
ANGRYVIPER IDE User Guide

May 2019

i



Revision History

Revision Description of Change Date

Initial, from earlier doc sources 02-2018

1.0 Revision for v1.4 09-2018

2.0 Updates for v1.5 05-2019

2.1 Converted to LATEX, added build instructions 05-2019

Contents

Revision History i

List of Figures ii

List of Tables ii

References 1

Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Reference Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction 1

New Features in the 1.5 Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Overview 2

AV Perspective Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

IDE Overview and Features 4

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

OpenCPI Projects View Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Operations View Features 5

Build Status View Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Eclipse Project Explorer View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Eclipse Console View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

OpenCPI Asset Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

OpenCPI Asset XML Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The Execution Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

XML Editors-Modifying Existing XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Warning about a Non-OpenCPI Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The Perspective is Not in Sync with the Workspace or the File System . . . . . . . . . . . . . . . . . . 17

OpenCPI Development Workflow Using the IDE 17

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

OpenCPI the Core and Assets Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Importing OpenCPI Core and Asset Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Build the Projects for the desired RCC and HDL Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 18

Creating New Projects and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

More on OpenCPI Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Project Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Errors in Creating New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

OpenCPI Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Creating Components, Protocols and Workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Component Example from the Getting Started Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Worker Example from the Getting Started Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Creating Applications and Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ANGRYVIPER IDE User Guide i



Adding Components to an Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Connecting Application Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Assembly Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Creating Component Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendices 33

A Eclipse Basics 33

B Eclipse Basic Concepts 35

C Additional Plugins for the IDE 36

TM Terminal 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D Build The IDE 37

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ANGRYVIPER IDE User Guide ii



List of Tables

1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

List of Figures

1 ANGRYVIPER Perspective Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 IDE showing C/C++ Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 PerspectiveView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 List of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Projects View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Build configuration setup in the Operations panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7 Unit Test Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8 List panel with 2 Different Remotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

9 Build Status View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

10 Successful Build Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

11 Status Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

12 Eclipse Project Explorer View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

13 Eclipse Console View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

14 Notice Console View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

15 Execution Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

16 Asset Creation Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

17 Modify Attributes of HDL Worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

18 Add a Property to a Worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

19 HDL Property Element Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

20 Graphical Drag and Drop Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

21 Procedures to use existing Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

22 Importing OpenCPI Core and Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

23 Build Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

24 Project Built from Operations panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

25 Core Project Built from Ops panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

26 Create a New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

27 Asset Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

28 Terminal Window View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

29 Create a New OpenCPI Asset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

30 Port Form for the Ramp In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

31 Worker Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

32 Addition of In and Out Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

33 Asset Wizard New Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

34 Application Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

35 Properties View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

36 Adding the Ramp Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

37 Third Method to Add a Component Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

38 Select File Write as the New Companion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

39 Design View of the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

40 Connection Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

41 Pop Up Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

42 Advanced Connection Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

43 Square HDL Worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

44 All Inputs are preset for the Ramp Spec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

45 Unit Test Editor Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

46 Display of Attribute Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

47 Eclipse Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

48 Eclipse Welcome Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

49 Eclipse Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ANGRYVIPER IDE User Guide iii



References

Some familiarity with the Eclipse Integrated Development Environment (IDE) or similar environment is assumed.

If this is not the case, Appendix A gives basic information to get you started.

Assumptions

The document begins with the assumption that OpenCPI and ANGRYVIPER IDE are installed on a development

machine and the Eclipse workspace has been previously set up.

Reference Documents

Table 1: References

Title Link

OpenCPI Overview Overview.pdf

Acronyms and Definitions Acronyms and Definitions.pdf

Getting Started Getting Started.pdf

Installation Guide RPM Installation Guide.pdf

OpenCPI Website www.opencpi.org

OpenCPI Component Development Guide OpenCPI Component Development.pdf

OpenCPI Application Development Guide OpenCPI Application Development.pdf

Introduction

The ANGRYVIPER (AV) IDE consists of the Eclipse IDE for C/C++ developers and a custom plugin for OpenCPI

development. OpenCPI users local to the project may install OpenCPI and the IDE from the yum repository (the

IDE is a separate AV IDE RPM). Open source users must obtain the IDE plugin from GitHub and drop it into an

existing Eclipse installation. Both methods are described in the RPM Installation Guide Section 6, addresses

the RPM Installation and Appendix B addresses the plugin install. Note, if the RPM method is used, the IDE is

installed in opt/opencpi/gui and the command ocpigui is provided to start the IDE.

New Features in the 1.5 Release

In the 1.5 release, the ANGRYVIPER team focused on getting the OpenCPI XML editors current with OpenCPI

Framework standards. Every available component editor (excluding the Application and Assembly Editors) is

updated. In addition, new editors are provided for the Properties File, Signals File, and Slot Signals File. These

editors are not integrated with the OpenCPI Projects view but they will open if the respective XML file is selected

via the Eclipse Project Explorer.

ANGRYVIPER IDE User Guide 1

https://github.com/opencpi/opencpi
https://github.com/opencpi/angryviper_gui
http://opencpi.github.io/releases/1.5.0/Overview.pdf
http://opencpi.github.io/releases/1.5.0/Acronyms_and_Definitions.pdf
http://opencpi.github.io/releases/1.5.0/Getting_Started.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf
https://www.opencpi.org
http://opencpi.github.io/releases/1.5.0/OpenCPI_Component_Development.pdf
http://opencpi.github.io/releases/1.5.0/OpenCPI_Application_Development.pdf
http://opencpi.github.io/releases/1.5.0/RPM_Installation_Guide.pdf


Overview

The face of the ANGRYVIPER AV IDE is now the ANGRYVIPER (AV) Perspective. This section provides an

overview of the perspective layout and how to set it up in a new IDE installation.

AV Perspective Views

The figure below illustrates the new AV Perspective. It consists of detailed views and the Eclipse Editor panel.

Figure 1: ANGRYVIPER Perspective Views

Below are brief summaries of each of the perspective views, full descriptions are provided in the later sections.

OpenCPI Projects View – an explorer giving a flattened view of the projects and assets. In the 1.4 release

this view has become the primary tool to find and open asset XML files and its context menu has a rich

set of features: asset wizard, open, build, clean, delete, and project registration. To open the menu simply

right-click anywhere in this view.

AV Operations View– provides platform selection and controls to build assets and run tests. The AV

Operations View layout has changed to provide a full feature application unit testing capability in addition to

building and cleaning assets.

Build Status View – provides a graphical view of build/run execution configurations and execution status.

A run configuration gets a color coded status bar that visually relates status. The status bar expands to

provide details and execution times of selections addressed in the run. The user can also re-run builds and

tests using this view.

Project Explorer View – Provides a view into a projects file system. This view primarily supports code

development. It is included in the perspective for reasons provided in the Overview Section.

ANGRYVIPER IDE User Guide 2



Eclipse Editor panel – Asset and text editors open in this panel

Eclipse Console View – Shows the various ocpidev command executions based on user requests as well

as the result of the requests.

Open the AV Perspective

In a new Eclipse installation, the current default behavior is that Eclipse will open in the selected workspace and

will display the C/C++ Perspective shown below.

Note: The AV Perspective must be added to the Eclipse perspectives toolbar for regular use.

Figure 2: IDE showing C/C++ Perspective

Adding the Perspective to the Toolbar

To open the Perspective and add it to the Perspectives Toolbar:

• Click the Open Perspective Icon

• Select it from the Perspective List

(Eclipse will switch to the perspective and add the AV Icon to the perspectives toolbar)

• Click through the toolbar selections to change between perspectives

Note: If the AV Perspective is not shown in this Open Perspective window, make sure the av.proj.ide.

plugin is in your Eclipse installation

For personalization, Eclipse allows the user to rearrange the views in the perspective and also to add views.

It will then save the rearranged perspective and will display it from this way forward, if the workspace is

preserved.

To see a listing of Eclipse perspectives:

• Navigate to: Window

• Navigate to: Perspective

• Open Perspective

(A listing of views can be seen by navigating to: Window and then Show View)

ANGRYVIPER IDE User Guide 3



Figure 3: PerspectiveView

IDE Overview and Features

Overview

The AV Perspective default layout was selected because it provides a core complement of tools to accomplish

OpenCPI operations and it provides the most OpenCPI project features for the user. It is now the main display for

the IDE. This section provides feature details for each of the Eclipse views that make up the perspective.

OpenCPI Projects View Features

The OpenCPI Projects View provides navigation into a flattened view of OpenCPI projects. It currently displays

OpenCPI projects and a subset of the OpenCPI assets that it supports. A right-click context menu provides

features appropriate to the selected asset.

The user has the following features to choose from:

• Asset Wizard – Opens the Asset Wizard

• Build

• Clean

• Open - When enabled, opens the assets XML file in the respective editor (double-clicking on an individual

asset it will open it as well)

• Delete Asset – Removes the asset and its respective artifacts

• Build or clean can be executed from any level in the tree from entire projects to individual assets like workers

and applications.

Context features are added to the menu based on the current [single] selection:

• Project selected – Opens Register or Unregister depending on the registration state of the project

ANGRYVIPER IDE User Guide 4



Figure 4: List of Features

• Components selected – New Component, New Protocol, New Worker, New Unit Test

• Applications, assemblies, primitives Selected – Creates a new respective asset. It is also used to select

assets to be added to the Operations View

Building from the OpenCPI Projects View

• Select one or more assets in the view and right-click

• Select Build or Clean from the context menu

An execution configuration is constructed from the selections, the platform selections and other inputs from the

Operations panel The figure below displays a launch from the OpenCPI Projects View and the Status Bar for the

build

Operations View Features

The Operations View is used to build OpenCPI assets and to build and run application component unit tests

This panel has two modes of operation:

1. Assets Mode- supports assets build and clean operations

2. Test Mode- supports unit test operations

Core features of the panel are:

• Add selections in the Projects View to the Operations panel (> button)

• Remove selected assets from the panel (< button)

• Clear the panel (clr button)

• Make RCC/HDL platform build selections or HDL target selections

• Execute build or clean on the assets in the Operations panel in the order they appear

ANGRYVIPER IDE User Guide 5



Figure 5: Projects View

• Build and run unit tests

To add assets to the Operations Panel:

• Select one or more assets in the Projects panel (use the CTRL or SHIFT keys similarly to working with an

email app)

• Press the add button

• Select the platforms for the build

The radio buttons on the top of the Build Controls section toggle controls for building assets and running

unit tests.

Assets Mode

A build or clean execution is initiated by the Build/Clean buttons. Once it is initiated, an execution configuration is

established. The user may repeat a build or clean execution on this configuration from this panel or the Status

Monitor View.

The figure below demonstrates a build executed from the Operations panel. A status bar for the completed build

is expanded to show the build order. The console view lists each ocpidev build command and output from the

command.

If the execution configuration is rerun, the corresponding status bar and console will show the progress of the

execution. Building assets can occur at all levels of an OpenCPI project:

• Project

• Second-Level Asset folders

• Individual Assets

Unit Test panel

The Unit Tests Panel (shown in the below figure) supports most of the features for the unit testing of workers

which is described in the OpenCPI Component Development Guide. Reference the Component Development

Guide for a complete description of the unit test of workers and details of the five phases of unit testing. The five

phases of unit testing are:

ANGRYVIPER IDE User Guide 6

http://opencpi.github.io/releases/1.5.0/OpenCPI_Component_Development.pdf


Figure 6: Build configuration setup in the Operations panel

1. Generate

2. Build

3. Prepare

4. Run

5. Verify

The tests panel provides control for these 5 phases, (currently, there is no discrete support for the Build Phase)

and it provides three buttons that combine unit test phases that typically support development and debugging of

a unit test.

Figure 7: Unit Test Panel

Unit Test Features

The following is a list of test features and the equivalent development guide operation or argument:

ANGRYVIPER IDE User Guide 7



• View Button = View Operation

• Run View Script = View =1

• Accumulate Errors = Test Accumulate Errors =1

• Keep Simulations = KeepSimulations =1

• Test Cases = Cases

• Remotes = OCPI REMOTE TEST SYSTEMS

The content of a unit test is provided in the form of: run content, sim (simulations data) or all (gen/ and run/). Use

the buttons in the clean test execution section to remove this content.

Caution! Simulation directories may become quite large and consume an alarming amount of storage.

Similar to the Assets Mode, the Unit Test Mode constructs and executes ocpidev command strings to perform the

various phases of unit testing.

Building of the unit tests is possible via the Assets or Tests panel. However only the Test panel supports the other

phases of unit test. Any test listed in the Operations panel is executed in sequence.

Prior to execution of a test phase, the user must have selected desired RCC/HDL platforms, test cases and

remotes. Multiple platforms, test cases and remotes may be highlighted, but only one project for a remote system

can be active. For example:

• Valid :192.168.2.9=root=root=/mnt/ocpi_core:192.168.2.10=root=root=/mnt/ocpi_assets

• Invalid :192.168.2.9=root=root=/mnt/ocpi_core:192.168.2.9=root=root=/mnt/ocpi_assets

The bottom panel is used to enter remote systems and test cases. The remote/test cases radio button toggles

the two operations. Click the Remotes button to add a remote system via a pop-up dialog.

In the example below, two remotes are available; the remote selected is placed in the next run. Test cases

are added and selected in the same manner. Multiple entries may be selected for a run. The list panel has a

right-click menu with edit and delete options for selected entries.

Figure 8: List panel with 2 Different Remotes

Build Status View Features

Each execution configuration has a corresponding status bar in the Build Status View. The color of the bar

represents the build status:

• White- Indicates an active execution

• Green- Indicates a successful completion

• Red- Indicates a failure

ANGRYVIPER IDE User Guide 8



Figure 9: Build Status View

• Yellow- Indicates an execution stopped by the user

The Status Bar expands to provide details about the execution and the sequence in which they occurred. In an

active execution this list is dynamic; rows are added as the execution proceeds.The figure below demonstrates

the Status Bar for a build that has completed successfully and the expanded view.

Figure 10: Successful Build Execution

By using right-click on the status bar, several actions can be selected: Build, Clean, Run, Stop, Delete.

As an example: an inactive build execution can be rerun as a build or a clean.

Similarly, the user may stop an active execution. Finally, an inactive status bar can be deleted and when selecting

a build status bar, the console for that build is brought into view.

Eclipse Project Explorer View

The Eclipse Project Explorer is provided in the Perspective because it provides a file system view of the projects.

A right-click context menu provides features that are appropriate to the selected asset.

The user has the following features to choose from:

This view has a right-click context menu that provides workspace features such as:

• Project Import

• Workspace/Project Refresh

• Access to the Assets Wizard (via the New Selection)

It is the view Eclipse provides in the C/C++ Perspective and it is best suited to support code development.

However, it can be used to open OpenCPI XML files in an XML Editor and it can open supported assets in the

respective graphical editor.

ANGRYVIPER IDE User Guide 9



Figure 11: Status Bar

Unfortunately, it is the only view that currently supports drag and drop into the Application and Assembly Editors.

Most of the core OpenCPI asset management features are now implemented in the OpenCPI Projects View.

Caution! Do not delete OpenCPI assets by deleting their top-level folders in this view.

Use the Asset Delete provided in the OpenCPI Projects View - it executes the underlying ocpidev delete

command that completely removes the asset from the framework infrastructure.

Eclipse Console View

The IDE leverages the Eclipse Console View to allow the user to readily see execution output for multiple build

and test runs. The IDE supports a notice console and up to fifty execution consoles.

There are useful features in the view toolbar: Clear, Scroll Lock, Display Selected Console.

Note: Execution configurations will clear the respective console and bring them into view when they
are rerun.

Notice Console

The Notice Console is used to communicate messages typically seen in a log. These are messages about

issues in reading the environment, output of ocpidev create, delete messages, and resource issues.

View the Notice Console for notices if something unexpected happens and the IDE does not indicate a

problem via a pop-up dialog.

Execution Consoles

Execution consoles provide build and run commands and their output.The IDE supports up to fifty (50) active

execution configurations at a time and each configuration gets its own console. The figure below shows a console

for a successful build.

ANGRYVIPER IDE User Guide 10



Figure 12: Eclipse Project Explorer View

Figure 13: Eclipse Console View

OpenCPI Asset Wizard

The Asset Wizard provides a tool to create a number of OpenCPI Assets. It provides a simple form for required

and optional parameters to create the asset (accomplished by ocpidev create). Upon completion, the asset and

ANGRYVIPER IDE User Guide 11



Figure 14: Notice Console View

Figure 15: Execution Console

follow-on OpenCPI framework folders and files will be created.

The new asset is displayed in the project views. If an XML Editor is provided in the IDE, then the respective

Editor is opened to further populate the XML specification. The figure below shows all of the available assets in

the drop-down list that the wizard supports. This OpenCPI Asset Creation Wizard may be selected from the

context menu obtained by right-clicking anywhere in OpenCPI Projects View.

It is also found under the New selection (or New Other) Eclipse Project Explorer View context menu or under the

File Tab in the top Eclipse menu bar.

Caution! There are some dependencies to create assets. An OpenCPI project must be open in the

workspace before any other assets can be created. Also, a components library must be established

before components and workers can be created .

OpenCPI Asset XML Editors

The IDE supports the creation of the following OpenCPI Assets and provides graphical editors to populate their

XML files:

• Component Spec – OCS Editor

• Protocol Spec – OPS Editor

• Component Properties File – Properties File Editor

• RCC Application Worker – OWD RCC Editor

• HDL Application Worker– OWD HDL Editor

• HDL Assembly – OHAD Editor

• HDL Signals File – Signals File Editor

• HDL Slot File – Slot File Editor

• OpenCPI Application – OAS Editor

ANGRYVIPER IDE User Guide 12



Figure 16: Asset Creation Wizard

• HDL Platform Worker – HDL Platform Editor

• Component Unit Tests – Unit Test Editor

There are two implementations of the XML editors in the plugin. The Component editors are form-based while

the Application and Assembly editors are diagram-based and support the form-based feature.

Form Based Graphical Editors

The Graphical Editor has two panels:

1. Outline panel

2. Form-Input panel

In the example below, the Outline Panel is used to navigate the XML elements for this worker. These are the

Top-Level HdlWorker Elements and Property, SpecProperty and Port (StreamInterface) child elements. Select

the element in the outline to add a new one or select an existing one to see or and modify it. The figure below is

an example of adding a property element to the worker. Select the Properties element in the outline, then Right

Click and Add Property. The form to populate the new element appears as shown in the Form Input panel image

below.

Select the Source Tab to see how the new element is added to the XML file.

To remove an element:

• Select

• Right Click

• Select Delete

The source file may also be edited and those changes will appear in the design view.

See the Component Development Guide for more information about the XML files these editors support.

ANGRYVIPER IDE User Guide 13

http://opencpi.github.io/releases/1.5.0/OpenCPI_Component_Development.pdf


Figure 17: Modify Attributes of HDL Worker

Figure 18: Add a Property to a Worker

Note: In Release 1.5 these editors were updated to current OpenCPI standards.

Graphical Drag-and-Drop Editors

The Application and Assembly Editors provide a diagram interface to generate the respective XML files.

ANGRYVIPER IDE User Guide 14



Figure 19: HDL Property Element Form

Asset XML Examples

The following list provides OpenCPI asset XML to examine in its respective Editor. Use the OpenCPI Projects View

to navigate into the OpenCPI Core and Assets projects and open the various asset XML files by doubling-clicking

the asset.

1. OPS Editor- core-specs-iqstream protocol.xml

2. OCS Editor- core-components-specs-bias spec.xml

3. OWD RCC Editor- core-components-bias cc.rcc

4. OWD HDL Editor- core-components-bias param.hdl

5. HDL Assemble Editor- assets-assemblies-cic int dc offset iq imbalance mixer cic dec

6. OAS Editor- assets-applications-data src mixer to file

7. Platform Worker Editor- assets-platforms- matchstiq z1

8. Unit Test Editor- core-components-metadata stressor.test

ANGRYVIPER IDE User Guide 15



Figure 20: Graphical Drag and Drop Editors

Additional Notes About the Perspective

The ANGRYVIPER Team hopes to continue to add capabilities to the OpenCPI Projects View to further support

OpenCPI operations. The goal for Version 1.4 was to give complementary features. This section provides a brief

discussion to make the user aware of a number of issues that may occur when using the IDE.

The Execution Configuration

The Execution Configuration provides a means to associate and manage resources tied to the execution.

These are:

• Selected Assets and Platforms

• Execution Number

• Status Bar

• Console

The perspective allows limitless execution configurations, however, it only allows so many to exist at once since

they tie together Eclipse resources such as the consoles. The current limit is fifty(50).

When the limit is met, the user will get a pop-up dialog that instructs the user to delete some status bars to free

up resources. This is the only way to free up resources other than closing and re-launching Eclipse. The Status

View allows multiple delections for this reason. Once done, execution numbers will continue to increase but

consoles will be reused.

XML Editors-Modifying Existing XML Files

The following Editors will modify existing XML files when they are opened with the Editor. The IDE will indicate

this is occurring and why; however, it will only do it once per Eclipse session.

The Editors are:

• OAS Editor - The Application Editor adds a name attribute to the instance element to better support

presentations

• HDL Platform Editor - This Editor will update slot signal definitions to the current standard where signal

name and direction are discretely stated. Also note that if signal definitions were updated by the Version

1.4 GUI, these will have an unnecessary extension tag. If present, these may be removed manually.

ANGRYVIPER IDE User Guide 16



The signal and slots file editors will similarly update old signal definition formats (used a direction=<name>

attribute).

The modifications do not have to be saved.

Note: Signal definition changes represent the current OpenCPI standard .

Warning about a Non-OpenCPI Project

The perspective obtains asset information from the top level project.xml files. If an Eclipse workspace project is

encountered that does not have a project.xml file, it is assumed the project is not an OpenCPI project. This is

communicated in the Notice Console. If the project is an OpenCPI project, then something is wrong in the project

file structure that does not allow project.xml to be generated.

The Perspective is Not in Sync with the Workspace or the File System

The OpenCPI Projects View does not track changes to the Workspace or the files system. This means changes

made to a project outside of the IDE will not be apparent in the project explorers nor seen in current asset lists

within the IDE. This means assets created or removed via command line will not be presented in either the

Eclipse Project Explorer or OpenCPI Projects Views until both views are refreshed. Refresh the Eclipse Project

view first then the OpenCPI Projects View.

Note: Do not delete a project using Project Explorer or Shell Command. Use the ocpidev command to

delete a project. This will ensure project registration information remains up to date.

OpenCPI Development Workflow Using the IDE

Introduction

The IDE supports a number of OpenCPI workflow concepts; beginning with setting up the OpenCPI core and

assets projects and getting them built to support new project development. This section demonstrates a number

of the fundamentals discussed in Sections 4 and 5 of the Getting Started Guide. This includes creating the

DemoProject and then a number of assets that go in the project as described in the document. Additionally, the

IDE provides an effective way to look at existing assets OpenCPI XML specifications.

OpenCPI the Core and Assets Projects

A number of existing projects are provided in OpenCPI Release for use in development. If they are to be used,

they need to be set up in the development environment, registered, and imported into the IDE and built for the

desired platforms to further support new development. Procedures to set these projects up:

1. Select an area in the file system to put these projects and create the folder if necessary

2. Execute the project copy script ocpi-copy-projects to load these projects in desired folder and register them

in that location (this script is interactive or arguments may be supplied)

3. Import the desired projects into Eclipse

Importing OpenCPI Core and Asset Projects

This demonstration describes the procedure to import the core and assets projects.

1. Place the cursor in the Eclipse Project Explorer panel

2. Right Click -Import-General-Existing projects into workspace - (This opens the import wizard)

3. Click Browse for the select root directory input

4. Navigate to and select the folder holding these projects

5. Select the checkboxes on the desired projects to import as shown in the preceding figure

6. Click Finish and the projects will be brought into the Eclipse workspace - (they will appear in the Eclipse

Project Explore View)

7. Click Refresh in the OpenCPI Projects View to update that view with the imported projects

ANGRYVIPER IDE User Guide 17

http://opencpi.github.io/releases/1.5.0/Getting_Started.pdf


Figure 21: Procedures to use existing Projects

Build the Projects for the desired RCC and HDL Platforms

There are a number of ways to build existing projects in the IDE because builds can be kicked off concurrently.

If time is not an issue, put the core and assets projects in the Operations panel (core first followed by assets),

Select the platforms to which to build to and launch the build (press build). Core will be built followed by assets.

Concurrent building saves time-key things to know:

• HDL libraries in the core project must be built before starting a build on the assets project primitives

• Project primitives must be built first

• HDL card and device libraries (cards and devices) can be built concurrently after primitives. Core compo-

nents and asset primitives can be built concurrently after core HDL libraries are built

• Follow this sequence to build HDL libraries in the assets project

• Once projects components are built, it is recommended that a top-level project build is executed to ensure

all build artifacts and exported properly for dependent projects

• Assemblies may be built concurrently

The following examples demonstrate executing builds using the IDE:

1. Select the platforms for the build. In the example, RCC platform centos7 and HDL platform xsim are

Selected

ANGRYVIPER IDE User Guide 18



Figure 22: Importing OpenCPI Core and Assets

Figure 23: Build Entry

2. Expand the ocpi. core project in the OpenCPI Projects View, select Primitives, right click, select Build. The

build status entry appears and turns green when the build successfully completes.

3. Select Devices (the core projects have no cards currently), right click, select Build

4. Similarly start builds for the core projects components and the assets project primitives

5. Complete a top-level build for the core project. In this example, the core project is built from the Operations

panel.

6. Complete building the assets project following a similar process.

Creating New Projects and Libraries

To create a new project:

• Place the cursor in the OpenCPI Projects panel

ANGRYVIPER IDE User Guide 19



Figure 24: Project Built from Operations panel

Figure 25: Core Project Built from Ops panel

• Right click

• Select-Asset Wizard

• Select- Asset Type Project from the drop-down

• Click Finish

Note: All registered OpenCPI projects have the core project dependency by default.

When this completes, a new project (DemoProject) will be created, registered and is displayed in the OpenCPI

Projects and the Eclipse Project Explorer views. It will have the assets project as a dependency, so it can use the

components contained in it.

Next, a components library is added to DemoProject

• Select the project in the OpenCPI Projects View

• Right Click, Open the Assets Wizard

ANGRYVIPER IDE User Guide 20



Figure 26: Create a New Project

• Select- Asset Type Library

The wizard will create the components library by default. If multiple libraries are anticipated, then this library

should be named accordingly, and it will be placed in a top-level components folder. This example uses one

components library and when complete, select Finish.

The Components Library is now created and appears in the Project Explorers as shown below:

More on OpenCPI Projects

In OpenCPI, package-ids are assigned to projects and other shared assets in the project, such as its libraries.

The project wizard provides inputs for the project package-id: package-prefix and package-name. The project

package-id is package-prefix.package-name. This becomes a unique identifier to the project and its shared

assets. The Project Wizard screen goes more into detail.

In the new project example above, no inputs were provided for package-prefix and package-name, the defaults

are used and the assigned package-id is: local. DemoProject. This can be seen in the Project Registry.

To view project registry in a terminal window, use the command: ocpidev show registry and the result is

shown below:

Project Registration

By registering a project, a user is publishing his/her project so that it can be referenced/searched by any user or

project using that same project registry. The default project registry is found at : /opt/opencpi/project-registry.

The registration features are provided to support bringing in an external OpenCPI project or a project location

needs to change. Examples:

• To rename a project: unregister it, and change its name with Project Explorer, refresh OpenCPI Projects,

re-register it.

• To move a project: unregister it then delete it from the workspace (use Eclipse Project Explorer, do not

delete it from the file system). Move it, import it back into the workspace, then refresh OpenCPI Projects.

Now re-register it.

ANGRYVIPER IDE User Guide 21



Figure 27: Asset Wizard

Figure 28: Terminal Window View

Errors in Creating New Project

If an error occurs, the wizard will present a dialog panel explaining the problem. Errors will occur when the

framework cannot support the asset creation or there are file system issues.

Click OK to close the dialog. If the framework fails to create an asset it automatically cleans remnant artifacts off

the file system.

OpenCPI Libraries

An OpenCPI project can have one or more libraries. The typical guidelines are as follows:

• A project anticipated to have a single component library, name the library components. All component and

worker assets will reside in the top-level components directory. When using the OpenCPI asset wizard to

create a library the default name provided is components

• A Project anticipated to have multiple libraries, give these libraries a name other than components. These

libraries will be placed in top-level components as sub-directories named after the library. The user will be

given the option to create component specifications and workers in these sub-directory libraries

• Once an option is Selected it cannot be changed without a lot manipulation

ANGRYVIPER IDE User Guide 22



Creating Components, Protocols and Workers

Some fundamentals regarding creating components, protocols, and workers:

• Protocols specify expected data for component ports

• Protocols and components can exist in in either the top-level specs folder of the project or in a library specs

folder

• The top-level specs folder is intended to hold more global protocols and components that can be reused in

library component specifications

• Workers may only reside in a library

The IDE’s Asset Wizard provides an easy way to create this class of assets and locate them in their proper place.

Protocols and components simply need a name and where to put them. Workers need a name, component

specification, and the implementation language.

Component Example from the Getting Started Guide

In this example, the ramp component is created using the IDE.

• Open the Asset Wizard

• OpenCPI Projects

• Select DemoProject/Components and right-click

• Select Component from the context menu

• Fill in the name as shown below

Figure 29: Create a New OpenCPI Asset

• Once the OCS Editor opens, select Ports in the outline

• Click the Add a Port link and the Port Form appears and name the Port in

• Select restream protocol from the drop-down menu

• Repeat above and add the out port

• The figure below shows the Port form for the ramp in

ANGRYVIPER IDE User Guide 23



Figure 30: Port Form for the Ramp In

Worker Example from the Getting Started Guide

• Open the Asset Wizard

• OpenCPI Projects, Select ramp-spec.xml located in DemoProject/Components/specs

• Right-click, Select Worker from the context menu, fill in the name

• Select the VHDL language as shown below

• When the HDL OWD Editor opens, verify the spec and language entries

• Save both files (Eclipse floppy disks icon in the toolbar at the top)

Figure 31: Worker Example

The next step is to add the in and out stream interfaces:

ANGRYVIPER IDE User Guide 24



• Select Ports in the HDL OWD Editor outline

• Click the Add a StreamInterface link and the StreamInterface form will display

• Set the Port name and data width as shown in the figure below

• As above, create the out Port - the ramp worker is now complete

Figure 32: Addition of In and Out Interfaces

Creating Applications and Assemblies

The AV IDE Application and Assembly Editors provides a drag-and-drop interface to generate the respective XML

files. As an example, the Application Editor is used to create the DemoApp application described in the Getting

Started Guide.To start creating, use the Asset Wizard to create a new application:

Figure 33: Asset Wizard New Application

Click Finish and the Application Editor opens:

ANGRYVIPER IDE User Guide 25



Figure 34: Application Editor

Adding Components to an Application

Applications are constructed using OpenCPI Component Specifications (OCS) referred to as components. When

the Editor opens, the Application Tab is presented with the nothing instance in the panel.

To select a OCS for this instance, click the nothing instance and more controls appear.

Figure 35: Properties View

Select the bottom right icon to see the Properties View Form to further populate the instance. To find the desired

OCS, go to the Properties View and click on the List icon next to the component textbox.

A listing of all component specifications found in the environment is displayed. The ocpi.core.file read compo-

nent was selected and now the display appears as shown above.

The next example adds the local DemoProject.ramp component to the application using drag-and-drop:

• Use the Eclipse Project Explorer to Select a component OCS XML file

• Left click/hold and drag the file to the Application Panel

• Release the mouse button

As shown below, the ramp component is now in the application. Another method to do this is:

ANGRYVIPER IDE User Guide 26



• Drag-and-drop the instance object from the Palette into the application panel

• Select the component via the Properties View as demonstrated in the example above.

Figure 36: Adding the Ramp Component

The third method to construct an application is to use the Details Tab. This tab presents a form-based editor

similar to the component and worker editors described above. The Application Details panel is shown in the

figure below:

• Select the Instances element

• Click Add an Instance

Figure 37: Third Method to Add a Component Instance

A form opens to populate the new instance as shown in the below image. Note that component choices originate

from the current project and its project dependencies.

Click the List icon next to the Component text box input to the components list. The file write component was

selected. The below figure shows the current design view of the application.

Connecting Application Components

The Application Editor provides three different methods to create connections between components. If simple

connections are sufficient (single in/out components), the simpliest method is to use the application diagram

(Application tab) and use the Simple Connection in the palette:

ANGRYVIPER IDE User Guide 27



Figure 38: Select File Write as the New Companion

Figure 39: Design View of the Application

• Select simple connection in the palette

• Move the cursor to the source component

• Click while on it and then move the cursor to the receiving component, click it to complete a connection

Complex connection can be added using the palette and is the easiest way as well.

The second method is to use the XML node approach accessed using the Details tab:

• Simple connections are added by selecting the instance then filling in the ”Connect” input (this indicates the

component receiving the output of this instance)

• Complex connection are not as graceful to accomplish using this method, Click the Connections node in

the outline

ANGRYVIPER IDE User Guide 28



• Click the Add a Connection link

• Click add Port, Provide the Port name and instance, it connects as shown in the Advanced Connection

Figure below.

The third method is to edit the XML source directly. Once the template of a complex connection is put in place,

this is likely the easiest method to add complex connections. It is also a good method used to make corrections to

the diagram, particularly if instances are removed from the diagram or the component of an instance is changed.

The following figures demonstrate a simple connection:

Advanced connections are easily created using the Application Tab. To make an advanced connection while in

Figure 40: Connection Example

the Application Tab:

• Select Advanced Connection in the palette

• Move the cursor to the source component

• Click it, move the cursor to the destination component and click it again

A pop-up form panel appears with inputs to complete the connection as shown below. Advanced connections can

be named (optional). The Ports section opens with default Port names out and in. Click on the In-Port name and

update it to the correct Port (in1) as shown above.

The following series of figures show the advanced connection in the 3 editor views:

See the Application Development Guide for detailed information about the Application and Assembly XML files.

Note that the Application and Assembly Editors provide a basic capability to create the respective XML files.

Assembly Editor

The HDL Assembly Editor operates similarly to the Application Editor. The difference is that assemblies are

built with application workers while applications are built with components. The drag-and-drop feature works

with OpenCPI Worker Description (OWD) XML files just as the application Editor operates with OCS XML files.

Note: The Eclipse Project Explorer must be used for the current drag and drop feature; it is currently
not supported in the OpenCPI Projects View.

Below shows the square.hdl worker added to an assembly via drag-and-drop. Also note that worker choices

originate from registered OpenCPI projects.

ANGRYVIPER IDE User Guide 29

http://opencpi.github.io/releases/1.5.0/OpenCPI_Application_Development.pdf


Figure 41: Pop Up Panel

Figure 42: Advanced Connection Views

Figure 43: Square HDL Worker

ANGRYVIPER IDE User Guide 30



Creating Component Unit Tests

Creating a Unit Test using the Asset Wizard is demonstrated in this section.

• Using the OpenCPI Projects View

• Navigate to DemoProject

• Components

• Specs

• Select Ramp-Spec.XML

• Right-click and select New Unit Test from the context menu.

• The Asset Wizard opens with all inputs preset for the ramp-spec selection as shown below and then Click

Finish.

Figure 44: All Inputs are preset for the Ramp Spec

When the action completes, the Unit Test Editor opens in the Editor panel as shown below.

Unit testing requires an in-depth knowledge on how to implement them so this will not be addressed here. Refer

to the Component Development Guide to learn about them. The Editor supports most aspects of developing unit

test XML.

Figure 45: Unit Test Editor Panel

ANGRYVIPER IDE User Guide 31

http://opencpi.github.io/releases/1.5.0/OpenCPI_Component_Development.pdf


Note: There are a number of cases where one attribute out of a set may go in the test XML element. This

is very prevalent for the input, output, and test case elements. In this implementation of the Editor, once

an attribute out of the set is added, the inputs for other choices are disabled.

The figure below demonstrates this behavior. An input element can either have a name or a Port and the source

data from them can either be a script or a file, so once filled in the other inputs are disabled. Simply clear the

input to start over (use backspace or select delete).

Figure 46: Display of Attribute Choice

ANGRYVIPER IDE User Guide 32



Appendices

A. Eclipse Basics

A central abstraction for Eclipse is the workspace. This is a directory Eclipse uses to maintain state and projects.

When Eclipse opens, it prompts the user to Select a workspace with the following dialog preset for a default

directory name in the user’s home directory. If the workspace directory does not exist yet, it will be created. This

directory path name can be changed. The Browse Button allows navigation to another location to either create

the workspace or select an existing workspace directory.

Figure 47: Eclipse Launcher

Since this is a new workspace, when Eclipse completes start-up, it presents the Welcome screen as shown in the

figure below. If you are new to Eclipse or an IDE of this type, this is a good screen to explore. Overview gives

basic concepts and definitions such as Toolbars, Perspectives, and Views. The other selections provide how-to

Figure 48: Eclipse Welcome Screen

instruction. To continue to see this screen when Eclipse opens, keep the ”Always Show Welcome on Startup”

ANGRYVIPER IDE User Guide 33



check box checked and go through these items.

For now, move on to the workbench:

• Click the workbench arrow button in the upper right corner

• When the workbench first opens, the IDE defaults to the C/C++ perspective1 as show in figure below

Note: Section 3 above explains how to open the Perspective and how to use the IDE for OpenCPI devel-

opment is explained in Section 5.

Note: Even if Eclipse projects are placed in the workspace directory, Eclipse will not bring them into the workspace.

Projects must be imported or locally created to be appear in the Project Explorer View.

OpenCPI projects will not appear in the OpenCPI Projects View unless they are open projects.

Figure 49: Eclipse Workspace

ANGRYVIPER IDE User Guide 34



B. Eclipse Basic Concepts

Eclipse uses Perspectives to provide various sets of tools that together focus on a given perspective of devel-

opment. A perspective consists of a workbench layout of a complimentary set of Eclipse views. A view is a

workbench panel that provides a specific capability. For example, the Eclipse Project Explorer View provides

a graphical view of the file system and the ability to navigate through and act upon it. The Window Tab in the

Main Menu Bar at the top of the window provides navigation to the available perspectives and views, as well as,

workbench window controls and user preferences.

A final note: the user can rearrange a perspective layout, add, or remove views, and modify panel sizes. These

setting are saved and become the default layout for that perspective. Projects must be imported to appear in the

workspace. The Eclipse Project Explorer provides these controls via a context menu that is opened by right-click

when the cursor is in the view. This menu provides access to create new things in the workspace or project,

controls to open or closed a project and to remove files, folders, and projects from the workspace.

Caution! Using Project Explorer to delete OpenCPI assets can cause problems; deleting/renaming

source files is okay. It is okay to remove a project from the workspace (delete is used), however, do

not remove OpenCPI project contents from the file system unless it has been unregistered .

The OpenCPI Projects View or the ocpidev command should be used to delete OpenCPI projects and as-

sets. Editors and tool chains – Review the Workbench Overview panel and look over C/C++ Development

documentation.

ANGRYVIPER IDE User Guide 35



C. Additional Plugins for the IDE

If the development machine has access to the internet or a mirrored Eclipse Marketplace, consider the following

software to enhance the AV IDE experience. The Marketplace link is found under the Help link in the top

navigation bar. The Marketplace makes it very easy to search, browse and review software. Using the IDE

navigate to Help-Eclipse Marketplace. Search for the packages below; it is a simple install button click to get the

package.

TM Terminal 4.0

Search for Terminal in the Marketplace to see a number of available terminal packages. The TM Terminal 4 has

been used successfully by the AV team. Click the install button to install the product. Typically, an agreement

must be accepted to continue.

ANGRYVIPER IDE User Guide 36



D. Build The IDE

Introduction

The OpenCPI/ANGRYVIPER IDE Plugin can be built from source with the following instructions. These commands

assume they are performed by the “root” user, while normally discouraged, is usually performed within a Docker

container running a Fedora OS.

Instructions

Follow the steps below, in the directory of your choice “$DIR”.

1. Install Sapphire Dependency

cmd: mkdir $DIR/temp && cd $DIR/temp

cmd: wget --output-document=tempo.zip "http://www.eclipse.org/downloads/download.php?

file=/sapphire/9.1/sapphire-repository-9.1.zip&r=1"

cmd: unzip -q tempo.zip

cmd: mkdir -p /usr/share/java/sapphire/

cmd: mv plugins/*jar /usr/share/java/sapphire/

cmd: rm -rf *

2. Install Web Tools Platform (WTP) Dependency

cmd: mkdir $DIR/temp && cd $DIR/temp

cmd: wget --output-document=tempo.zip "https://www.eclipse.org/downloads/download.php?

file=/webtools/downloads/drops/R3.9.5/R-3.9.5-20180409100740/wtp-repo-R-3.9.5-20180409100740.

zip&r=1"

cmd: unzip -q tempo.zip

cmd: mkdir -p /usr/share/java/wtp/

cmd: mv plugins/*jar /usr/share/java/wtp/

cmd: rm -rf *

3. Install Eclipse Dependencies

cmd: dnf install eclipse-gef-sdk tycho tycho-extras

4. Download Eclipse Neon

cmd: cd $DIR

cmd: wget --output-document=eclipse.tar.gz "https://www.eclipse.org/downloads/download.

php?file=/technology/epp/downloads/release/neon/3/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.

gz&r=1"

cmd: tar xf eclipse-cpp-neon-3-linux-gtk-x86 64.tar.gz

5. Use Eclipse Command-Line To Download Prerequisites

cmd: cd $DIR

cmd: ./eclipse/eclipse \

-clean -purgeHistory -noSplash -destination ./temp \

-application org.eclipse.equinox.p2.director \

-repository \

"http://download.eclipse.org/tools/gef/updates/legacy/releases/, \

http://download.eclipse.org/releases/neon" \

-installIUs "\

org.eclipse.gef.sdk.feature.group, \

org.eclipse.jdt.feature.group, \

org.eclipse.sapphire.feature.group, \

org.eclipse.sapphire.ui.feature.group, \

ANGRYVIPER IDE User Guide 37

"http://www.eclipse.org/downloads/download.php?file=/sapphire/9.1/sapphire-repository-9.1.zip&r=1"
"http://www.eclipse.org/downloads/download.php?file=/sapphire/9.1/sapphire-repository-9.1.zip&r=1"
"https://www.eclipse.org/downloads/download.php?file=/webtools/downloads/drops/R3.9.5/R-3.9.5-20180409100740/wtp-repo-R-3.9.5-20180409100740.zip&r=1"
"https://www.eclipse.org/downloads/download.php?file=/webtools/downloads/drops/R3.9.5/R-3.9.5-20180409100740/wtp-repo-R-3.9.5-20180409100740.zip&r=1"
"https://www.eclipse.org/downloads/download.php?file=/webtools/downloads/drops/R3.9.5/R-3.9.5-20180409100740/wtp-repo-R-3.9.5-20180409100740.zip&r=1"
"https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/neon/3/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz&r=1"
"https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/neon/3/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz&r=1"
"https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/neon/3/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz&r=1"


org.eclipse.sapphire.platform.feature.group, \

org.eclipse.sapphire.java.jdt.feature.group, \

org.eclipse.sapphire.java.feature.group, \

org.eclipse.sapphire.osgi.feature.group, \

org.eclipse.sapphire.sdk.feature.group, \

org.eclipse.sapphire.ui.swt.gef.feature.group, \

org.eclipse.sapphire.ui.swt.xml.editor.feature.group, \

org.eclipse.sapphire.modeling.xml.feature.group"

cmd: mkdir -p $DIR/eclipse/av prereqs/plugins

cmd: cp -r $DIR/temp/plugins/. $DIR/eclipse/av prereqs/plugins

cmd: cd $DIR/eclipse/av prereqs/plugins

cmd: ls -1 $DIR/eclipse/plugins/ | xargs -r rm -rf

6. Clone OpenCPI IDE repository

cmd: cd $DIR

cmd: git clone https://github.com/opencpi/angryviper_gui.git

cmd: <git checkout appropriate branch>

7. Build OpenCPI Plugin

cmd: cd angryviper gui/av.proj.ide.tycho

cmd: xmvn -o clean verify

8. Combine Prerequisites + OpenCPI Plugin + Eclipse

cmd: mdkir -p $DIR/eclipse/dropins/angryviper/plugins

cmd: mv $DIR/eclipse/av prereqs/plugins/* $DIR/eclipse/dropins/angryviper/plugins/

cmd: rm -rf $DIR/eclipse/av prereqs

cmd: mv
$DIR/angryviper gui/av.proj.ide.tycho/releng/av.proj.ide.update/target/repository/plugins/*.jar

$DIR/eclipse/dropins/angryviper/plugins/

9. Start Eclipse With IDE Plugin

cmd: $DIR/eclipse/eclipse &

ANGRYVIPER IDE User Guide 38

https://github.com/opencpi/angryviper_gui.git

	Revision History
	List of Figures
	List of Tables
	References
	Assumptions
	Reference Documents

	Introduction
	New Features in the 1.5 Release
	Overview
	AV Perspective Views




	IDE Overview and Features
	Overview
	OpenCPI Projects View Features


	Operations View Features
	Build Status View Features
	Eclipse Project Explorer View
	Eclipse Console View
	OpenCPI Asset Wizard
	OpenCPI Asset XML Editors
	The Execution Configuration
	XML Editors-Modifying Existing XML Files
	Warning about a Non-OpenCPI Project
	The Perspective is Not in Sync with the Workspace or the File System
	OpenCPI Development Workflow Using the IDE
	Introduction
	OpenCPI the Core and Assets Projects
	Importing OpenCPI Core and Asset Projects
	Build the Projects for the desired RCC and HDL Platforms
	Creating New Projects and Libraries
	More on OpenCPI Projects
	Project Registration
	Errors in Creating New Project
	OpenCPI Libraries
	Creating Components, Protocols and Workers
	Component Example from the Getting Started Guide
	Worker Example from the Getting Started Guide
	Creating Applications and Assemblies
	Adding Components to an Application
	Connecting Application Components
	Assembly Editor
	Creating Component Unit Tests

	Appendices
	Eclipse Basics
	Eclipse Basic Concepts
	Additional Plugins for the IDE
	TM Terminal 4.0

	Build The IDE
	Introduction
	Instructions








