	7.5 Class OA::PValue: Named and Typed Parameters
	7.6 Building ACI Programs
	7.7 Using the ACI with Python

	8 Using Remote Containers: Network-Connected Processors
	8.1 Using ocpirun with Remote Containers
	8.2 ACI Functions for Using Remote Containers
	8.3 Environment Variables for Using Remote Containers
	8.4 Using ocpiserve to Offer Remote Containers to Clients
	8.5 Remote Containers Setup Requirements
	8.5.1 Client Side Remote Container Setup Requirements
	8.5.2 Server Side Remote Container Setup Requirements


	9 Preparing HDL Assemblies for Use by Applications
	10 Developing Applications in OpenCPI Projects
	10.1 The ocpidev Tool as Used for OpenCPI Applications in Projects
	10.2 Applications in Projects
	10.2.1 Building Applications in Projects
	10.2.2 Application Makefiles
	10.2.3 Executing Applications in Projects

	10.3 HDL Assemblies in Projects

	11 Deploying Applications in a Runtime Environment
	12 Glossary

