
Debugging Tools Guide ANGRYVIPER Team

Debugging Tools Guide

Version 1.5

1

Debugging Tools Guide ANGRYVIPER Team

Revision History

Revision Description of Change Date
v1.0 Initial Release 2/2016
v1.1 Section added for gdb and document renamed from OpenCPI_FPGA_Vendor_Debug_tool_

Integration.pdf

3/2017

v1.2 Updated for OpenCPI Release 1.2 8/2017
v1.3 Updated for OpenCPI Release 1.3 2/2018
v1.4 Updated for OpenCPI Release 1.4 9/2018
v1.5 Updated for OpenCPI Release 1.5 and expanded SignalTap section 4/2019

2

Debugging Tools Guide ANGRYVIPER Team

Table of Contents

1 References 4

2 Debugging RCC Workers 5
2.1 debugging using gdb command line . 5
2.2 gdb debugging using DDD . 5

3 FPGA Integrated Logic Analyzers 6
3.1 Xilinx Vivado . 7

3.1.1 Case 1: Instance a Debug ILA in an HDL Worker using cores from Vivado’s IP Catalog 7
3.1.2 Case 2: Insert Vivado Debug ILA into an HDL Worker . 8

3.2 Xilinx ISE . 11
3.2.1 Case 1: Integrate ChipScope into HDL Worker using cores from ISE’s CORE Generator 11
3.2.2 Case 2: Integrate ChipScope into HDL Assembly using the Inserter tool 12

3.3 Altera SignalTap II . 14
3.3.1 Limitations . 14
3.3.2 Create SignalTap II instance . 14
3.3.3 Integrate SignalTap II instance into HDL Worker . 15
3.3.4 Monitor signals with SignalTap II Logic Analyzer . 16

3

Debugging Tools Guide ANGRYVIPER Team

1 References

This document assumes a basic understanding of the Linux command line (or “shell”) environment. It requires
a working knowledge of OpenCPI, gdb, and FPGA Vendors’ tools necessary for performing on-chips debug and
verification. The reference(s) in Table 1 can be used as an overview of OpenCPI and may prove useful.

Table 1: References

Title Link
OpenCPI Overview Overview.pdf

Acronyms and Definitions Acronyms and Definitions.pdf

Getting Started Getting Started.pdf

Installation Guide RPM Installation Guide.pdf

Xilinx’s ChipScope Pro1 http://www.xilinx.com/support/

documentation/sw_manuals/xilinx14_5/

chipscope_pro_sw_cores_ug029.pdf

1Full title: “ChipScope Pro Software and Cores (UG029)”

4

http://opencpi.github.io/releases/1.5.0/Overview.pdf
http://opencpi.github.io/releases/1.5.0/Acronyms_and_Definitions.pdf
http://opencpi.github.io/releases/1.5.0/Getting_Started.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/chipscope_pro_sw_cores_ug029.pdf

Debugging Tools Guide ANGRYVIPER Team

2 Debugging RCC Workers

RCC workers are built as dynamically loadable shared object files, with the .so suffix. When an application uses
a worker, it will be loaded on demand, even when the executable is statically linked itself. To debug a worker,
it is necessary to first start the debugger on the executable, which is either the ocpirun utility program or an ACI
application. In either case the first step is to run the executable under the debugger, establishing a generic breakpoint
to enter the debugger at a point after workers are loaded, but before they are actually run. Then breakpoints can
be placed in the worker code itself. gdb is now provided as a prerequisite for all embedded platforms. This means
that the procedure that is provided below will work on any RCC platform.

2.1 debugging using gdb command line

The initial breakpoint should be placed on the OCPI::RCC::Worker::Worker member function (an internal
constructor). This breakpoint will be hit for every worker in the application, after it is loaded, but before it ever is
initialized (C) or constructed (C++). Note that although this initial breakpoint is at a constructor, it is not the
actual constructor of the C++ worker, and not even in its inheritance hierarchy.

To determine whether the worker about to be constructed is the worker of interest, simply examine the “name”
argument at this breakpoint This is the instance name for the worker within the application. If the name indicates
a worker of interest you can now establish a breakpoint in the worker, either based on a source line number, or
symbols in the worker. in order to do this do the following:

• gdb ocpirun

• (gdb) b OCPI::RCC::Worker::Worker

• (gdb) run -v -d my application xml

• Run the following command as many times as RCC workers you have in your application minus one e.g. If
your application has 3 RCC workers run ’c’ 2 times.

(gdb) c

• now that all the RCC workers have been loaded into memory we can add a breakpoint in our worker of
interest.

(gdb) b my worker.cc:135 (e.g. for a C++ worker, by line number)

or

(gdb) b my worker.c:run (e.g. for a C worker, in the run method)

(gdb) clear OCPI::RCC::Worker::Worker

(gdb) c

There is now a breakpoint inside the worker of interest and the original breakpoint has been deleted. The worker of
interest can now be debugged from here.

2.2 gdb debugging using DDD

If the user prefers they can use a graphical debugging interface such as DDD. This tool can be installed via yum:

• yum install ddd

To run this tool with an OpenCPI application simply type ddd in a console window and use the gdb console at the
bottom the window to input commands. The user will use the same commands as in the previous section
(debugging using gdb command line) to debug a RCC worker.

5

Debugging Tools Guide ANGRYVIPER Team

3 FPGA Integrated Logic Analyzers

This section describes how to incorporate Xilinx’s Vivado Integrated Logic Analyzer, Xilinx’s ISE ChipScope PRO
and Altera’s SignalTap into an OpenCPI design. Below is a summary of the cases that are covered:

• Xilinx Vivado

- Instance an ILA in any HDL asset using cores from Vivado’s IP Catalog

- Insert an ILA into any HDL asset using the “Set Up Debug” wizard

• Xilinx ISE

- Integrate an ILA into HDL Worker using CORE Generated cores, used by ChipScope

- Insert an ILA into HDL Assembly using the Inserter tool, used by ChipScope

• Altera

- Integrate an Embedded Logic Analyzer into HDL Worker using MegaWizard cores, used by SignalTap II

The developer must have a working knowledge of:

• OpenCPI and how to build HDL Workers and HDL Assemblies for various HDL Targets and HDL Platforms.

• The Xilinx Debug and Verification tools: CORE Generator, ChipScope Pro CORE Inserter and Analyzer.

• The Altera Altera SignalTap II Logic Analyzer

6

Debugging Tools Guide ANGRYVIPER Team

3.1 Xilinx Vivado

3.1.1 Case 1: Instance a Debug ILA in an HDL Worker using cores from Vivado’s IP Catalog

This case requires that the developer create a debug core with Vivado and write it to an EDIF or DCP file. This
can be done in the Vivado GUI:

• Navigate to:
Window→IP Catalog→Debug and Verification→Debug→ 〈Core-of-Choice〉

• Customize the IP

• Generate IP output products in Global mode

• Run Synthesis and Open Synthesized Design

• Once synthesis completes, enter the Tcl Console, and write the checkpoint file to be included by the worker:

> write checkpoint vivado ila.dcp

Note: you can alternatively use an EDIF netlist (write edif) and stub file

* See the Vivado Usage document for more information on using Vivado IP with OpenCPI

Note: ISE debug cores (NGCs) can be used in conjunction with Chipscope for debugging even if Vivado is the tool
that OpenCPI is using to synthesize and implement designs. Reference 3.2.1 for information on including NGC
debug cores.

Integrate the debug core into the worker, generate the required files and proceed with compilation as follows:

1. Integrate the Debug and Verification cores into the worker’s VHDL:

- Declare and instantiate the component for the core (ILA, VIO, etc)

- As needed, add signal declarations and assignments (TRIG(Y downto 0), DATA(Z downto 0), etc)

2. (Only required if using an EDIF instead of DCP): In the worker’s Makefile, set “SourceFiles=” to include
the stub file for the core. 1. Absolute or relative paths are acceptable. An example is provided:

SourceFiles=../vivado_ila/vivado_ila.vhd

3. In the worker’s Makefile, set “Cores=” to include the EDIF or DCP file for the core. Absolute or relative paths are
acceptable. An example is provided:

Cores=../vivado_ila/vivado_ila.dcp

4. Build HDL worker for target

Critical: some probe names may not be helpful unless the flatten hierarchy option is set to “none” during
synthesis of the asset being debugged (in this case the worker). This can be done either in the Vivado GUI or in the
OpenCPI worker’s Makefile (export VivadoExtraOptions synth=-flatten hierarchy none) as explained in Vivado
Usage.pdf.

5. Generate the debug probes file for use in the Logic Analyzer

- Open the generated XPR file located in the worker’s target-* directory

- Rerun synthesis now that we are in “project mode”

Critical: In the project’s synthesis settings, make sure flatten hierarchy is set to “none”

- Open the synthesized design

- In the Tcl Console, generate the *.ltx file containing the debug probe information:

> write debug probes vivado ila.ltx

* Save this file in a persistent location for later use

6. Build HDL assembly for platform

The generated bitstream contains the Debug and Verification cores which will be recognized by the Xilinx Vivado
Logic Analyzer tool. Once the bitstream has been loaded onto the target FPGA, the Analyzer tool can connect and
detect the presence of the Debug and Verification core(s). At that point, the LTX debug probes file can be loaded.

1Note that this step is not necessary if using a DCP file instead of an EDIF netlist because a DCP file includes the EDIF netlist and
the VHDL stub file.

7

Debugging Tools Guide ANGRYVIPER Team

3.1.2 Case 2: Insert Vivado Debug ILA into an HDL Worker

After building your core, worker, platform, config, assembly, or container, you can add a debug core using the
Vivado GUI. The result will be a new netlist containing the debug core. This will replace the netlist generated by
OpenCPI. Note that rebuilding or cleaning the worker (or other AV asset) at any time (with “make”) will remove
any debug functionality added to the Vivado project. The Vivado project files are an artifact of the “make”
process, and will be overwritten each time “make” is run for that asset.

For our example, we use the complex mixer.hdl worker built for “zynq”:

1. Build the worker:

cd ocpiassets/components/dsp_comps/complex_mixer.hdl

make HdlTarget=zynq VivadoExtraOptions_synth="-flatten_hierarchy none"

Note that some probe names may be unhelpful unless the flatten hierarchy option is set to “none” during
synthesis of the asset being debugged (in this case the worker). Reference: Vivado Usage.pdf

2. Open up the worker’s Vivado project:

cd target-zynq

source /opt/Xilinx/Vivado/2017.1/settings64.sh ; vivado complex_mixer_rv.xpr &

Note: because OpenCPI operates in Vivado’s Non-Project Mode, you will need to rerun synthesis in Project
Mode using the GUI. Refer to the Vivado Usage doc for more information. You may want to set the
flatten hierarchy option to none via the GUI as well.

3. In the Flow Navigator’s Synthesis section, select “Set Up Debug”. Choose the debug settings and nets of your
choice. You can drag nets in from the Netlist hierarchy, or the Schematic view:

8

Debugging Tools Guide ANGRYVIPER Team

Figure 1: Xilinx Vivado 2017.1 Set Up Debug

4. Confirm that the debug cores are listed:

9

Debugging Tools Guide ANGRYVIPER Team

Figure 2: Xilinx Vivado 2017.1 Debug Cores Listed

5. Rerun synthesis. Note that you may once again want to set the flatten hierarchy option set to “none” via
the GUI. Observe the debug cores in the worker’s netlist:

Figure 3: Xilinx Vivado 2017.1 Debug Cores Schematic

6. Enter the Tcl Console, and overwrite the netlist created by the ‘make’ system in the “target-zynq” directory:

10

Debugging Tools Guide ANGRYVIPER Team

> write edif -security mode all -force complex mixer.edf

Note: “-force” tells the write edif command to overwrite the file if it already exists.

Note: “-security mode all” ensures that partially encrypted designs will still result in a single EDIF file.

7. In the Tcl Console, generate the *.ltx file containing the debug probe information:

> write debug probes complex mixer.ltx

8. Build an HDL assembly containing this worker

The generated bitstream contains the debug and ILA cores which will be recognized by Xilinx Vivado Integrated
Logic Analyzer tool. Once the bitstream has been loaded onto the target FPGA, the Analyzer tool can connect and
detect the presence of the debug core(s).

Reiterating an Important Note for Case 2: Rebuilding or cleaning the worker (or other AV asset) at any time
(with “make”) will remove any debug functionality added to the Vivado project. The Vivado project files are an
artifact of the “make” process, and will be overwritten each time “make” is run for that asset.

3.2 Xilinx ISE

3.2.1 Case 1: Integrate ChipScope into HDL Worker using cores from ISE’s CORE Generator

This case assumes that the developer has created a Xilinx CORE Generator project and configured the Debug and
Verification cores as desired. Specifically, these instructions have been verified for the ICON, ILA and VIO cores.
Of the many output files generated by CORE Generator for each core, only two (*.vhd, *.ngc) are necessary to be
retained for building the HDL worker and subsequently, the HDL assembly.

1. Integrate the Debug and Verification cores into the worker’s VHDL:

- Declare and instantiate the component for each core (ICON, ILA, VIO, etc)

- As needed, add signal declarations and assignments (CONTROL(35 downto 0), TRIG(Y downto 0),
DATA(Z downto 0), etc)

2. Edit the worker’s Makefile to include the path and file name of the instantiated cores (ICON, ILA, VIO, etc)
*.vhd files. Use the framework’s Makefile variable “SourceFiles=” to include the path and name of the VHDL
file of each core. Absolute or relative paths are acceptable. An example is provided:

SourceFiles=../../chipscope/icon1.vhd ../../chipscope/ila_trig32_data128_16384.vhd

3. Edit the HDL Assembly’s Makefile to include the path and file name of the instantiated cores (ICON, ILA, etc) *.ngc
files. Use the framework’s Makefile variable “Cores=” to include the path and name of the NGC file of each core.
Absolute or relative paths are acceptable. An example is provided:

Cores=../../../../components/dsp_comps/cic_dec.hdl/chipscope/icon1.ngc

../../../../components/dsp_comps/cic_dec.hdl/chipscope/ila_trig32_data128_16384.ngc

4. Build HDL worker for target.

5. Build HDL assembly for platform.

The generated bitstream contains the Debug and Verification cores which will be recognized by the Xilinx
ChipScope Pro Analyzer tool. Once the bitstream has been loaded onto the target FPGA, the Analyzer tool can
connect and detect the presence of the Debug and Verification core(s).

11

Debugging Tools Guide ANGRYVIPER Team

3.2.2 Case 2: Integrate ChipScope into HDL Assembly using the Inserter tool

1. If the HDL assembly has already been built, proceed to step 2. Otherwise start the the HDL assembly build
process. Once the build process has completed the ngdbuild step, the build process can be canceled.

2. Launch the Xilinx ChipScope Pro Inserter tool and create a new project.

Note: The versions of the Inserter and Analyzer tools must match.

3. Select the Input Design Netlist by browsing to the HDL assembly’s container’s target directory and selecting
the -b.ngc file: A example is provide:

/data/ocpi_baseassets/ocpiassets/applications/FSK/assemblies/fsk_filerw/

container-fsk_filerw_matchstiq_base/target-zynq/fsk_filerw_matchstiq_base-b.ngc

4. The default name and location of the Output Design Netlist is acceptable.

5. The default name and location of the Output Directory is acceptable.

6. Save the project file. When selecting a location to save the project file, it is recommended to not save project in an
OpenCPI artifact directory, as they are deleted upon execution of a make clean process.

7. Continue with the Inserter tool process to:

- Add signals that are to be monitored

- Generate the cores and NGO file:

- The output folders and files will be generate in Output Directory directory.

• cs icon pro/

• cs ila pro 0/

• dump.xst/

• fsk filerw matchstiq base-b.ngo

• icon pro.ngc

• ila pro 0.ngc

8. Used the NGO file to regenerate the NGD

i) - Replace the NGC with the NGO by copying *-b.ngo over *-b.ngc.

ii) - Rebuild the NGD file based upon ngdbuild.out.

Within the container’s target directory, open the ngdbuild.out file and locate the ngdbuild command including
all of its options necessary for execution. Note that the command in ngdbuild.out provides a relative path for ngdbuild.
Copy the ngdbuild command, modify the command to include the full path to ngdbuild, and execute it from the
container’s target directory. An example is provided below. Note that this should not be executed from a shell where a
Xilinx settings32.sh or settings64.sh script has been sourced.

/opt/Xilinx/14.7/ISE_DS/ISE/bin/lin64/ngdbuild -verbose -uc
/data/ocpi_baseassets/ocpiassets/applications/FSK/assemblies/../../../hdl/platforms/matchstiq/lib/matchstiq.ucf -p xc7z020-1-clg484 -sd
../../../../../../hdl/platforms/matchstiq/lib/hdl/zynq -sd
../../../../../../hdl/platforms/matchstiq/lib/hdl/zynq -sd
../../../../../../../../ocpi_baseproject/exports/lib/devices/hdl/zynq -sd ../../lib/hdl/zynq -sd
../../../../../../components/dsp_comps/complex_mixer.hdl/chipscope -sd
../../../../../../components/dsp_comps/complex_mixer.hdl/chipscope -sd
../../../../../../../../ocpi_baseproject/exports/lib/adapters/hdl/zynq -sd
../../../../../../components/util_comps/lib/hdl/zynq -sd
../../../../../../components/dsp_comps/lib/hdl/zynq -sd
../../../../../../components/dsp_comps/lib/hdl/zynq -sd
../../../../../../components/dsp_comps/lib/hdl/zynq -sd
../../../../../../components/dsp_comps/lib/hdl/zynq -sd
../../../../../../components/dsp_comps/lib/hdl/zynq -sd
../../../../../../components/dsp_comps/lib/hdl/zynq -sd
../../../../../../../../ocpi_baseproject/exports/lib/adapters/hdl/zynq -sd
../../../../../../../../ocpi_baseproject/exports/lib/devices/hdl/zynq -sd
../../../../../../../../ocpi_baseproject/exports/lib/components/hdl/zynq
fsk_filerw_matchstiq_base-b.ngc fsk_filerw_matchstiq_base.ngd

9. Continue the HDL Assembly build process.

- Change from the container target directory back to the assembly directory and re-run make

12

Debugging Tools Guide ANGRYVIPER Team

The generated bitstream contains the Debug and Verification cores which will be recognized by the Xilinx
ChipScope Pro Analyzer tool. Once the bitstream has been loaded onto the target FPGA, use the Analyzer tool
can connect and detect the presence of the Debug and Verification core(s). The saved project file can be imported
to automatically populates the names of the signals being monitored.

13

Debugging Tools Guide ANGRYVIPER Team

3.3 Altera SignalTap II

3.3.1 Limitations

In versions of Quartus after 14.1, the OpenCPI build flow of exporting QXPs and including SignalTap at the
Worker level causes a build failure. Per Altera’s website, you can force Quartus to use the legacy SignalTap flow.
More details can be found here:

https://www.altera.com/support/support-resources/knowledge-base/solutions/rd07012015_904.html

In order to use this build flow, the file /opt/opencpi/cdk/include/hdl/quartus.mk must be modified. An example
diff of the change needed can be seen below:

<) > $(Core).qsf; echo fit_stratixii_disallow_slm=On > quartus.ini;

>) > $(Core).qsf; echo fit_stratixii_disallow_slm=On > quartus.ini; echo sci_use_legacy_sld_flow=On >> quartus.ini;

3.3.2 Create SignalTap II instance

This signal tap implementation can be reused with different workers but not in the same bitstream.

1. Run Quartus

- The default location for the Quartus executable can be found at
/opt/Altera/17.1/quartus/bin/quartus

2. Open SignalTap in Quartus

- Go to tools - IP Catalog

- The ipcatalog will now be visible on the right

- Select the device family ex. Stratix IV

- In the search bar type in SignalTap and select it from the filtered list.

- Signal tap will say New IP Variation.

3. Create IP Variation

- Entity Name: signal tap

- Save in folder: Navigate to the workers’s directory and create a folder called signal tap

- Family: Stratix IV

- Device: Select yours or Unknown

4. Configure SignalTap core

(a) Data:

i. Data Input Port Width: Select how many signals to watch. You will connect the signals to this port
from your worker.

ii. Sample Depth: The count of how many total captures will occur. Basically how many clock cycles of
capture.

(b) Trigger:

i. Trigger Input Port Width: Select the number of different signals that should be observed to trigger
the start of capturing.

ii. Trigger Conditions: How many combinations, aka if watching multiple signals then you may want a
combination of when enable is high and another signal is a rising edge, in that case use 2 trigger
conditions.

(c) Storage Qualifier:

i. Input Port: Toggles capturing signals using an enable signal.

ii. Continuous: Once the trigger condition is met it will take samples from then on. In the Logic
Analyzer you can configure to take the samples before and after the trigger condition or near the
beginning or near the end.

14

Debugging Tools Guide ANGRYVIPER Team

(d) Segmented Acquisition:

i. Allows specifying groups of continuous segments. Meaning if Number of Segments = 2 then half the
sample depth will be used for the first time the trigger condition is met and then the next half will
be used for the next time the trigger condition is met.

5. Click Generate HDL

- A Generation Popup will show. Select VHDL instead of Verilog. (Note: You can use Verilog as well
but for our purposes workers are more commonly implemented in VHDL)

- The remaining defaults are sufficient

- Click Generate.

3.3.3 Integrate SignalTap II instance into HDL Worker

These instructions have been verified for the sld signaltap core. Many files are generated but only two of them are
required for our purposes. The (* inst.vhd) file contains the component declaration and the (*.vhdl) file is used to
build the SignalTap core into the HDL worker and subsequently, the HDL assembly.

1. Integrate the Debug and Verification cores into the worker’s VHDL: Navigate to the workers signal tap
subfolder and copy the inst.vhd component declaration and component instantiation to the architecture
section and begin section respectively.

a) Place the component declaration in the declarative area of the architecture section

component capture_v2_signaltap is

port (

acq_data_in : in std_logic_vector(71 downto 0) := (others => ’X’); -- acq_data_in

acq_trigger_in : in std_logic_vector(4 downto 0) := (others => ’X’); -- acq_trigger_in

acq_clk : in std_logic := ’X’; -- clk

storage_enable : in std_logic := ’X’ -- storage_enable

);

end component capture_v2_signaltap;

b) Place the component instantation under the begin section as a concurrent statement

u0 : component capture_v2_signaltap

port map (

acq_data_in => CONNECTED_TO_acq_data_in, -- tap.acq_data_in

acq_trigger_in => CONNECTED_TO_acq_trigger_in, -- acq_trigger_in

acq_clk => CONNECTED_TO_acq_clk, -- acq_clk.clk

storage_enable => CONNECTED_TO_storage_enable -- storage_qualifier.storage_enable

);

2. Connect signals, as needed, from the worker to the component instance

u0 : component capture_v2_signaltap

port map (

acq_data_in => ctl_in.is_operating & in_in.eom &

in_in.som & in_in.valid & out_in.ready &

std_logic_vector(time_in.seconds) &

std_logic_vector(time_in.fraction), -- tap.acq_data_in

acq_trigger_in => ctl_in.is_operating & in_in.som & in_in.eom &

in_in.valid & out_in.ready, -- acq_trigger_in

acq_clk => ctl_in.clk, -- acq_clk.clk

storage_enable => ctl_in.is_operating -- storage_qualifier.storage_enable

);

3. Edit the Worker’s Makefile to include the path and file name of the instantiated core *.vhdl files. Use the
framework’s Makefile variable “SourceFiles=” to include the path and name of the VHDL file of the core.
Absolute or relative paths are acceptable. SourceFiles must be before the ”include” statement. An example is
provided:

15

Debugging Tools Guide ANGRYVIPER Team

SourceFiles=.signaltap/synthesis/capture_v2_signaltap.vhd

include $(OCPI_CDK_DIR)/include/worker.mk

4. Build the HDL worker for the target.

ocpidev build -d <path/worker.hdl> --hdl-target <target>

5. Generate SignalTap format file using Quartus GUI

- Start Quartus and open the Quartus Project File (.qpf) which is located in the built Worker’s
target-stratix4 directory. Click File - Create/Update - Create Signal Tap II file from Design
Instance(s) and save the file. This will open signal tap logic analyzer. If you have already created a stp
file you can open this in Quartus by File - open and selecting the *.stp file from the workers directory.

6. Build the HDL assembly for the target platform.

ocpidev build -d <path/assembly> --hdl-platform <platform>

3.3.4 Monitor signals with SignalTap II Logic Analyzer

The generated bitstream contains the Debug and Verification cores which will be recognized by the Altera Quartus
SignalTap II Logic Analyzer tool. The executable for this tool (quartus stpw) is located in the Quartus installation
directory. Once the bitstream has been loaded onto the target FPGA, use the tool can connect and detect the
presence of the Debug and Verification core(s).

1. Setup the JTAG Connection:

- Select USB-Blaster

- Select your device

- If you cannot connect to your device, check the JTAG Daemon section of the Alst4 Getting Started
Guide

2. Set the triggers to specify when signal collection begins:

- Go to the setup tab and scroll down to the triggers. Select the signal you want to set with a trigger
then right click the box with a lattice pattern to specify the trigger criteria.

3. Enable Collection

- In the instance manager select the SignalTap instance. The run Analysis and Autorun Analysis buttons
should be enabled.

- Press the Autorun Analysis button to record continuously.

4. Run your application or test and the signals will appear in the data tab.

16

	References
	Debugging RCC Workers
	debugging using gdb command line
	gdb debugging using DDD

	FPGA Integrated Logic Analyzers
	Xilinx Vivado
	Case 1: Instance a Debug ILA in an HDL Worker using cores from Vivado's IP Catalog
	Case 2: Insert Vivado Debug ILA into an HDL Worker

	Xilinx ISE
	Case 1: Integrate ChipScope into HDL Worker using cores from ISE's CORE Generator
	Case 2: Integrate ChipScope into HDL Assembly using the Inserter tool

	Altera SignalTap II
	Limitations
	Create SignalTap II instance
	Integrate SignalTap II instance into HDL Worker
	Monitor signals with SignalTap II Logic Analyzer

