
Generic RF Interface Guide ANGRYVIPER Team

Generic RF Interface Guide

Version 1.5

WARNING: The “rx spec” and “tx spec” component specs covered by this document are
not recommended for new designs.

See “dig radio ctrlr-spec.xml” component spec and corresponding document:
http://opencpi.github.io/releases/1.5.0/Dig_Radio_Ctrlr.pdf

1

http://opencpi.github.io/releases/1.5.0/Dig_Radio_Ctrlr.pdf

Generic RF Interface Guide ANGRYVIPER Team

Revision History

Revision Description of Change Date

v1.1 Initial Release 3/2017
v1.2 Updated for Release 1.2 8/2017
v1.5 Not recommended for new designs warning added 4/2019

2

Generic RF Interface Guide ANGRYVIPER Team

Table of Contents

1 References 4

2 Overview 5

3 Control Interface 6

4 Creating an Application using RF Interfaces 9

4.1 Application XML Example . 9
4.2 Application Control Interface Example . 10

5 Implementation of a RF Interface Worker 11

3

Generic RF Interface Guide ANGRYVIPER Team

1 References

This document assumes a basic understanding of the Linux command line (or “shell”) environment. It requires
a working knowledge of OpenCPI and the OCPI ACI. The reference(s) in Table 2 can be used as an overview of
OpenCPI and may prove useful.

Table 2: References

Title Link

OpenCPI Overview Overview.pdf

Acronyms and Definitions Acronyms and Definitions.pdf

Getting Started Getting Started.pdf

Installation Guide RPM Installation Guide.pdf

4

http://opencpi.github.io/releases/1.5.0/Overview.pdf
http://opencpi.github.io/releases/1.5.0/Acronyms_and_Definitions.pdf
http://opencpi.github.io/releases/1.5.0/Getting_Started.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf

Generic RF Interface Guide ANGRYVIPER Team

2 Overview

In OpenCPI, it is the intention that an application developer won’t need to care or know about the Radio Interface(RF)
interfaces. Without the ability for generic RF interfaces, applications can not be seamlessly moved from one OpenCPI-
supported platform to another OpenCPI-supported platform. This document describes the generic RF interface
components that have been developed as part of the OpenCPI release.

These interface components are not intended to cover all features of all receivers and transmitters. They are in-
tended to have the minimum amount of functionality that all receivers and transmitters will have. Any extra
functionality on a receiver or transmitter can be added at the worker implementation level.

Each of the RF interfaces will be setting the properties of several other workers referred to as slaves. In some
cases these slaves will also have their own slaves as well. Any application that uses one of the RF Interfaces needs
to also include all of the required slaves and slaves of any of the slaves’ slaves. A block diagram of this relationship
is as follows:

5

Generic RF Interface Guide ANGRYVIPER Team

3 Control Interface

Each setting has a max, min, and step value associated with it. Where the max is the highest possible value, min is
the lowest possible value, and step is the minimum granularity for changes of the associated setting. These associated
properties are available to be used by application developers for reading back information about the functionality
of the interface during runtime. Both receive and transmit use different spec files but have the same property sets.
The component specification file locations are as follows:

Receive core/specs/rx spec.xml
Transmit core/specs/tx spec.xml

The properties that are described in these spec files can be observed in the following table. For more details on these
properties check the matchstiq rx or matchstiq tx data sheets.

Name Usage
rf_gain_dB The runtime-configurable value in dB of the RF gain stage of the front-end

receiver.
rf_gain_max_dB Maximum valid value for RF gain setting in dB. This value represents the

datasheet-specified hardware limitations of the front-end’s receiver, and there-
fore is buildtime-configurable only (i.e. it is a parameter). This property is
intended to prevent the worker from re-configuring at runtime the RF ampli-
fiers to have an invalid gain value.

rf_gain_min_dB Minimum valid value for RF gain setting in dB. This value represents the
datasheet-specified hardware limitations of the front-end’s receiver, and there-
fore is buildtime-configurable only (i.e. it is a parameter). This property is
intended to prevent the worker from re-configuring at runtime the RF ampli-
fiers to have an invalid gain value.

rf_gain_step_dB Minimum granularity for the RF gain setting in dB. This value represents
the datasheet-specified hardware limitations of the front-end’s receiver, and
therefore is buildtime-configurable only (i.e. it is a parameter). This property
serves two purposes: 1) to provide the end user with the knowledge of how the
value applied to rf gain dB will be rounded, and 2) if necessary, to provide the
worker implementation that is performing the rounding with the information
necessary to do so.

bb_gain_dB The runtime-configurable value in dB of the baseband gain stage of the front-
end receiver.

bb_gain_max_dB Maximum valid value for baseband gain setting in dB. This value represents
the datasheet-specified hardware limitations of the front-end’s receiver, and
therefore is buildtime-configurable only (i.e. it is a parameter). This property
is intended to prevent the worker from re-configuring at runtime the baseband
amplifiers to have an invalid gain value.

bb_gain_min_dB Minimum valid value for baseband gain setting in dB. This value represents
the datasheet-specified hardware limitations of the front-end’s receiver, and
therefore is buildtime-configurable only (i.e. it is a parameter). This property
is intended to prevent the worker from re-configuring at runtime the baseband
amplifiers to have an invalid gain value.

bb_gain_step_dB Minimum granularity for the baseband gain setting in dB. This value represents
the datasheet-specified hardware limitations of the front-end’s receiver, and
therefore is buildtime-configurable only (i.e. it is a parameter). This property
serves two purposes: 1) to provide the end user with the knowledge of how the
value applied to bb gain dB will be rounded, and 2) if necessary, to provide the
worker implementation that is performing the rounding with the information
necessary to do so.

frequency_MHz The runtime-configurable value in MHz for the tuned center frequency of the
front-end receiver.

6

Generic RF Interface Guide ANGRYVIPER Team

frequency_max_MHz Maximum valid value for frequency setting in MHz. This value represents
the datasheet-specified hardware limitations of the front-end’s receiver, and
therefore is buildtime-configurable only (i.e. it is a parameter). This property
is intended to prevent the worker from re-configuring at runtime the front-end
LO to have an invalid frequency value.

frequency_min_MHz Minimum valid value for frequency setting in MHz. This value represents
the datasheet-specified hardware limitations of the front-end’s receiver, and
therefore is buildtime-configurable only (i.e. it is a parameter). This property
is intended to prevent the worker from re-configuring at runtime the front-end
LO to have an invalid frequency value.

frequency_step_MHz Minimum granularity for the frequency setting in MHz. This value represents
the datasheet-specified hardware limitations of the front-end’s receiver, and
therefore is buildtime-configurable only (i.e. it is a parameter). This property
serves two purposes: 1) to provide the end user with the knowledge of how
the value applied to frequency MHz will be rounded, and 2) if necessary, to
provide the worker implementation that is performing the rounding with the
information necessary to do so.

sample_rate_MHz The runtime-configurable sample rate of the front-end’s ADC in MHz (MSps).
sample_rate_max_MHz Maximum valid value for front-end ADC’s sample rate setting in MHz (MSps).

This value represents the datasheet-specified hardware limitations of the front-
end’s ADC, and therefore is buildtime-configurable only (i.e. it is a parameter).
This property is intended to prevent the worker from re-configuring at runtime
the ADC to have an invalid sample rate.

sample_rate_min_MHz Minimum valid value for front-end ADC’s sample rate setting in MHz (MSps).
This value represents the datasheet-specified hardware limitations of the front-
end’s ADC, and therefore is buildtime-configurable only (i.e. it is a parameter).
This property is intended to prevent the worker from re-configuring at runtime
the ADC to have an invalid sample rate.

sample_rate_step_MHz Minimum granularity for the ADC sample rate setting in MHz (MSps). This
value represents the datasheet-specified hardware limitations of the front-end’s
ADC, and therefore is buildtime-configurable only (i.e. it is a parameter). This
property serves two purposes: 1) to provide the end user with the knowledge of
how the value applied to sample rate MHz will be rounded, and 2) to provide
the worker implementation that is performing the rounding with the informa-
tion necessary to do so.

rf_cutoff_frequency_MHz The cutoff frequency in MHz for any filtering that is done in the RF stage of
the front-end receiver.

rf_cutoff_frequency_max_MHz Maximum valid value for RF cutoff frequency setting in MHz. This value rep-
resents the datasheet-specified hardware limitations of the front-end’s receiver,
and therefore is buildtime-configurable only (i.e. it is a parameter). This prop-
erty is intended to prevent the worker from re-configuring at runtime the RF
stage’s filter(s) to have an invalid cutoff frequency.

rf_cutoff_frequency_min_MHz Minimum valid value for RF cutoff frequency setting in MHz. This value rep-
resents the datasheet-specified hardware limitations of the front-end’s receiver,
and therefore is buildtime-configurable only (i.e. it is a parameter). This prop-
erty is intended to prevent the worker from re-configuring at runtime the RF
stage’s filter(s) to have an invalid cutoff frequency.

rf_cutoff_frequency_step_MHz Minimum granularity for the RF cutoff frequency setting in MHz. This value
represents the datasheet-specified hardware limitations of the front-end’s re-
ceiver, and therefore is buildtime-configurable only (i.e. it is a parameter).
This property serves two purposes: 1) to provide the end user with the knowl-
edge of how the value applied to rf cutoff frequency min MHz will be rounded,
and 2) to provide the worker implementation that is performing the rounding
with the information necessary to do so.

7

Generic RF Interface Guide ANGRYVIPER Team

bb_cutoff_frequency_MHz The cutoff frequency for any filtering that is done in the baseband stage of the
front-end receiver.

bb_cutoff_frequency_max_MHz Maximum valid value for baseband cutoff frequency in MHz. This value rep-
resents the datasheet-specified hardware limitations of the front-end’s receiver,
and therefore is buildtime-configurable only (i.e. it is a parameter). This
property is intended to prevent the worker from re-configuring at runtime the
baseband RF stage’s filter(s) to have an invalid cutoff frequency.

bb_cutoff_frequency_min_MHz Minimum valid value for baseband cutoff frequency in MHz. This value repre-
sents the datasheet-specified hardware limitations of the front-end’s receiver,
and therefore is buildtime-configurable only (i.e. it is a parameter). This
property is intended to prevent the worker from re-configuring at runtime the
baseband stage’s filter(s) to have an invalid cutoff frequency.

bb_cutoff_frequency_step_MHz Minimum granularity for the baseband cutoff frequency setting in MHz. This
value represents the datasheet-specified hardware limitations of the front-end’s
receiver, and therefore is buildtime-configurable only (i.e. it is a parameter).
This property serves two purposes: 1) to provide the end user with the knowl-
edge of how the value applied to bb cutoff frequency min MHz will be rounded,
and 2) to provide the worker implementation that is performing the rounding
with the information necessary to do so.

8

Generic RF Interface Guide ANGRYVIPER Team

4 Creating an Application using RF Interfaces

As stated earlier, an application that uses an RF Interface Worker needs to also have any of the slave workers and
slave of slave workers also declared in the application XML. This may cause a different application XML per platform
to declare the different dependencies per platform. This is a limitation of the framework and will likely be fixed
in a future release. An example of how this will work is in both of the ANGRYVIPER Team’s Reference applications:

FSK app assets/applications/FSK
RX app assets/applications/rx app

4.1 Application XML Example

There are two ways that application developers can control the RF interface workers. The first of which is to use
the application XML with the ocpirun utility to set the properties as needed. This is the easier of the two methods
and works as long as the application doesn’t need runtime-dynamic property control or user interaction to set initial
properties.

<Application>

<Instance component=’ocpi.core.devices.rx’>

<Property Name="bb_gain_dB" Value="-5"/>

<Property Name="rf_gain_dB" Value="10"/>

<Property Name="frequency_MHz" Value="2400"/>

<Property Name="sample_rate_MHz" Value="5"/>

<Property Name="bb_cutoff_frequency_MHz" Value="2.5"/>

<Property Name="rf_cutoff_frequency_MHz" Value="2.5"/>

</Instance>

<Instance component=’ocpi.core.devices.tx’>

<Property Name="bb_gain_dB" Value="-5"/>

<Property Name="rf_gain_dB" Value="10"/>

<Property Name="frequency_MHz" Value="2400"/>

<Property Name="sample_rate_MHz" Value="5"/>

<Property Name="bb_cutoff_frequency_MHz" Value="2.5"/>

<Property Name="rf_cutoff_frequency_MHz" Value="2.5"/>

</Instance>

...

The slaves of the RF interfaces and the slaves of the slaves

...

The rest of the application and device workers required for the application

...

<Application>

9

Generic RF Interface Guide ANGRYVIPER Team

4.2 Application Control Interface Example

The second way that an application developers can control the RF interface workers is via a C++ program that uses
the Application Control Interface library which is provided with the OpenCPI framework. This is required when the
application user needs to interact with the application to change properties or if the properties of the workers need
to change during a run of the application.

...

setup application object

...

double freq = 1000;

app.getProperty("rx","frequency_min_MHz", value);

double rx_frequency_min_MHz = atof(value.c_str());

app.getProperty("rx","frequency_max_MHz", value);

double rx_frequency_max_MHz = atof(value.c_str());

if (bb_bw < rx_frequency_min_MHz || freq > rx_frequency_max_MHz)

{

printf("Error: invalid freq. setting to a default value. value: %f min: %f max: %f\n",

freq, rx_frequency_min_MHz, rx_frequency_max_MHz);

app.setProperty("rx","frequency_MHz", "2400");

}

...

start application or make other decisions based on settings passed in

...

10

Generic RF Interface Guide ANGRYVIPER Team

5 Implementation of a RF Interface Worker

BSP Developers will need to add implementations of these RF interfaces when you want to add a new radio or RFIC
card. This section gives a brief walkthrough of how this is done and how it is different then normal RCC worker
development. These RF interfaces are just RCC workers with a few caveats, the interface workers generally have the
ability to set the properties of several other workers and don’t have a run function.

The framework has the ability to have a one to one slave master relationship between workers but there is no
defined way to have multiple slaves. The way workers can access multiple slaves is by using the ACI to access
application properties. a worker has the ability to access the application object that it is a part of. This object is
then used to access any properties within the application, so there is a lot of freedom.

OA::Application &app = getApplication();

app.setProperty("rf_rx_proxy", "lpf_bw_hz", "750000")

In this code snippet the application object is provided using the getApplication call and it is used to set the lpf bw
hz property of a rf rxproxy component to 750000 Hz. If there is not a rf rx proxy component in the application this
call will throw an exception and the application will crash.

The framework also has the ability to call functions in the worker code before or after its properties are written
by the container. This is done in the following way within the worker:

OWD(can’t be in OWS):

<specproperty name=’frequency_MHz’ writesync=’1’ default=’500’/>

C++:

RCCResult frequency_MHz_written()

{

...

do work based on the property change.

...

return RCC_OK;

}

The following workers are good examples of how to create RF Interface workers:

matchstiq rx assets/hdl/platforms/matchstiq/devices/matchstiq rx.rcc/
matchstiq tx assets/hdl/platforms/matchstiq/devices/matchstiq tx.rcc/

11

	References
	Overview
	Control Interface
	Creating an Application using RF Interfaces
	Application XML Example
	Application Control Interface Example

	Implementation of a RF Interface Worker

